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The	Uncertainty	of	Measurements	
	
Some	numerical	statements	are	exact:	Mary	has	3	brothers,	and	2	+	2	=	4.	However,	
all	measurements	have	some	degree	of	uncertainty	that	may	come	from	a	variety	of	
sources.	The	process	of	evaluating	the	uncertainty	associated	with	a	measurement	
result	is	often	called	uncertainty	analysis	or	sometimes	error	analysis.	
	
The	complete	statement	of	a	measured	value	should	include	an	estimate	of	the	level	
of	confidence	associated	with	the	value.	Properly	reporting	an	experimental	result	
along	with	its	uncertainty	allows	other	people	to	make	judgments	about	the	quality	
of	 the	 experiment,	 and	 it	 facilitates	 meaningful	 comparisons	 with	 other	 similar	
values	or	a	theoretical	prediction.	Without	an	uncertainty	estimate,	it	is	impossible	
to	 answer	 the	 basic	 scientific	 question:	 “Does	 my	 result	 agree	 with	 a	 theoretical	
prediction	 or	 results	 from	 other	 experiments?”	 This	 question	 is	 fundamental	 for	
deciding	if	a	scientific	hypothesis	is	confirmed	or	refuted.	
	
When	making	a	measurement,	we	generally	assume	 that	some	exact	or	 true	value	
exists	based	on	how	we	define	what	is	being	measured.	While	we	may	never	know	
this	 true	 value	 exactly,	 we	 attempt	 to	 find	 this	 ideal	 quantity	 to	 the	 best	 of	 our	
ability	 with	 the	 time	 and	 resources	 available.	 As	 we	 make	 measurements	 by	
different	 methods,	 or	 even	 when	making	multiple	 measurements	 using	 the	 same	
method,	we	may	obtain	slightly	different	results.	So	how	do	we	report	our	findings	
for	our	best	estimate	of	this	elusive	true	value?		The	most	common	way	to	show	the	
range	of	values	that	we	believe	includes	the	true	value	is:	
	

measurement	=	(best	estimate	±	uncertainty)	units	
	
As	an	example,	suppose	you	want	to	find	the	mass	of	a	gold	ring	that	you	would	like	
to	sell	to	a	friend.	You	do	not	want	to	jeopardize	your	friendship,	so	you	want	to	get	
an	accurate	mass	of	the	ring	in	order	to	charge	a	fair	market	price.	You	estimate	the	
mass	to	be	between	10	and	20	grams	from	how	heavy	it	feels	in	your	hand,	but	this	
is	not	a	very	precise	estimate.	After	some	searching,	you	find	an	electronic	balance	
that	 gives	 a	mass	 reading	 of	 17.43	 grams.	While	 this	measurement	 is	much	more	
precise	 than	 the	 original	 estimate,	 how	 do	 you	 know	 that	 it	 is	accurate,	 and	 how	
confident	 are	 you	 that	 this	 measurement	 represents	 the	 true	 value	 of	 the	 ring’s	
mass?	 Since	 the	 digital	 display	 of	 the	 balance	 is	 limited	 to	 2	 decimal	 places,	 you	
could	report	the	mass	as	m	=	17.43	±	0.01	g.	Suppose	you	use	the	same	electronic	
balance	 and	 obtain	 several	 more	 readings:	 17.46	 g,	 17.42	 g,	 17.44	 g,	 so	 that	 the	
average	mass	 appears	 to	 be	 in	 the	 range	 of	 17.44	±	 0.02	 g.	 By	 now	 you	may	 feel	
confident	that	you	know	the	mass	of	 this	ring	to	the	nearest	hundredth	of	a	gram,	
but	how	do	you	know	that	the	true	value	definitely	lies	between	17.43	g	and	17.45	
g?	 Since	 you	 want	 to	 be	 honest,	 you	 decide	 to	 use	 another	 balance	 that	 gives	 a	
reading	of	17.22	g.	This	value	is	clearly	below	the	range	of	values	found	on	the	first	
balance,	and	under	normal	circumstances,	you	might	not	care,	but	you	want	 to	be	
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fair	to	your	friend.	So	what	do	you	do	now?		The	answer	lies	in	knowing	something	
about	the	accuracy	of	each	instrument.	
	
To	help	answer	these	questions,	we	first	define	the	terms	accuracy	and	precision:	
	

Accuracy	is	the	closeness	of	agreement	between	a	measured	
value	and	a	true	or	accepted	value.		Measurement	error	is	the	
amount	of	inaccuracy.	
	
Precision	is	a	measure	of	how	well	a	result	can	be	
determined	(without	reference	to	a	theoretical	or	true	
value).	It	is	the	degree	of	consistency	and	agreement	among	
independent	measurements	of	the	same	quantity;	also	the	
reliability	or	reproducibility	of	the	result.	

	
The	accuracy	and	precision	can	be	pictured	as	follows:	
	

	  

	 	 	 	
	
high	precision,	low	accuracy	 	 low	precision,	high	accuracy	

	
Figure	1.	Accuracy	vs	Precision	
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The	uncertainty	 estimate	 associated	with	 a	measurement	 should	 account	 for	 both	
the	accuracy	and	precision	of	 the	measurement.	Precision	 indicates	 the	quality	of	
the	 measurement,	 without	 any	 guarantee	 that	 the	 measurement	 is	 “correct.”	
Accuracy,	 on	 the	 other	 hand,	 assumes	 that	 there	 is	 an	 ideal	 “true”	 value,	 and	
expresses	how	 far	 your	 answer	 is	 from	 that	 “correct”	 answer.	These	 concepts	 are	
directly	related	to	random	and	systematic	measurement	uncertainties	(next	section).	
	
	
Note:	Unfortunately	the	terms	error	and	uncertainty	are	often	used	interchangeably	
to	 describe	 both	 imprecision	 and	 inaccuracy.	 This	 usage	 is	 so	 common	 that	 it	 is	
impossible	to	avoid	entirely.	Whenever	you	encounter	these	terms,	make	sure	you	
understand	whether	they	refer	to	accuracy	or	precision,	or	both.	In	this	document,	
we	will	emphasize	the	term	“uncertainty”	but	will	use	the	term	“error,”	as	necessary,	
to	avoid	confusion	with	commonly	found	examples	and	standard	usage	of	the	term.	
	
In	order	to	determine	the	accuracy	of	a	particular	measurement,	we	have	to	know	
the	 ideal,	 true	value,	 sometimes	 referred	 to	 as	 the	 “gold	 standard.”	 Sometimes	we	
have	a	“textbook”	measured	value,	which	is	well	known,	and	we	assume	that	this	is	
our	“ideal”	value,	and	use	it	 to	estimate	the	accuracy	of	our	result.	Other	times	we	
know	a	theoretical	value,	which	is	calculated	from	basic	principles,	and	this	also	may	
be	taken	as	an	“ideal”	value.	But	physics	 is	an	empirical	science,	which	means	that	
the	theory	must	be	validated	by	experiment,	and	not	the	other	way	around.	We	can	
escape	these	difficulties	and	retain	a	useful	definition	of	accuracy	by	assuming	that,	
even	when	we	do	not	know	the	true	value,	we	can	rely	on	the	best	available	accepted	
value	with	which	to	compare	our	experimental	value.	
	
For	 the	gold	ring	example,	 there	 is	no	accepted	value	with	which	 to	compare,	and	
both	measured	values	have	the	same	precision,	so	there	is	no	reason	to	believe	one	
more	than	the	other.	We	could	look	up	the	accuracy	specifications	for	each	balance	
as	 provided	 by	 the	 manufacturer,	 but	 the	 best	 way	 to	 assess	 the	 accuracy	 of	 a	
measurement	is	to	compare	it	with	a	known	standard.	For	this	situation,	it	may	be	
possible	 to	 calibrate	 the	 balances	with	 a	 standard	mass	 that	 is	 accurate	within	 a	
narrow	 tolerance	 and	 is	 traceable	 to	 a	 primary	 mass	 standard	 at	 the	 National	
Institute	 of	 Standards	 and	 Technology	 (NIST).	 Calibrating	 the	 balances	 should	
eliminate	the	discrepancy	between	the	readings	and	provide	a	more	accurate	mass	
measurement.	
	
Precision	is	often	reported	quantitatively	by	using	relative	or	fractional	uncertainty:	
	

	 	 Relative Uncertainty =  uncertainty
measured quantity

		 	 (1)	

	

For	example,	m	=	75.5	±	0.5	g	has	a	fractional	uncertainty	of:	 %7.0600.0
5.75
5.0

==
g
g
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Accuracy	is	often	reported	quantitatively	by	using	relative	error:	
	

	 	 Relative Error =  measured value - expected value
expected value

	 	 (2)	

	
	
If	the	expected	value	for	m	is	80.0	g,	then	the	relative	error	is:	
	
Critical	Notes:	

• The	minus	 sign	 indicates	 that	 the	measured	value	 is	 less	 than	 the	expected	
value	–	unless	explicitly	stated,	the	term	“relative	error”	does	not	in	and	of	itself	
refer	to	a	magnitude.		

• The	 denominator	 is	 neither	 the	 measured	 value	 nor	 the	 average	 of	 the	
measured	and	expected	value	–	the	relative	error	can	only	be	cited	when	there	
is	a	known	expected	value	or	gold	standard.	

	
	  

%6.5056.0
0.80
0.805.75

−=−=
−
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Types	of	Uncertainty	
	
Measurement	 uncertainties	 may	 be	 classified	 as	 either	 random	 or	 systematic,	
depending	 on	 how	 the	measurement	 was	 obtained	 (an	 instrument	 could	 cause	 a	
random	uncertainty	in	one	situation	and	a	systematic	uncertainty	in	another).	
	
Random	 uncertainties	 are	 statistical	 fluctuations	 (in	 either	 direction)	 in	 the	
measured	data.	These	uncertainties	may	have	their	origin	in	the	measuring	device,	
or	in	the	fundamental	physics	underlying	the	experiment.	The	random	uncertainties	
may	be	masked	by	the	precision	or	accuracy	of	the	measurement	device.	 	Random	
uncertainties	 can	 be	 evaluated	 through	 statistical	 analysis	 and	 can	 be	 reduced	 by	
averaging	 over	 a	 large	 number	 of	 observations	 (see	 “standard	 error”	 later	 in	 this	
document).	
	
Systematic	uncertainties	are	reproducible	inaccuracies	that	are	consistently	in	the	
“same	direction,”	and	could	be	caused	by	an	artifact	in	the	measuring	instrument,	or	
a	flaw	in	the	experimental	design	(because	of	these	possibilities,	it	is	not	uncommon	
to	 see	 the	 term	 “systematic	 error”).	 These	uncertainties	may	be	difficult	 to	 detect	
and	cannot	be	analyzed	statistically.	If	a	systematic	uncertainty	or	error	is	identified	
when	 calibrating	 against	 a	 standard,	 applying	 a	 correction	 or	 correction	 factor	 to	
compensate	 for	 the	 effect	 can	 reduce	 the	 bias.	 Unlike	 random	 uncertainties,	
systematic	uncertainties	cannot	be	detected	or	reduced	by	increasing	the	number	of	
observations.	
	
When	 making	 careful	 measurements,	 the	 goal	 is	 to	 reduce	 as	 many	 sources	 of	
uncertainty	 as	possible	 and	 to	keep	 track	of	 those	 that	 cannot	be	 eliminated.	 It	 is	
useful	to	know	the	types	of	uncertainties	that	may	occur,	so	that	we	may	recognize	
them	 when	 they	 arise.	 Common	 sources	 of	 uncertainty	 in	 physics	 laboratory	
experiments	include:	
	
Incomplete	 definition	 (may	 be	 systematic	 or	 random)	 -	 One	 reason	 that	 it	 is	
impossible	 to	 make	 exact	 measurements	 is	 that	 the	 measurement	 is	 not	 always	
clearly	defined.	For	example,	if	two	different	people	measure	the	length	of	the	same	
string,	 they	would	probably	get	different	 results	because	each	person	may	stretch	
the	string	with	a	different	tension.	The	best	way	to	minimize	definition	uncertainty	
is	 to	 carefully	 consider	 and	 specify	 the	 conditions	 that	 could	 affect	 the	
measurement.	
	
Failure	to	account	for	a	factor	(usually	systematic)	–	The	most	challenging	part	of	
designing	 an	 experiment	 is	 trying	 to	 control	 or	 account	 for	 all	 possible	 factors	
except	 the	one	 independent	variable	 that	 is	being	analyzed.	For	 instance,	you	may	
inadvertently	 ignore	 air	 resistance	 when	 measuring	 free-fall	 acceleration,	 or	 you	
may	fail	to	account	for	the	effect	of	the	Earth’s	magnetic	field	when	measuring	the	
field	near	a	small	magnet.	The	best	way	to	account	for	these	sources	of	uncertainty	
is	to	brainstorm	with	your	peers	about	all	the	factors	that	could	possibly	affect	your	
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result.	This	brainstorm	should	be	done	before	beginning	the	experiment	in	order	to	
plan	 and	 account	 for	 the	 confounding	 factors	 before	 taking	 data.	 Sometimes	 a	
correction	can	be	applied	to	a	result	after	taking	data	to	account	for	an	uncertainty	
that	was	not	detected	earlier.	
	
Environmental	 factors	 (systematic	 or	 random)	 -	 Be	 aware	 of	 uncertainty	
introduced	by	the	immediate	working	environment.	You	may	need	to	take	account	
of	or	protect	your	experiment	from	vibrations,	drafts,	changes	in	temperature,	and	
electronic	noise	or	other	effects	from	nearby	apparatus.	
	
Instrument	resolution	(random)	-	All	instruments	have	finite	precision	that	limits	
the	 ability	 to	 resolve	 small	 measurement	 differences.	 For	 instance,	 a	 meter	 stick	
cannot	be	used	to	distinguish	distances	to	a	precision	much	better	than	about	half	of	
its	smallest	scale	division	(typically	0.5	mm).	One	of	 the	best	ways	to	obtain	more	
precise	 measurements	 is	 to	 use	 a	 null	 difference	method	 instead	 of	 measuring	 a	
quantity	directly.	Null	or	balance	methods	involve	using	instrumentation	to	measure	
the	 difference	 between	 two	 similar	 quantities,	 one	 of	 which	 is	 known	 very	
accurately	 and	 is	 adjustable.	 The	 adjustable	 reference	 quantity	 is	 varied	 until	 the	
difference	 is	 reduced	 to	 zero.	 The	 two	 quantities	 are	 then	 balanced,	 and	 the	
magnitude	 of	 the	 unknown	 quantity	 can	 be	 found	 by	 comparison	 with	 a	
measurement	 standard.	 With	 this	 method,	 problems	 of	 source	 instability	 are	
eliminated,	and	the	measuring	instrument	can	be	very	sensitive	and	does	not	even	
need	a	scale.	This	type	of	measurement	is	more	sophisticated	and	will	typically	not	
be	used	in	the	introductory	physics	courses.	
	
Calibration	 (systematic)	 –	Whenever	 possible,	 the	 calibration	 of	 an	 instrument	
should	be	checked	before	taking	data.	If	a	calibration	standard	is	not	available,	the	
accuracy	 of	 the	 instrument	 should	 be	 checked	 by	 comparing	 with	 another	
instrument	that	is	at	least	as	precise,	or	by	consulting	the	technical	data	provided	by	
the	manufacturer.	 	Calibration	errors	are	usually	 linear	 (measured	as	a	 fraction	of	
the	full	scale	reading),	so	that	larger	values	result	in	greater	absolute	errors.	
	
Zero	offset	(systematic)	-	When	making	a	measurement	with	a	micrometer	caliper,	
electronic	balance,	or	electrical	meter,	always	check	the	zero	reading	first.	Re-zero	
the	 instrument	 if	 possible,	 or	 at	 least	measure	 and	 record	 the	 zero	 offset	 so	 that	
readings	 can	 be	 corrected	 later.	 It	 is	 also	 a	 good	 idea	 to	 check	 the	 zero	 reading	
throughout	the	experiment.	 	Failure	to	zero	a	device	will	result	in	a	constant	offset	
that	is	more	significant	for	smaller	measured	values	than	for	larger	ones.	
	
Physical	variations	(random)	-	It	is	always	wise	to	obtain	multiple	measurements	
over	 the	 widest	 range	 possible.	 Doing	 so	 often	 reveals	 variations	 that	 might	
otherwise	go	undetected.		These	variations	may	call	for	closer	examination,	or	they	
may	be	combined	to	find	an	average	value.	
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Parallax	 (systematic	 or	 random)	 -	 This	 error	 can	 occur	 whenever	 there	 is	 some	
distance	 between	 the	 measuring	 scale	 and	 the	 indicator	 used	 to	 obtain	 a	
measurement.	 	 If	 the	 observer’s	 eye	 is	 not	 squarely	 aligned	with	 the	 pointer	 and	
scale,	the	reading	may	be	too	high	or	low	(some	analog	meters	have	mirrors	to	help	
with	this	alignment).	
	
Instrument	 drift	 (systematic)	 -	 Most	 electronic	 instruments	 have	 readings	 that	
drift	over	time.		The	amount	of	drift	is	generally	not	a	concern,	but	occasionally	this	
source	of	uncertainty	can	be	significant.	
	
Lag	 time	 and	hysteresis	 (systematic)	 -	 Some	measuring	 devices	 require	 time	 to	
reach	 equilibrium,	 and	 taking	 a	measurement	 before	 the	 instrument	 is	 stable	will	
result	 in	 a	 measurement	 that	 is	 too	 high	 or	 low.	 A	 common	 example	 is	 taking	
temperature	readings	with	a	thermometer	that	has	not	reached	thermal	equilibrium	
with	its	environment.		A	similar	effect	is	hysteresis,	wherein	the	instrument	readings	
lag	 behind	 and	 appear	 to	 have	 a	 “memory”	 effect,	 as	 data	 are	 taken	 sequentially	
moving	 up	 or	 down	 through	 a	 range	 of	 values.	 Hysteresis	 is	 most	 commonly	
associated	with	materials	that	become	magnetized	when	a	changing	magnetic	field	
is	applied.	
	
Last	 but	 not	 least,	 some	 uncertainties	 are	 the	 result	 of	 carelessness,	 poor	
technique,	 or	 bias	 on	 the	 part	 of	 the	 experimenter.	 The	 experimenter	may	 use	 a	
measuring	device	incorrectly,	or	may	use	poor	technique	in	taking	a	measurement,	
or	may	introduce	a	bias	into	measurements	by	expecting	(and	inadvertently	forcing)	
the	 results	 to	agree	with	 the	expected	outcome.	Gross	uncertainties	of	 this	nature	
can	be	referred	to	as	mistakes	or	blunders,	and	should	be	avoided	and	corrected	if	
discovered.	As	a	rule,	these	uncertainties	are	excluded	from	any	uncertainty	analysis	
discussion	 because	 it	 is	 generally	 assumed	 that	 the	 experimental	 result	 was	
obtained	by	following	correct	and	well-intentioned	procedures	–	there	is	no	point	to	
performing	 an	 experiment	 and	 then	 reporting	 that	 it	 was	 known	 to	 be	 done	
incorrectly.	 The	 term	 human	 error	 should	 be	 avoided	 in	 uncertainty	 analysis	
discussions	because	it	is	too	general	to	be	useful.	
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Estimating	Experimental	Uncertainty	for	a	Single	Measurement	
	
Any	 measurement	 will	 have	 some	 uncertainty	 associated	 with	 it,	 no	 matter	 the	
precision	of	the	measuring	tool.	How	is	this	uncertainty	determined	and	reported?	
The	uncertainty	of	a	single	measurement	is	limited	by	the	precision	and	accuracy	of	
the	measuring	instrument,	along	with	any	other	factors	that	might	affect	the	ability	
of	the	experimenter	to	make	the	measurement.	
	
For	 example,	 if	 you	 are	 trying	 to	 use	 a	meter	 stick	 to	measure	 the	 diameter	 of	 a	
tennis	 ball,	 the	 uncertainty	might	 be	±5	mm,	 but	 if	 you	 use	 a	 Vernier	 caliper,	 the	
uncertainty	could	be	reduced	to	maybe	±2	mm.	The	 limiting	factor	with	the	meter	
stick	is	parallax,	while	the	second	case	is	limited	by	ambiguity	in	the	definition	of	the	
tennis	ball’s	diameter	(it’s	fuzzy!).	In	both	of	these	cases,	the	uncertainty	is	greater	
than	the	smallest	divisions	marked	on	the	measuring	tool	(likely	1	mm	and	0.05	mm	
respectively).	 Unfortunately,	 there	 is	 no	 general	 rule	 for	 determining	 the	
uncertainty	in	all	measurements.	The	experimenter	is	the	one	who	can	best	evaluate	
and	quantify	the	uncertainty	of	a	measurement	based	on	all	the	possible	factors	that	
affect	the	result.	Therefore,	the	person	making	the	measurement	has	the	obligation	
to	make	the	best	judgment	possible	and	report	the	uncertainty	in	a	way	that	clearly	
explains	what	the	uncertainty	represents:	
	
Measurement	=	(measured	value	±	standard	uncertainty)	(unit	of	measurement)	

	
where	 “±	 standard	 uncertainty”	 indicates	 approximately	 a	 68%	 confidence	
interval	(see	sections	on	Standard	Deviation	and	Reporting	Uncertainties).	
	

Example:		Diameter	of	tennis	ball	=	6.7	±	0.2	cm	
 

Estimating	Uncertainty	in	Repeated	Measurements	
	
Suppose	you	time	the	period	of	oscillation	of	a	pendulum	using	a	digital	instrument	
(that	 you	 assume	 is	 measuring	 accurately)	 and	 find	 that	 T	 =	 0.44	 seconds.	 This	
single	 measurement	 of	 the	 period	 suggests	 a	 precision	 of	 ±0.005	 s,	 but	 this	
instrument	 precision	 may	 not	 give	 a	 complete	 sense	 of	 the	 uncertainty,	 and	 you	
should	avoid	reporting	the	uncertainty	 in	this	 fashion	if	possible.	 If	you	repeat	the	
measurement	several	times	and	examine	the	variation	among	the	measured	values,	
you	can	get	a	better	idea	of	the	uncertainty	in	the	period.	For	example,	here	are	the	
results	of	5	measurements,	in	seconds:	0.46,	0.44,	0.45,	0.44,	0.41.	For	this	situation,	
the	best	estimate	of	the	period	is	the	average,	or	mean:	

	
N

xxx N+++
=

...  (mean) Average 21
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Whenever	 possible,	 repeat	 a	measurement	 several	 times	 and	 average	 the	 results.	
This	average	is	generally	the	best	estimate	of	the	“true”	value	(unless	the	data	set	is	
skewed	by	one	or	more	outliers	which	should	be	examined	to	determine	if	they	are	
bad	data	points	that	should	be	omitted	from	the	average	or	valid	measurements	that	
require	 further	 investigation).	 Generally,	 the	 more	 repetitions	 you	 make	 of	 a	
measurement,	the	better	this	estimate	will	be,	but	be	careful	to	avoid	wasting	time	
taking	more	measurements	than	is	necessary	for	the	precision	required.	
	
Consider,	 as	 another	 example,	 the	measurement	 of	 the	width	 of	 a	 piece	 of	 paper	
using	a	meter	stick.	Being	careful	to	keep	the	meter	stick	parallel	to	the	edge	of	the	
paper	 (to	 avoid	 a	 systematic	 error	 which	 would	 cause	 the	measured	 value	 to	 be	
consistently	higher	than	the	correct	value),	the	width	of	the	paper	is	measured	at	a	
number	of	points	on	the	sheet,	and	the	values	obtained	are	entered	in	a	data	table.	
Note	that	the	last	digit	 is	only	a	rough	estimate,	since	it	 is	difficult	to	read	a	meter	
stick	to	the	nearest	tenth	of	a	millimeter	(0.01	cm)	–	we	retain	the	last	digit	for	now	
to	make	a	point	later.	

Observation	 Width	(cm)	
#1	 31.33	
#2	 31.15	
#3	 31.26	
#4	 31.02	
#5	 31.20	

	
Table	1.	Five	Measurements	of	the	Width	of	a	Piece	of	Paper	

	

Average = sum of observed widths
number of observations

 = 155.96 cm
5

 = 31.19 cm 	

	
This	average	is	the	best	available	estimate	of	the	width	of	the	piece	of	paper,	but	it	is	
not	 exact.	 We	 would	 have	 to	 average	 an	 infinite	 number	 of	 measurements	 to	
approach	the	true	mean	value,	and	even	then,	we	are	not	guaranteed	that	the	mean	
value	is	accurate	because	there	is	still	 likely	some	systematic	uncertainty	from	the	
measuring	tool,	which	is	difficult	to	calibrate	perfectly	unless	it	is	the	gold	standard.		
So	how	do	we	express	the	uncertainty	in	our	average	value?	
	
One	way	 to	express	 the	variation	among	 the	measurements	 is	 to	use	 the	average	
deviation.	 	This	statistic	tells	us	on	average	(with	50%	confidence)	how	much	the	
individual	measurements	vary	from	the	mean.	

	
The	 average	 deviation	 would	 seem	 to	 be	 a	 sufficient	 measure	 of	 uncertainty;	
however,	 it	 is	 important	 to	 understand	 the	 distribution	 of	 measurements.	 The	

N
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Central	 Limit	 Theorem	 proves	 that	 as	 the	 number	 of	 independent	measurements	
increases,	and	assuming	that	the	variations	in	these	measurements	are	random	(i.e.,	
there	 are	 no	 systematic	 uncertainties),	 the	 distribution	 of	 measurements	 will	
approach	 the	 normal	 distribution,	more	 commonly	 known	 as	 a	 bell	 curve.	 In	 this	
course,	we	will	assume	that	our	measurements,	performed	in	sufficient	number,	will	
produce	a	bell	curve	(normal)	distribution.	In	this	case,	the	standard	deviation	is	the	
correct	way	to	characterize	the	spread	of	the	data.	The	standard	deviation	is	always	
slightly	greater	than	the	average	deviation,	and	is	used	because	of	its	mathematical	
association	with	the	normal	distribution.	
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Standard	Deviation	
	
To	calculate	the	standard	deviation	for	a	sample	of	N	measurements:	
	
	 1.	Sum	all	the	measurements	and	divide	by	N	to	get	the	average,	or	mean.	
	 2.	Subtract	this	average	from	each	of	the	N	measurements	to	obtain	N	“deviations.”	
	 3.	Square	each	of	the	N	deviations	and	add	them	together.	
	 4.	Divide	this	result	by	(N–1)	and	take	the	square	root.	
	
To	convert	this	into	a	formula,	let	the	N	measurements	be	called	x1,	x2,	…,	xN.	Let	the	
average	of	the	N	values	be	called	 x .	Then	each	deviation	is	given	by	
	

xxx ii −=δ ,	for	i	=	1,	2,	...,	N	
	
The	standard	deviation	is	then:	
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In	the	meter	stick	and	paper	example,	the	average	paper	width	 x 	is	31.19	cm.	The	
deviations	are:	
	

Observation	 Width	(cm)	 Deviation	(cm)	
#1	 31.33	 +0.14	 =	31.33	-	31.19	
#2	 31.15	 -0.04	 =	31.15	-	31.19	
#3	 31.26	 +0.07	 =	31.26	-	31.19	
#4	 31.02	 -0.17	 =	31.02	-	31.19	
#5	 31.20	 +0.01	 =	31.20	-	31.19	

	
Table	1	(completed).	Five	Measurements	of	the	Width	of	a	Sheet	of	Paper	

	
The	average	deviation	is:		 d 	=	0.09	cm	
	
	
The	standard	deviation	is:	
	
	
The	 significance	 of	 the	 standard	 deviation	 is	 this:	 if	 you	 now	 make	 one	 more	
measurement	 using	 the	 same	meter	 stick,	 you	 can	 reasonably	 expect	 (with	 about	
68%	confidence)	that	the	new	measurement	will	be	within	0.12	cm	of	the	estimated	
average	 of	 31.19	 cm.	 In	 fact,	 it	 is	 reasonable	 to	 use	 the	 standard	deviation	 as	 the	
uncertainty	associated	with	this	single	new	measurement.		However,	the	uncertainty	

cm 12.0
15

)01.0()17.0()07.0()04.0()14.0( 22222

=
−

++++
=s



Measurements & Uncertainty Analysis 
	
	

13 Department of Physics and Astronomy  
	
	

of	the	average	value	is	the	standard	deviation	of	the	mean,	which	is	always	less	than	
the	standard	deviation	(see	next	section).	
	
Consider	an	example	of	100	measurements	of	a	quantity,	 for	which	the	average	or	
mean	 value	 is	 10.50	 and	 the	 standard	 deviation	 is	 s	 =	 1.83.	 Figure	 2	 below	 is	 a	
histogram	 of	 the	 100	 measurements,	 which	 shows	 how	 often	 a	 certain	 range	 of	
values	was	measured.	For	example,	in	20	of	the	measurements,	the	value	was	in	the	
range	9.50	to	10.50,	and	most	of	the	readings	were	close	to	the	mean	value	of	10.50.	
The	standard	deviation	s	 for	this	set	of	measurements	is	roughly	how	far	from	the	
average	value	most	 of	 the	 readings	 fell.	 For	a	 large	enough	sample,	 approximately	
68%	of	the	readings	will	be	within	one	standard	deviation	(“1-sigma”)	of	the	mean	
value,	95%	of	the	readings	will	be	in	the	interval	 x 	±	2s	(“2-sigma”)	,	and	nearly	all	
(99.7%)	 of	 the	 readings	 will	 lie	 within	 3	 standard	 deviations	 (“3-sigma”)	 of	 the	
mean.	The	smooth	curve	superimposed	on	the	histogram	is	the	normal	distribution	
predicted	by	theory	for	measurements	involving	random	errors.	As	more	and	more	
measurements	are	made,	the	histogram	will	better	approximate	a	bell-shaped	curve,	
but	the	standard	deviation	of	the	distribution	will	remain	approximately	the	same.	
	
	

 

sx

	
→±←  1 sx 	

→±←       2       sx 	
→±←            3            sx 	

	
Figure	2.	A	Normal	Distribution	(Bell	Curve)	Based	on	100	Measurements	
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Standard	Deviation	of	the	Mean	(Standard	Error)	
	
When	 reporting	 the	 average	 value	of	N	measurements,	 the	uncertainty	 associated	
with	 this	 average	 value	 is	 the	 standard	 deviation	 of	 the	 mean,	 often	 called	 the	
standard	error	(SE).	
	

Standard Deviation of the Mean, or Standard Error (SE),   σ x  = s
N
		 (3)	

	
The	standard	error	is	smaller	than	the	standard	deviation	by	a	factor	of	 N1 .	This	
reflects	 the	 fact	 that	we	expect	 the	uncertainty	of	 the	average	value	to	get	smaller	
when	we	use	a	larger	number	of	measurements.	In	the	previous	example,	we	have	
divided	the	standard	deviation	of	0.12	by	√5	to	get	 the	standard	error	of	0.05	cm.	
The	final	result	should	then	be	reported	as	“average	paper	width	=	31.19	±	0.05	cm.”	
	

When	to	Use	Standard	Deviation	vs	Standard	Error	
	
For	repeated	measurements,	the	significance	of	the	standard	deviation	s	is	that	you	
can	reasonably	expect	(with	about	68%	confidence)	that	the	next	measurement	will	
be	within	s	of	the	estimated	average.	It	is	reasonable	to	use	the	standard	deviation	
as	 the	 uncertainty	 associated	 with	 this	 measurement;	 however,	 as	 more	
measurements	are	made,	the	value	of	the	standard	deviation	may	be	refined	but	it	
will	not	significantly	decrease	as	the	number	of	measurements	is	increased.	
	
In	 contrast,	 if	 you	 are	 confident	 that	 the	 systematic	 uncertainty	 in	 your	
measurement	is	very	small,	then	it	is	reasonable	to	assume	that	your	finite	sample	
of	all	possible	measurements	is	not	biased	away	from	the	“true”	value.	In	this	case,	
the	uncertainty	of	the	average	value	can	be	expressed	as	the	standard	deviation	of	
the	mean,	which	is	always	less	than	the	standard	deviation	by	a	factor	of	√N.		
	

	
	

Figure	3.	Standard	Deviation	vs	Standard	Error	
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If	you	are	not	confident	that	the	systematic	uncertainty	in	your	measurement	is	very	
small,	the	uncertainty	that	should	be	reported	is	the	standard	combined	uncertainty	
(Uc)	that	includes	all	known	uncertainty	estimates	(see	section	on	Combining	and	
Reporting	Uncertainties	later	in	this	document).	

Anomalous	Data	
	
The	first	step	you	should	take	in	analyzing	data	(and	even	while	taking	data)	is	to	
examine	the	data	set	as	a	whole	to	look	for	patterns	and	outliers.	Anomalous	data	
points	that	lie	outside	the	general	trend	of	the	data	may	suggest	an	interesting	
phenomenon	that	could	lead	to	a	new	discovery,	or	they	may	simply	be	the	result	of	
a	mistake	or	random	fluctuations.	In	any	case,	an	outlier	requires	closer	
examination	to	determine	the	cause	of	the	unexpected	result.	Extreme	data	should	
never	be	“thrown	out”	without	clear	justification	and	explanation,	because	you	may	
be	discarding	the	most	significant	part	of	the	investigation!	However,	if	you	can	
clearly	justify	omitting	an	inconsistent	datum,	then	you	may	exclude	the	outlier	
from	your	analysis	so	that	the	average	value	is	not	skewed	from	the	“true”	mean.	
There	are	a	number	of	statistical	measures	that	help	quantify	the	decision	to	discard	
outliers,	but	they	are	beyond	the	scope	of	this	document.	Be	aware	of	the	possibility	
of	anomalous	data,	and	address	the	topic	as	needed	in	the	discussion	included	with	
a	lab	report	or	lab	notebook.	
	

Fractional	Uncertainty	
	
When	a	reported	value	is	determined	by	taking	the	average	of	a	set	of	independent	
readings,	the	fractional	uncertainty	is	given	by	the	ratio	of	the	uncertainty	divided	
by	the	average	value.	For	this	example,	
	

Fractional Uncertainty = uncertainty
average

 = 0.05 cm
31.19 cm

 = 0.0016 ≈  0.2%
	

	
The	fractional	uncertainty	is	dimensionless	but	is	often	reported	as	a	percentage	or	
in	 parts	 per	 million	 (ppm)	 to	 emphasize	 the	 fractional	 nature	 of	 the	 value.	 A	
scientist	might	also	make	the	statement	that	this	measurement	“is	good	to	about	1	
part	 in	 500”	 or	 “precise	 to	 about	 0.2%”.	 The	 fractional	 uncertainty	 is	 important	
because	 it	 is	 used	 in	propagating	 uncertainty	 in	 calculations	 using	 the	 result	 of	 a	
measurement,	as	discussed	in	the	next	section.	
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Biases	and	the	Factor	of	N–1	
	
You	may	find	it	surprising	that	the	best	value	(average)	is	calculated	by	normalizing	
(dividing)	by	N,	whereas	the	standard	deviation	is	calculated	by	normalizing	to	N–1.	
The	reason	is	because	normalizing	to	N	is	known	to	underestimate	the	correct	value	
of	the	width	of	a	normal	distribution,	unless	N	is	large.	This	underestimate	is	
referred	to	as	a	bias	and	is	the	result	of	incomplete	sampling	(that	is,	the	population	
of	measurements	falls	short	of	the	entire	population	of	measurements	that	could	be	
taken).	If	the	number	of	samples	is	less	than	10	or	so,	even	the	N–1	term	(known	as	
Bessel’s	correction)	can	still	induce	a	bias.	Determining	the	exact	correction	to	
minimize	or	eliminate	bias	depends	on	the	distribution	of	the	data,	and	there	is	no	
simple	exact	equation	that	can	be	applied;	however,	for	small	sample	sizes	that	are	
quite	common	in	introductory	physics	classes,	a	correction	of	N–1.5	may	be	more	
appropriate.	If	you	use	a	correction	factor	of	1.5	in	your	lab	reports,	you	must	make	
this	clear	in	your	analysis	and	cite	this	Guide	as	a	reference.	
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Significant	Figures 
	
The	number	of	significant	figures	in	a	value	can	be	defined	as	all	the	digits	between	
and	 including	 the	 first	 non-zero	 digit	 from	 the	 left,	 through	 the	 last	 digit.	 For	
instance,	0.44	has	two	significant	 figures,	and	the	number	66.770	has	5	significant	
figures.	Zeroes	are	significant	except	when	used	to	locate	the	decimal	point,	as	in	the	
number	 0.00030,	 which	 has	 2	 significant	 figures.	 Zeroes	 may	 or	 may	 not	 be	
significant	for	numbers	like	1200,	where	it	 is	not	clear	whether	two,	three,	or	four	
significant	 figures	are	 indicated.	To	avoid	 this	ambiguity,	 such	numbers	 should	be	
expressed	 in	 scientific	 notation	 (e.g.,	 1.20×103	 clearly	 indicates	 three	 significant	
figures).	
	
When	using	a	calculator,	the	display	will	often	show	many	digits,	only	some	of	which	
are	 meaningful	 (significant	 in	 a	 different	 sense).	 For	 example,	 if	 you	 want	 to	
estimate	 the	area	of	 a	 circular	playing	 field,	 you	might	pace	off	 the	 radius	 to	be	9	
meters	and	use	the	formula	A	=	πr2.	When	you	compute	this	area,	the	calculator	will	
report	a	value	of	254.4690049	m2.	It	would	be	extremely	misleading	to	report	this	
number	as	the	area	of	the	field,	because	it	would	suggest	that	you	know	the	area	to	
an	absurd	degree	of	precision	–	to	within	a	fraction	of	a	square	millimeter!	Since	the	
radius	is	only	known	to	one	significant	figure,	 it	 is	considered	best	practice	to	also	
express	the	final	answer	to	only	one	significant	figure:		Area	=	3×102	m2.	
	
From	this	example,	we	can	see	that	the	number	of	significant	figures	reported	for	a	
value	 implies	a	certain	degree	of	precision	and	can	suggest	a	rough	estimate	of	the	
relative	uncertainty:	
	
	 1	significant	figure	suggests	a	relative	uncertainty	of	about	10%	to	100%	
	 2	significant	figures	suggest	a	relative	uncertainty	of	about	1%	to	10%	
	 3	significant	figures	suggest	a	relative	uncertainty	of	about	0.1%	to	1%	
	
To	 understand	 this	 connection	 more	 clearly,	 consider	 a	 value	 with	 2	 significant	
figures,	 like	 99,	 which	 suggests	 an	 uncertainty	 of	 ±1,	 or	 a	 relative	 uncertainty	 of	
±1/99	=	±1%	(some	might	argue	that	the	implied	uncertainty	in	99	is	±	0.5	since	the	
range	 of	 values	 that	 would	 round	 to	 99	 are	 98.5	 to	 99.4;	 however,	 since	 the	
uncertainty	here	is	only	a	rough	estimate,	there	is	not	much	point	arguing	about	the	
factor	 of	 two.)	 The	 smallest	 2-significant-figure	 number,	 10,	 also	 suggests	 an	
uncertainty	of	±1,	which	in	this	case	is	a	relative	uncertainty	of	±1/10	=	±10%.	The	
ranges	for	other	numbers	of	significant	figures	can	be	reasoned	in	a	similar	manner.	
	
Warning:	 this	procedure	 is	open	 to	a	wide	range	of	 interpretation;	 therefore,	one	
should	 use	 caution	 when	 using	 significant	 figures	 to	 imply	 uncertainty,	 and	 the	
method	 should	 only	 be	 used	 if	 there	 is	 no	 other	 better	 way	 to	 determine	
uncertainty.	 An	 explicit	 warning	 to	 this	 effect	 should	 accompany	 the	 use	 of	 this	
method.	
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Subject	 to	 the	 above	 warning,	 significant	 figures	 can	 be	 used	 to	 find	 a	 possibly	
appropriate	precision	for	a	calculated	result	for	the	four	most	basic	math	functions.	
	

• For	multiplication	and	division,	the	number	of	significant	figures	that	are	
reliably	known	in	a	product	or	quotient	is	the	same	as	the	smallest	number	of	
significant	figures	in	any	of	the	original	numbers.	

	
Example:	 	 6.6	 	 			 	 (2	significant	figures)	
	 	 	 ×	7328.7	 	 			 (5	significant	figures)	
	 	 	 48369.42	=	48	x	103	 			 (2	significant	figures)	
	

• For	addition	and	subtraction,	the	result	should	be	rounded	off	to	the	last	
decimal	place	reported	for	the	least	precise	number.	

	
	
Examples:	 	 223.64		 	 5560.5	
	 	 	 +54	 		 	 +0.008	
	 	 	 278	 	 	 5560.5	
	
Critical	 Note:	 if	 a	 calculated	 number	 is	 to	 be	 used	 in	 further	 calculations,	 it	 is	
mandatory	to	keep	guard	digits	to	reduce	rounding	errors	that	may	accumulate.	The	
final	answer	can	then	be	rounded	according	to	the	above	guidelines.	The	number	of	
guard	digits	required	to	maintain	the	integrity	of	a	calculation	depends	on	the	type	
of	 calculation.	 For	 example,	 the	 number	 of	 guard	 digits	 must	 be	 larger	 when	
performing	power	law	calculations	than	when	adding.	
	

Uncertainty,	Significant	Figures,	and	Rounding	
	
For	 the	 same	 reason	 that	 it	 is	 dishonest	 to	 report	 a	 result	 with	 more	 significant	
figures	than	are	reliably	known,	 the	uncertainty	value	should	also	not	be	reported	
with	excessive	precision.	For	example,	it	would	be	unreasonable	to	report	a	result	in	
the	following	way:	
	

measured	density	=	8.93	±	0.475328	g/cm3	 WRONG!	
	
The	uncertainty	in	the	measurement	cannot	possibly	be	known	so	precisely!	In	most	
experimental	work,	 the	 confidence	 in	 the	uncertainty	 estimate	 is	 not	much	better	
than	about	±50%	because	of	all	the	various	sources	of	error,	none	of	which	can	be	
known	 exactly.	 Therefore,	 uncertainty	 values	 should	 be	 stated	 to	 only	 one	
significant	 figure	 (or	perhaps	2	 significant	 figures	 if	 the	 first	digit	 is	 a	1).	Because	
experimental	uncertainties	are	inherently	imprecise,	they	should	be	rounded	to	one,	
or	at	most	two,	significant	figures.	
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To	help	give	a	sense	of	the	amount	of	confidence	that	can	be	placed	in	the	standard	
deviation	 as	 a	 measure	 of	 uncertainty,	 the	 following	 table	 indicates	 the	 relative	
uncertainty	associated	with	 the	standard	deviation	 for	various	sample	sizes.	 	Note	
that	 in	order	 for	an	uncertainty	value	to	be	reported	to	3	significant	 figures,	more	
than	10,000	readings	would	be	required	to	justify	this	degree	of	precision!	
	

N	 Relative	
Uncertainty*	

Significant		
Figures	Valid	

Implied	
Uncertainty	

2	 71%	 1	 ±10%	to	100%	
3	 50%	 1	 ±	10%	to	100%	
4	 41%	 1	 ±	10%	to	100%	
5	 35%	 1	 ±	10%	to	100%	
10	 24%	 1	 ±	10%	to	100%	
20	 16%	 1	 ±	10%	to	100%	
30	 13%	 1	 ±	10%	to	100%	
50	 10%	 2	 ±	1%	to	10%	
100	 7%	 2	 ±	1%	to	10%	
10000	 0.7%	 3	 ±0.1%	to	1%	

	
Table	2.	Valid	Significant	Figures	in	Uncertainties	

	
*The	relative	uncertainty	is	given	by	the	approximate	formula:	
	
	
When	an	explicit	uncertainty	estimate	is	made,	the	uncertainty	term	indicates	how	
many	 significant	 figures	 should	be	 reported	 in	 the	measured	 value	 (not	 the	 other	
way	 around!).	 For	 example,	 the	 uncertainty	 in	 the	 density	measurement	 above	 is	
about	0.5	g/cm3,	which	suggests	that	the	digit	 in	the	tenths	place	is	uncertain,	and	
should	 be	 the	 last	 one	 reported.	 The	 other	 digits	 in	 the	 hundredths	 place	 and	
beyond	are	insignificant,	and	should	not	be	reported:	
	

measured	density	=	8.9	±	0.5	g/cm3	 RIGHT!	
	
An	experimental	value	should	be	rounded	to	be	consistent	with	the	magnitude	of	its	
uncertainty.	 	 This	 generally	means	 that	 the	 last	 significant	 figure	 in	 any	 reported	
value	should	be	in	the	same	decimal	place	as	the	uncertainty.	
	
In	most	instances,	this	practice	of	rounding	an	experimental	result	to	be	consistent	
with	 the	 uncertainty	 estimate	 gives	 the	 same	number	 of	 significant	 figures	 as	 the	
rules	 discussed	 earlier	 for	 simple	 propagation	 of	 uncertainties	 for	 adding,	
subtracting,	multiplying,	and	dividing.	
	
Caution:	 	 When	 conducting	 an	 experiment,	 it	 is	 important	 to	 keep	 in	 mind	 that	
precision	is	expensive	(both	in	terms	of	time	and	material	resources).	Do	not	waste	
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your	time	trying	to	obtain	a	precise	result	when	only	a	rough	estimate	is	required.	
The	 cost	 increases	 exponentially	 with	 the	 amount	 of	 precision	 required,	 so	 the	
potential	benefit	of	this	precision	must	be	weighed	against	the	extra	cost.	
	
Practical	Tips	for	Measuring	Uncertainty	
	
I.	“Stacking”	
	
Assume	you	are	asked	to	measure	the	mass	of	a	typical	penny	(according	to	the	US	
Mint,	currently	made	pennies	have	a	nominal	mass	of	2.5	grams)	with	a	scale	whose	
accuracy	 is	 known	 to	 be	 ±0.2	 gram.	 Measuring	 one	 penny	 might	 yield	 a	
measurement	of	2.4	±	0.2	grams,	and	this	would	be	the	only	measurement	possible	
for	that	one	penny.	Likewise,	another	penny	might	yield	a	measurement	of	2.5	±	0.2	
grams.	
	
Is	there	a	way	to	get	a	more	precise	measurement?	In	this	case,	yes,	because	you	are	
asked	to	find	the	mass	of	a	typical	penny.	By	stacking	pennies	and	measuring	more	
than	one	of	them	at	the	same	time,	dividing	by	the	number	of	pennies	measured	can	
provide	a	more	precise	answer.	For	example,	 assume	 that	you	measure	5	pennies	
separately	with	these	results	(all	with	an	accuracy	of	±0.2	g):	2.4,	2.4,	2.5,	2.4,	2.6.	
The	 relative	 uncertainty	 of	 each	 measurement	 is	 about	 8%.	 Further	 assume	 that	
when	 you	measure	 all	 five	 at	 the	 same	 time,	 the	 value	 is	 12.3	 ±	 0.2	 g,	 yielding	 a	
relative	uncertainty	of	about	2%	for	the	stack.	The	mean	value	for	a	typical	penny	is	
therefore	(retaining	guard	digits)	2.460	g.	But	what	do	we	assign	as	the	uncertainty?	
One	might	argue	that	the	uncertainty	is	still	0.2;	however,	the	uncertainty	can	also	
be	divided	by	5,	based	on	the	upper-lower	bound	method,	for	which	the	sum	of	the	
individual	measurements	can	be	plausibly	written	as:	
	
sum	=	(2.4	±	0.04)	+	(2.4	±	0.04)	+	(2.5	±	0.04)	+	(2.4	±	0.04)	+	(2.6	±	0.04)	=	12.3	±	0.2	g	

	
This	 is	 arguably	 the	 same	 as	 the	 stacked	 value	 of	 12.3	 ±	 0.2	 g.	 Therefore,	we	 can	
reasonably	 divide	 both	 the	 stacked	 value	 and	 its	 uncertainty	 by	N,	 and	 can	 thus	
reasonably	assert	the	value	for	a	typical	penny	as	2.46	±	0.04	g.	
	
	
II.	Always	Minimize	Your	Sig	Figs	
	
This	 “stacking”	 method	 can	 be	 used	 for	 any	 type	 of	 measurement	 that	 requires	
typical	values	 to	be	 found	 from	repeated	measurements	of	 similar	objects	or	 time	
intervals;	however,	the	method	is	not	foolproof.	Suppose	instead	that	the	scale	has	a	
quoted	accuracy	that	 is	much	better	than	 its	resolution	(e.g.,	accuracy	=	0.2%,	and	
resolution	=	0.1	g).	Such	devices	are	not	designed	to	measure	small	values	(the	0.2%	
accuracy	for	values	on	the	order	of	1	g	is	smaller	than	the	resolution).	In	this	case,	
the	sum,	in	full	precision,	would	be:	
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sum	=	(2.4	±	0.005)	+	(2.4	±	0.005)	+	(2.5	±	0.005)	+	(2.4	±	0.005)	+	(2.6	±	0.005)	=	12.300	±	0.025	g	
	

Note	that	the	0.025	uncertainty	is	4	times	less	than	the	resolution	(in	contrast	to	the	
previous	example,	where	the	0.2	uncertainty	is	twice	the	resolution).	It	would	therefore	
be	incorrect	to	assert	the	answer	as	2.460	±	0.005	g,	because	the	accuracy	cited	far	
exceeds	the	resolution	of	the	instrument.	
	
This	result	is	easier	to	visualize	by	looking	at	actual	distributions.	Suppose	that	you	
have	a	device	that	reports	measurements	to	4	sig	figs.	Consider	the	previous	example	of	
the	meter	stick	used	to	measure	the	width	of	a	piece	of	paper,	where	5	measurements	
were	used	to	determine	that	the	width	is	31.19	±	0.12	cm	(Table	1).	Table	2	asserts	that	
only	1	sig	fig	in	the	standard	deviation	is	justified	for	5	data	points.	Thus,	this	result	
should	properly	be	reported	as	31.2	±	0.1	cm,	consistent	with	our	belief	that	it	is	
difficult	to	read	a	meter	stick	to	the	nearest	tenth	of	a	millimeter.	Histograms	of	the	
measurements	to	4,	3,	and	2	sig	figs	are	shown	below.	The	red	and	green	arrows	
represent	the	average	and	standard	deviation,	respectively.	
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Question:	which	choice	of	sig	figs	provides	the	best	representation	of	a	bell	curve	whose	
height	is	represented	by	the	red	arrow	and	its	width	is	represented	by	the	green	arrow?	
The	most	likely	answer	of	course	is	none:	none	of	the	distributions	looks	much	like	a	
bell	curve!	The	reason	for	this	is	that	not	enough	data	points	exist	to	create	a	bell	curve.	
Without	knowing	that	the	actual	distribution	of	measurements	would	look	like	a	bell	
curve,	we	cannot	be	sure	that	these	data	do	create	a	normal	distribution,	for	which	the	
concept	of	a	standard	deviation	makes	sense.	Given	this	limitation,	the	correct	solution	
is	to	take	many	more	data	points;	however,	for	4	sig	figs,	many	many	data	points	(likely	
thousands	or	tens	of	thousands)	would	be	required	to	fill	every	bin	in	such	a	way	that	a	
bell	curve	could	be	approximated.	Likewise,	with	only	2	sig	figs,	it’s	probable	that	every	
datum	will	reduce	to	“31”	with	no	uncertainty.	The	compromise	in	this	case	is	3	sig	figs:	
we	represent	the	uncertainty	with	a	minimum	number	of	sig	figs.	Without	more	time	to	
take	data	and	use	more	powerful	statistical	techniques,	we	will	instead	choose	the	
smallest	number	of	sig	figs	to	cite	the	uncertainty.	In	return,	we	will	assume	that	the	
average	and	standard	deviation	are	the	most	reasonable	approach	to	representing	a	
distribution	of	data.	
	
Any	assertion	of	an	uncertainty	beyond	1	sig	fig	is	only	justified	for	N=50	or	above	
(Table	1).	Therefore,	for	the	second	stacked	penny	result,	the	sum	would	be	
appropriately	rounded	to	12.30	±	0.03	g,	yielding	a	final	value	for	a	typical	penny	of	
2.460	±	0.006	g.	The	only	workaround	to	a	better	result	in	this	case	is	to	stack	many	
more	pennies,	until	the	stacked	uncertainty	is	large	enough	to	compensate	for	the	poor	
resolution.	
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Propagation	of	Uncertainty	
	
Suppose	we	want	to	determine	a	quantity	f,	which	depends	on	x	and	maybe	several	
other	variables	y,	z,	etc.	We	want	to	know	the	uncertainty	in	f	if	we	measure	x,	y,	etc,	
with	uncertainties	σX,	σY,	 etc.	That	 is,	we	want	 to	 find	out	how	 the	uncertainty	 in	
one	 set	 of	 variables	 (usually	 the	 independent	 variables)	 propagates	 to	 the	
uncertainty	in	another	set	of	variables	(usually	the	dependent	variables).	There	are	
two	primary	methods	of	performing	this	propagation	procedure:	
	

• upper-lower	bound	
• quadrature	

	
The	upper-lower	bound	method	is	simpler	in	concept,	but	tends	to	overestimate	the	
uncertainty,	while	the	quadrature	method	is	more	sophisticated	(and	complicated)	
but	provides	a	better	statistical	estimate	of	the	uncertainty.	
	

The	Upper-Lower	Bound	Method	of	Uncertainty	Propagation	
	
This	method	uses	the	uncertainty	ranges	of	each	variable	to	calculate	the	maximum	
and	 minimum	 values	 of	 the	 function.	 You	 can	 also	 think	 of	 this	 procedure	 as	
examining	the	best	and	worst	case	scenarios.	For	example,	suppose	you	measure	an	
angle	to	be	θ	=	25°	±	1°	and	you	need	to	find	f	=	cosθ,	then:	
	

fmax	=	cos(26°)	=		0.8988	 	 fmin	=	cos(24°)	=		0.9135	
	
Then,	f	=	0.906	±	0.007	(where	0.007	is	half	the	difference	between	fmax	and	fmin)	
	
Note	that	even	though	θ	was	only	measured	to	2	significant	figures,	f	is	known	to	3	
figures.		
	
As	another	important	example,	consider	the	division	of	two	variables.	A	common	
example	is	the	calculation	of	average	speed:	
	

vavg =
Δx
Δt
	

	
Let’s	say	an	experiment	done	repeatedly	measures	distance	travelled	of	30	±	0.5	m	
during	 a	 time	 of	 2	 ±	 0.1	 sec.	 To	 find	 the	 upper	 and	 lower	 bound	 of	 vavg,	 the	
uncertainties	must	be	set	to	create	the	“worst	case	scenario”	for	the	uncertainty	in	
vavg:	

vavg−max =
30 + 0.5 m
2 – 0.1 sec

 = 16.05 m/s 	 	 vavg−min =
30 – 0.5 m
2 + 0.1 sec

 = 14.05 m/s 	
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The	best	(expected)	value	for	the	average	speed	is	30/2	=	15.00	m/s.	The	upper	
bound	is	1.05	m/s	higher	but	the	lower	bound	is	0.95	m/s	lower	(different	from	
1.05).	This	is	a	typical	outcome	when	using	the	upper-lower	bound	method.	The	
uncertainty	should	be	expressed	as	the	most	conservative	value.	Thus:	
	
	 	 	 vavg	=	15.00	±	1.05	m/s	 	 PREFERRED!	
	
Note	that	it	is	not	correct	to	take	the	difference	between	the	upper	and	lower	bound	
and	divide	by	two:	
	
	 	 	 vavg	=	15.05	±	1.00	m/s	 	 NOT	PREFERRED!	
	
Although	the	last	result	satisfies	symmetry	between	the	bounds,	it	explicitly	
calculates	an	incorrect	value	of	the	best-known	expected	value	of	the	average	speed.		
	
Many	times,	the	difference	between	the	so-called	“preferred“	and	“not	preferred”	
approaches	is	not	significant	enough	to	be	an	issue.	For	example,	if	it	is	appropriate	
to	round	the	uncertainty	in	the	above	values	to	one	sig	fig,	the	answer	is	15	±	1	m/s,	
regardless	of	the	approach.	Nevertheless,	you	should	be	aware	of	this	pitfall.		
	
The	 upper-lower	 bound	 method	 is	 especially	 useful	 when	 the	 functional	
relationship	is	not	clear	or	is	incomplete.	One	practical	application	is	forecasting	the	
expected	 range	 in	 an	 expense	 budget.	 In	 this	 case,	 some	 expenses	 may	 be	 fixed,	
while	others	may	be	uncertain,	and	the	range	of	these	uncertain	terms	could	be	used	
to	predict	the	upper	and	lower	bounds	on	the	total	expense.	
	

Quadrature	
	
The	 quadrature	 method	 yields	 a	 standard	 uncertainty	 estimate	 (with	 a	 68%	
confidence	 interval)	 and	 is	 especially	 useful	 and	 effective	 in	 the	 case	 of	 several	
variables	 that	 weight	 the	 uncertainty	 non-uniformly.	 The	method	 is	 derived	with	
several	examples	shown	below.	
	
For	a	single-variable	function	f	(x),	the	deviation	in	f	can	be	related	to	the	deviation	
in	x	using	calculus:	

x
dx
dff δδ ⎟
⎠

⎞
⎜
⎝

⎛
=

	
	
Taking	the	square	and	the	average	yields:	
	

2
2

2 x
dx
dff δδ ⎟
⎠

⎞
⎜
⎝

⎛
=
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Using	the	definition	of	σ	yields:	
	

xf dx
df
σσ =
	

	
Examples	for	power	laws:	
	
	 f	=	√x	 	 	 	 	 	 	 f	=	x2	
	

	 df
dx

= 1
2 x

	 	 	 	 	 	 df
dx

= 2x
	

	

	 σ f =
σ x

2 x
		or		

σ f

f
= 1
2
σ x

x
	 	 	 	

σ f

f
= 2σ x

x
	

	
Note	that	by	judiciously	normalizing,	it	is	easy	to	express	the	relative	(fractional)	
uncertainty	in	one	variable	with	respect	to	the	relative	(fractional)	uncertainty	in	
another.	Note	also	that	the	weighting	is	directly	related	to	the	power	exponent	of	
the	function.	Now	reconsider	the	trig	example	from	the	upper-lower	bound	section:	
	
	 	 	 	 	 f	=	cosθ 
	

	 	 	 	 	
θ

θ
sin−=

d
df

	
	

	 	 	 	 	 θσθσ sin=f 	
	
Note	that	in	this	situation,	σθ	must	be	in	radians.	For	θ	=	25°	±	1°	(0.727	±	0.017)	
	

σf	=	|sinθ|σθ	=	(0.423)(π/180)	=	0.0074					
	
This	is	the	same	result	as	upper-lower	bound	method.	The	fractional	uncertainty	
follows	immediately	as:	

	 	 	 	 	 θσθ
σ

tan=
f
f 	

	
The	deeper	power	of	the	quadrature	method	is	evident	in	the	case	where	f	depends	
on	two	or	more	variables;	the	derivation	above	can	be	repeated	with	minor	
modification.	For	two	variables,	f(x,	y):	
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y
y
fx

x
ff δδδ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+⎟

⎠

⎞
⎜
⎝

⎛
∂

∂
=

	
	

The	partial	derivative	
x
f
∂

∂ 	means	differentiating	f	with	respect	to	x	holding	the	other	

variables	 fixed.	 Taking	 the	 square	 and	 the	 average	 yields	 the	 generalized	 law	 of	
propagation	of	uncertainty	by	quadrature:	
	

(δ f )2 = ∂ f
∂x

⎛
⎝⎜

⎞
⎠⎟
2

(δ x)2 + ∂ f
∂y

⎛
⎝⎜

⎞
⎠⎟

2

(δ y)2 + 2 ∂ f
∂x

⎛
⎝⎜

⎞
⎠⎟

∂ f
∂y

⎛
⎝⎜

⎞
⎠⎟
δ xδ y 	 (4)	

	
If	the	measurements	of	x	and	y	are	uncorrelated,	then	 0=yxδδ ,	and	this	reduces	to	
its	most	common	form:	
	

σ f =
∂ f
∂x

⎛
⎝⎜

⎞
⎠⎟
2

σ x
2 + ∂ f

∂y
⎛
⎝⎜

⎞
⎠⎟

2

σ y
2 	

	
	
Addition	and	Subtraction	Example:	 	 f	=	x	±	y	
	

∂ f
∂x

= 1,     ∂ f
∂y

= ±1 → σ f = σ x
2 +σ y

2 	

	
	
Multiplication	example:	 	 	 f	=	xy	
	

∂ f
∂x

= y,     ∂ f
∂y

= x → σ f = y2σ x
2 + x2σ y

2 	

	
	 Dividing	the	above	equation	by	f	=	xy	yields:	
	

When	adding	(or	subtracting)	independent	measurements,	the	absolute	uncertainty	
of	the	sum	(or	difference)	is	the	root	sum	of	squares	(RSS)	of	the	individual	
absolute	uncertainties.		When	adding	correlated	measurements,	the	uncertainty	in	
the	result	is	simply	the	sum	of	the	absolute	uncertainties,	which	is	always	a	larger	
uncertainty	estimate	than	adding	in	quadrature	(RSS).	Adding	or	subtracting	a	
constant	does	not	change	the	absolute	uncertainty	of	the	calculated	value	as	long	as	
the	constant	is	an	exact	value.			
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⎠

⎞
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=

yxf
yxf σσσ

	
	

	
Division	example:	 	 	 f	=	x/y	
	

∂ f
∂x

= 1
y

,     ∂ f
∂y

= − x
y2 → σ f =

1
y

⎛
⎝⎜

⎞
⎠⎟

2

σ x
2 + x

y2

⎛
⎝⎜

⎞
⎠⎟

2

σ y
2 	

	
	 Dividing	the	previous	equation	by	f	=	x/y	yields:	
	

22

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛
=

yxf
yxf σσσ

	
	

	
Note	 that	 the	 relative	 (fractional)	 uncertainty	 in	 f	 has	 the	 same	 form	 for	
multiplication	 and	 division:	 	 the	 relative	 uncertainty	 in	 a	 product	 or	 quotient	
depends	on	the	relative	uncertainty	of	each	individual	term.	
	
As	another	example,	consider	propagating	the	uncertainty	in	the	speed	v	=	at,	where	
the	acceleration	is	a	=	9.8	±	0.1	m/s2	and	the	time	is	t	=	1.2	±	0.1	s.	
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Notice	 that	 the	 relative	 uncertainty	 in	 t	 (2.9%)	 is	 significantly	 greater	 than	 the	
relative	 uncertainty	 for	 a	 (1.0%),	 and	 therefore	 the	 relative	 uncertainty	 in	 v	 is	
essentially	the	same	as	for	t		(about	3%).	
	
Graphically,	the	RSS	is	like	the	Pythagorean	theorem:	
The	total	uncertainty	is	the	length	of	the	hypotenuse	of	a	right	
triangle	with	legs	the	length	of	each	uncertainty	component.	
	
	

1.0% 
3.1% 

2.9% 

When	multiplying	(or	dividing)	independent	measurements,	the	relative	uncertainty	
of	the	product	(quotient)	is	the	RSS	of	the	individual	relative	uncertainties.		When	
multiplying	correlated	measurements,	the	uncertainty	in	the	result	is	just	the	sum	of	
the	relative	uncertainties,	which	is	always	a	larger	uncertainty	estimate	than	adding	
in	quadrature	(RSS).		Multiplying	or	dividing	by	a	constant	does	not	change	the	
relative	uncertainty	of	the	calculated	value.	
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Timesaving	approximation:	“A	chain	is	only	as	strong	as	its	weakest	link.”	
If	one	of	 the	uncertainty	 terms	 is	more	than	3	 times	greater	 than	the	other	 terms,	
the	 root-squares	 formula	 can	be	 skipped,	 and	 the	 combined	uncertainty	 is	 simply	
the	 largest	 uncertainty.	 This	 shortcut	 can	 save	 a	 lot	 of	 time	 without	 losing	 any	
accuracy	in	the	estimate	of	the	overall	uncertainty.	
	
The	quadrature	method	can	be	generalized	to	all	power	laws	in	the	following	way:	
	

f	=	xnym	
	

σ f

f
= n2 σ x

x
⎛
⎝⎜

⎞
⎠⎟
2

+m2 σ y

y
⎛
⎝⎜

⎞
⎠⎟

2

	

	
The	proof	of	this	is	shown	in	the	Appendix.	

	
	

The	uncertainty	estimate	from	the	upper-lower	bound	method	is	generally	larger	
than	the	standard	uncertainty	estimate	found	from	the	quadrature	method,	but	both	
methods	will	give	a	reasonable	estimate	of	the	uncertainty	in	a	calculated	value.	
	
Note:	Once	you	have	an	understanding	of	the	quadrature	method,	it	is	not	required	
to	perform	the	partial	derivative	every	time	you	are	presented	with	a	propagation	of	
uncertainty	 problem	 in	 any	 of	 the	 above	 forms!	 Instead,	 simply	 apply	 the	 correct	
formula	for	the	relative	uncertainties.	
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Combining	and	Reporting	Uncertainties	
	
In	1993,	 the	 International	Standards	Organization	 (ISO)	published	 the	 first	official	
worldwide	Guide	to	the	Expression	of	Uncertainty	in	Measurement.		Before	this	time,	
uncertainty	 estimates	 were	 evaluated	 and	 reported	 according	 to	 different	
conventions	 depending	 on	 the	 context	 of	 the	 measurement	 or	 the	 scientific	
discipline.	Here	are	a	few	key	points	from	this	100-page	guide,	which	can	be	found	
in	modified	form	on	the	NIST	website	(see	References).	
	
When	reporting	a	measurement,	the	measured	value	should	be	reported	along	with	
an	estimate	of	the	total	combined	standard	uncertainty	Uc	of	the	value.	The	total	
uncertainty	 is	 found	 by	 combining	 the	 uncertainty	 components	 based	 on	 the	 two	
types	of	uncertainty	analysis:	
	
Type	A	evaluation	of	standard	uncertainty	–	method	of	evaluation	of	uncertainty	
by	the	statistical	analysis	of	a	series	of	observations.	This	method	primarily	includes	
random	uncertainties.	
	
Type	B	evaluation	of	standard	uncertainty	–	method	of	evaluation	of	uncertainty	
by	means	other	 than	the	statistical	analysis	of	series	of	observations.	This	method	
includes	 systematic	 uncertainties	 and	 errors	 and	 any	 other	 factors	 that	 the	
experimenter	believes	are	important.	
	
The	 individual	 uncertainty	 components	 ui	 should	 be	 combined	 using	 the	 law	 of	
propagation	 of	 uncertainties,	 commonly	 called	 the	 “root-sum-of-squares”	 or	 “RSS”	
method.	When	this	is	done,	the	combined	standard	uncertainty	should	be	equivalent	
to	 the	 standard	 deviation	 of	 the	 result,	making	 this	 uncertainty	 value	 correspond	
with	 a	 68%	 confidence	 interval.	 If	 a	 wider	 confidence	 interval	 is	 desired,	 the	
uncertainty	can	be	multiplied	by	a	coverage	factor	(usually	k	=	2	or	3)	to	provide	
an	uncertainty	range	that	is	believed	to	include	the	true	value	with	a	confidence	of	
95%	(for	k	=	2)	or	99.7%	(for	k	=	3).		If	a	coverage	factor	is	used,	there	should	be	a	
clear	explanation	of	its	meaning	so	there	is	no	confusion	for	readers	interpreting	the	
significance	of	the	uncertainty	value.	
	
You	 should	 be	 aware	 that	 the	 ±	 uncertainty	 notation	 might	 be	 used	 to	 indicate	
different	confidence	intervals,	depending	on	the	scientific	discipline	or	context.	For	
example,	a	public	opinion	poll	may	report	that	the	results	have	a	margin	of	error	of	
±3%,	which	means	that	readers	can	be	95%	confident	(not	68%	confident)	that	the	
reported	results	are	accurate	within	3	percentage	points.	Similarly,	a	manufacturer’s	
tolerance	rating	generally	assumes	a	95%	or	99%	level	of	confidence.	
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Conclusion:	“When	do	measurements	agree	with	each	other?”	
	
We	now	have	the	resources	to	answer	the	fundamental	scientific	question	that	was	
asked	at	the	beginning	of	this	error	analysis	discussion:	“Does	my	result	agree	with	
a	theoretical	prediction	or	results	from	other	experiments?”	
	
Generally	 speaking,	 a	 measured	 result	 agrees	 with	 a	 theoretical	 prediction	 if	 the	
prediction	 lies	 within	 the	 range	 of	 experimental	 uncertainty.	 Similarly,	 if	 two	
measured	 values	 have	 standard	 uncertainty	 ranges	 that	 overlap,	 then	 the	
measurements	 are	 said	 to	 be	 consistent	 (they	 agree).	 If	 the	 uncertainty	 ranges	 do	
not	overlap,	 then	 the	measurements	are	said	 to	be	discrepant	 (they	do	not	agree).	
However,	 you	 should	 recognize	 that	 these	 overlap	 criteria	 can	 give	 two	 opposite	
answers	 depending	 on	 the	 evaluation	 and	 confidence	 level	 of	 the	 uncertainty.	 It	
would	 be	 unethical	 to	 arbitrarily	 inflate	 the	 uncertainty	 range	 just	 to	 make	 a	
measurement	agree	with	an	expected	value.		A	better	procedure	would	be	to	discuss	
the	 size	 of	 the	 difference	 between	 the	 measured	 and	 expected	 values	 within	 the	
context	of	 the	uncertainty,	and	try	 to	discover	 the	source	of	 the	discrepancy	 if	 the	
difference	is	truly	significant.	Example:		
	
	
A	=	1.2	±	0.4	
B	=	1.8	±	0.4	
	
	
	
	
	
These	 measurements	 agree	 within	 their	 uncertainties,	 despite	 the	 fact	 that	 the	
percent	difference	between	their	central	values	is	40%.	In	contrast,	if	the	uncertainty	
is	halved	(±0.2),	 these	same	measurements	do	not	agree	 since	their	uncertainties	
do	not	overlap:	
	
	
	
	
	
	
	
	
	
	
Further	investigation	would	be	needed	to	determine	the	cause	for	the	discrepancy.	
Perhaps	the	uncertainties	were	underestimated,	there	may	have	been	a	systematic	
error	 that	 was	 not	 considered,	 or	 there	 may	 be	 a	 true	 difference	 between	 these	
values.	

0 0.5 1 1.5 2 2.5 

Measurements and their uncertainties 

A 

B 

0 0.5 1 1.5 2 2.5 

Measurements and their uncertainties 
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An	alternative	method	for	determining	agreement	between	values	is	to	calculate	the	
difference	between	the	values	divided	by	their	combined	standard	uncertainty.		This	
ratio	gives	the	number	of	standard	deviations	separating	the	two	values.		If	this	ratio	
is	less	than	1.0,	then	it	is	reasonable	to	conclude	that	the	values	agree.		If	the	ratio	is	
more	 than	2.0,	 then	 it	 is	 highly	unlikely	 (less	 than	about	5%	probability)	 that	 the	
values	are	the	same.	
	

Example	from	above	with	u	=	0.4:		 1.1
57.0

|8.12.1|
=

− 		 A	and	B	likely	agree	

Example	from	above	with	u	=	0.2:		 1.2
28.0

|8.12.1|
=

− 		 A	and	B	likely	do	not	agree 
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Making	Graphs	
	
When	graphs	are	required	in	laboratory	exercises,	you	will	be	instructed	to	“plot	A	
vs.	B”	(where	A	and	B	are	variables).	By	convention,	A	(the	dependant	variable)	
should	be	plotted	along	the	vertical	axis	(ordinate),	and	B	(the	independent	variable)	
should	be	plotted	along	the	horizontal	axis	(abscissa).	Graphs	that	are	intended	to	
provide	numerical	information	should	be	drawn	on	ruled	graph	paper.	Use	a	sharp	
pencil	(not	a	pen)	to	draw	graphs,	so	that	mistakes	can	be	corrected	easily.		It	is	
acceptable	to	use	a	computer	(see	the	Excel	tutorial	below)	to	produce	graphs.	The	
following	graph	is	a	typical	example	in	which	distance	vs.	time	is	plotted	for	a	freely	
falling	object.	Examine	this	graph	and	note	the	following	important	rules	for	
graphing:	

	
Figure	3.	Plot	of	Distance	vs	Time	

	
Title.	Every	graph	should	have	a	title	that	clearly	states	which	variables	appear	on	
the	plot.	If	the	graph	is	not	attached	to	another	identifying	report,	write	your	name	
and	the	date	on	the	plot	for	convenient	reference.	
	
Axis	labels.	Each	coordinate	axis	of	a	graph	should	be	labeled	with	the	word	or	
symbol	for	the	variable	plotted	along	that	axis	and	the	units	(in	parentheses)	in	
which	the	variable	is	plotted.		
	
Choice	of	Scale.	Scales	should	be	chosen	in	such	a	way	that	data	are	easy	to	plot	and	
easy	to	read.	On	coordinate	paper,	every	5th	and/or	10th	line	should	be	selected	as	
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major	division	lines	that	represent	a	decimal	multiple	of	1,	2,	or	5	(e.g.,	0,	l,	2,	0.05,	
20,	500,	etc.)	–	other	choices	(e.g.,	0.3)	make	it	difficult	to	plot	and	also	read	data.	
Scales	should	be	made	no	finer	than	the	smallest	increment	on	the	measuring	
instrument	from	which	data	were	obtained.	For	example,	data	from	a	meter	stick	
(which	has	l	mm	graduations)	should	be	plotted	on	a	scale	no	finer	than	l	division	=	l	
mm,	because	a	scale	finer	than	1	div/mm	would	provide	no	additional	plotting	
accuracy,	since	the	data	from	the	meter	stick	are	only	accurate	to	about	0.5	mm.	
Frequently	the	scale	must	be	considerably	coarser	than	this	limit,	in	order	to	fit	the	
entire	plot	onto	a	single	sheet	of	graph	paper.	In	the	illustration	above,	scales	have	
been	chosen	to	give	the	graph	a	roughly	square	boundary;	avoid	choices	of	scale	that	
make	the	axes	very	different	in	length.	Note	that	it	is	not	always	necessary	to	include	
the	origin	(‘zero’)	on	a	graph	axis;	in	many	cases,	only	the	portion	of	the	scale	that	
covers	the	data	need	be	plotted.	
	
Data	Points.	Enter	data	points	on	a	graph	by	placing	a	suitable	symbol	(e.g.,	a	small	
dot	with	a	small	circle	around	the	dot)	at	the	coordinates	of	the	point.	If	more	than	
one	set	of	data	is	to	be	shown	on	a	single	graph,	use	other	symbols	(e.g.,	∆)	to	
distinguish	the	data	sets.	If	drawing	by	hand,	a	drafting	template	is	useful	for	this	
purpose.		
	
Curves.	Draw	a	simple	smooth	curve	through	the	data	points.	The	curve	will	not	
necessarily	pass	through	all	the	points,	but	should	pass	as	close	as	possible	to	each	
point,	with	about	half	the	points	on	each	side	of	the	curve;	this	curve	is	intended	to	
guide	the	eye	along	the	data	points	and	to	indicate	the	trend	of	the	data.	A	French	
curve	is	useful	for	drawing	curved	line	segments.	Do	not	connect	the	data	points	by	
straight-line	segments	in	a	dot-to-dot	fashion.	This	curve	now	indicates	the	average	
trend	of	the	data,	and	any	predicted	(interpolated	or	extrapolated)	values	should	be	
read	from	this	curve	rather	than	reverting	back	to	the	original	data	points.		
	
Straight-line	Graphs.	In	many	of	the	exercises	in	this	course,	you	will	be	asked	to	
linearize	your	experimental	results	(plot	the	data	in	such	a	way	that	there	is	a	linear,	
or	straight-line	relationship	between	graphed	quantities).	In	these	situations,	you	
will	be	asked	to	fit	a	straight	line	to	the	data	points	and	to	determine	the	slope	and	
y-intercept	from	the	graph.	In	the	example	given	above,	it	is	expected	that	the	falling	
object’s	distance	varies	with	time	according	to	d	=	½gt2.	It	is	difficult	to	tell	whether	
the	data	plotted	in	the	first	graph	above	agrees	with	this	prediction;	however,	if	d	vs.	
t2	is	plotted,	a	straight	line	should	be	obtained	with	slope	=	½g	and	y-intercept	=	0.	
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Using	Excel	for	Data	Analysis	in	Physics	Labs	
	
Students	have	a	number	of	software	options	for	analyzing	lab	data	and	generating	
graphs	with	the	help	of	a	computer.		It	is	the	student’s	responsibility	to	ensure	that	
the	computational	results	are	correct	and	consistent	with	the	requirements	stated	in	
this	lab	manual.	Any	suitable	software	can	be	used	to	perform	these	analyses	and	
generate	tables	and	plots	for	lab	reports	and	assignments;	however,	since	Microsoft	
Excel	is	widely	available	on	all	CCI	laptops	and	in	university	computer	labs,	students	
are	encouraged	to	use	this	spreadsheet	program.	In	addition,	there	may	be	
assignments	during	the	semester	that	specifically	require	an	Excel	(or	platform-
equivalent)	spreadsheet	to	be	submitted.	
	

Getting	Started	
	
This	tutorial	will	lead	you	through	the	steps	to	create	a	graph	and	perform	linear	
regression	analysis	using	an	Excel	spreadsheet.		The	techniques	presented	here	can	
be	used	to	analyze	virtually	any	set	of	data	you	will	encounter	in	your	physics	
studio.	
	
To	begin,	open	Excel.	A	blank	worksheet	should	appear.		Enter	the	sample	data	and	
column	headings	shown	below	into	cells	A1	through	D6.	Save	the	file	to	a	disk	or	to	
your	personal	file	space	on	the	campus	network.		
	

Time	(sec)	 Distance	(m)	 Time	±	 Distance	±	
0.64	 1.15	 0.1	 0.3	
1.1	 2.35	 0.2	 0.5	
1.95	 3.35	 0.3	 0.4	
2.45	 4.46	 0.4	 0.7	
2.85	 5.65	 0.3	 0.5	

	
Note	that	the	uncertainties	for	the	time	and	distance	(denoted	±)	have	been	
included.	These	are	not	necessary	for	a	basic	plot,	but	the	studio	lab	reports	and	
assignments	require	an	uncertainty	analysis,	so	you	should	get	into	the	habit	of	
including	them.	
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Creating	and	Editing	a	Graph	
	
Note:	these	instructions	may	not	be	precisely	correct	for	different	versions	of	Excel	
or	on	different	platforms;	however,	these	instructions	should	be	roughly	correct	for	
all	modern	versions	of	Excel	on	all	platforms.	Other	spreadsheet	programs	should	
have	similar	features.	We	suggest	you	use	on-line	resources	or	consult	with	your	
classmates	or	your	TA	for	specific	questions	or	issues.		
	
You	will	be	creating	a	graph	of	these	data	whose	finished	form	looks	like	this:	
	

	
	
Follow	these	steps	to	accomplish	this:	
	
1:	Use	your	mouse	to	select	all	the	cells	that	contain	the	data	that	you	want	to	graph	
(in	this	example,	columns	A	and	B).	To	graph	these	data,	select	Chart	on	the	toolbar.		
	
2:	Click	on	Scatter	plots	and	choose	XY	(Scatter)	or	Marked	Scatter	with	no	lines.	
A	default	plot	should	appear	in	the	spreadsheet,	and	it	should	be	both	moveable	and	
resizable.	
	
3:	Using	the	Chart	Layout	tool,	experiment	with	setting	the	title,	axes,	axis	titles,	
gridlines	and	legends.	At	a	minimum,	we	require	that	the	plot	be	titled	and	that	the	
x-	and	y-axes	are	descriptively	labeled	with	units.	We	strongly	suggest	that	all	
gridlines	and	the	legend	be	removed	for	clarity.	

y	=	1.8885x	-	0.0035	
R²	=	0.9767	
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Most	graph	features	can	be	modified	by	double-clicking	on	the	feature	you	want	to	
change.	You	can	also	right-click	on	a	feature	to	get	a	menu.	Try	changing	the	color	of	
the	plot	area,	the	numbers	on	the	axes,	and	the	appearance	of	the	data	points.		It	is	
recommended	that	you	always	format	the	background	area	to	white	using	the	
“Automatic”	option.	
	

Adding	Error	Bars	
	
Right-click	on	a	datum	point	and	choose	Format	Data	Series...	and	select	Error	
Bars.	Click	on	the	appropriate	Error	Bar	tab	(X	or	Y)	and	choose	Both	under	
Display	and	Cap	for	the	End	style.		Fixed	values	or	percentages	can	be	set,	for	
example,	but	if	you	have	separate	columns	of	uncertainty	values	for	each	datum,	as	
shown	above,	then	select	Custom	to	specify	the	values.	In	the	subsequent	custom	
error	bar	window,	select	the	positive	error	value	field	and	then	click	and	drag	in	the	
corresponding	Excel	column	of	uncertainties.	Repeat	for	the	negative	value	and	click	
OK.	Your	custom	error	bars	will	then	be	applied.	Repeat	for	the	other	axis.	Note	that	
if	you	create	separate	columns	for	the	positive	and	negative	error	bars,	they	can	be	
set	independently.	Also	note	that	error	bars	may	not	be	visible	if	they	are	smaller	
than	the	size	of	the	datum	point	on	the	plot.	
	

Adding	a	Trendline	
	
The	primary	reason	for	graphing	data	is	to	examine	the	mathematical	relationship	
between	the	two	variables	plotted	on	the	x-	and	y-axes.	To	add	a	trendline	and	
display	its	corresponding	equation,	right-click	on	any	datum	point	and	Add	
Trendline.	Choose	the	graph	shape	that	best	fits	your	data	and	is	consistent	with	
your	theoretical	prediction	(usually	Linear).	Click	on	the	"Options"	tab	and	check	the	
boxes	for	"Display	equation	on	chart"	and	“Display	R-squared	value	on	chart.”		A	
good	fit	is	indicated	by	an	R2	value	close	to	1.	
	
Caution:	When	searching	for	a	mathematical	model	that	explains	your	data,	it	is	
very	easy	to	use	the	trendline	tool	to	produce	nonsense.	This	tool	should	be	used	to	
find	the	simplest	mathematical	model	that	explains	the	relationship	between	the	
two	variables	you	are	graphing.	Look	at	the	equation	and	shape	of	the	trendline	
critically:		

• Does	it	make	sense	in	terms	of	the	physical	principle	you	are	investigating?		
• Is	this	the	best	possible	explanation	for	the	relationship	between	the	two	

variables?		
	
Use	the	simplest	equation	that	passes	through	most	of	the	error	bars	on	your	graph.	
You	may	need	to	try	a	couple	of	trendlines	before	you	get	the	most	appropriate	one.	
To	clear	a	trendline,	right-click	on	its	regression	line	and	select	Clear.	
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Determining	the	Uncertainty	in	Slope	and	Y-intercept	
	
The	R2	value	indicates	the	quality	of	the	least-squares	fit,	but	this	value	does	not	give	
the	error	in	the	slope	directly.	Given	the	best	fit	line	y	=	mx	+	b,	with	n	data	points,	
the	standard	error	(uncertainty)	in	the	slope	m	can	be	determined	from	the	R2	value	
by	using	the	following	formula:	

2
1)/1( 2

−
−

=
n
Rmmσ 	

	
Likewise,	the	uncertainty	in	the	y-intercept	b	is:		
	

n
x

mb
∑

=
2

σσ 	

	
These	values	can	be	computed	directly	in	Excel	or	by	using	a	calculator.	For	this	
sample	set	of	data,	σm	=0.1684	m/s,	and	σb	=	0.333	m.	Note	that	a	value	of	R2	of	
exactly	1	leads	to	slope	and	intercept	uncertainties	of	zero.	Carefully	exam	the	Excel	
R2	value	–	although	it	may	display	as	exactly	1,	it	likely	is	not	exactly	1.	If	your	value	
is	indeed	exactly	1,	it	indicates	an	error	in	how	you	have	plotted	your	data.	
	
The	uncertainty	in	the	slope	and	y-intercept	can	also	be	found	by	using	the	LINEST	
function	in	Excel.		Using	this	function	is	somewhat	tedious	and	is	best	understood	
from	the	Help	feature	in	Excel.	
	

Interpreting	the	Results	
	
Once	a	regression	line	has	been	found,	the	equation	must	be	interpreted	in	terms	of	
the	context	of	the	situation	being	analyzed.		This	sample	data	set	came	from	a	cart	
moving	along	a	track.		We	can	see	that	the	cart	was	moving	at	nearly	a	constant	
speed	since	the	data	points	tend	to	lie	in	a	straight	line	and	do	not	curve	up	or	down.		
The	speed	of	the	cart	is	simply	the	slope	of	the	regression	line,	and	its	uncertainty	is	
found	from	the	equation	above:		v	=	1.9	±	0.2	m/s.		(Note:		If	we	had	plotted	a	graph	
of	time	versus	distance,	then	the	speed	would	be	the	inverse	of	the	slope:		v	=	1/m)		
The	y-intercept	gives	us	the	initial	position	of	the	cart:		x0	=	–0.0035	±	0.33	m,	which	
is	essentially	zero.	
	

Final	Step	–	Copying	Data	and	Graphs	into	a	Word	Document	
	
Copy	your	plots	and	data	table	from	Excel	to	Word.	Just	select	the	graph	(or	cells)	
and	use	the	Edit	menu	or	keyboard	shortcuts	to	copy	and	paste.		
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Using	LINEST	in	Excel	
	
LINEST	is	an	alternative	linear	least	square	fitting	function	in	Excel.	The	results	of	
the	LINEST	analysis	are	virtually	identical	to	the	linear	trendline	analysis	described	
above;	however,	LINEST	provides	a	single-step	calculation	of	both	the	slope	and	
intercept	uncertainties,	instead	of	the	multi-step	procedure	described	above.		

	
• Start	with	a	table	for	time	
and	velocity	(right).		

• The	LINEST	function	
returns	several	outputs;	to	
prepare,	select	a	2	by	5	
array	below	the	data,	as	
shown.	

• Note,	velocity	was	
mistakenly	labeled	as	
having	units	of	m/sec	in	the	
table	to	the	right.	

• Under	the	Insert	menu,	
selection	Function,	then	
Statistical,	and	finally	
LINEST	as	shown	below	
(and	hit	OK).	
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Select	the	y-values	and	x-values	from	the	table	and	write	‘TRUE’	for	the	last	two	
options	(below).		Again,	press	OK.	
	

	
	
The	LINEST	function	is	an	array	function;	therefore,	you	must	tell	Excel	you	are	
done	with	the	array.		Highlight	the	formula	in	the	formula	bar	as	shown	below.		
Press	Ctrl+Shift	simultaneously	with	Enter	(Mac	users,	press	Command	and	Enter)	
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The	result	is	that	the	array	of	blank	cells	that	was	selected	previously	is	now	filled	
with	data	(although	the	new	data	isn’t	labeled).		See	the	image	below	for	the	labels	
that	can	be	added	after	the	fact	(e.g.,	“Slope,”	“R^2	Value,”	etc):	
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Appendix:	Propagation	of	Uncertainty	by	Quadrature	
	
Consider	a	quantity	f	to	be	calculated	by	multiplying	two	measured	quantities	x	and	
y	whose	uncertainties	are	σx	and	σy,	respectively.	The	question	is	how	to	propagate	
those	uncertainties	to	the	calculated	quantity	f.	From	the	chain	rule	of	calculus,	the	
change	in	f	due	to	changes	in	x	and	y	is:	
	

δ f = ∂ f
∂x

δ x + ∂ f
∂y

δ y 	

Squaring	and	averaging	yields:	
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For	uncorrelated	measurements,	δ xδ y 	is	zero.	Consider	the	average	square	change	

in	quantities	to	be	the	uncertainty	in	each	of	x,	y,	and	f;	that	is,	 δ f( )2 =σ f
2 ,	etc.	Then:	
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To	 generalize	 it	 to	 arbitrary	 powers	 of	 x	 and	 y,	 consider	 the	 function	 f	 =	 xnym;	
substituting	 this	 into	 the	 last	 equation	 and	 dividing	 by	 f	 yields	 the	 relative	
uncertainty:	
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The	partial	derivatives	are	 ∂ f
∂x

= nxn−1ym 	and	 ∂ f
∂y

= mxnym−1 .	Substituting	these	yields:	

	
σ f

f
= nxn−1ym( )2 σ x

2

xnym( )2
+ mxnym−1( )2 σ y

2

xnym( )2
	

	
This	expression	looks	complicated	but	it	simplifies	to	something	rather	simple:	

	

σ f

f
= n2 σ x

x
⎛
⎝⎜

⎞
⎠⎟

2

+m2 σ y

y
⎛

⎝⎜
⎞

⎠⎟

2

	



Measurements & Uncertainty Analysis 
	
	

 
42 University of North Carolina 
	
	

	
The	result	is	that	the	relative	(fractional)	uncertainty	in	f		is	the	root	of	the	squared	
sum	(RSS)	of	individual	uncertainties	in	x	and	y.	Examples	in	the	body	of	this	
document	include:	
	

f	=	xy	 σ f

f
= (1)2 σ x

x
⎛
⎝⎜

⎞
⎠⎟

2

+ (1)2
σ y

y
⎛

⎝⎜
⎞

⎠⎟

2

	

f	=	x/y	 σ f

f
= (1)2 σ x

x
⎛
⎝⎜

⎞
⎠⎟

2

+ (−1)2
σ y

y
⎛

⎝⎜
⎞

⎠⎟

2

	

f	=	xy2	 σ f

f
= σ x

x
⎛
⎝⎜

⎞
⎠⎟

2

+ 4
σ y

y
⎛

⎝⎜
⎞

⎠⎟

2

	

	
	
Note	 that	 the	 result	 for	multiplication	 and	 division	 is	 the	 same	 (division	 is	 just	 a	
power	 law	with	 a	negative	 exponent).	Also	note	 that	 variables	 that	 appear	with	 a	
higher	power	are	weighted	more	heavily	in	the	propagation.	
	
For	 some	 functions,	 especially	non-linear	 trig	 functions,	 you	may	have	 to	perform	
the	 derivatives	 to	 find	 how	 the	 uncertainty	 propagates;	 however,	 for	 many	
functions,	performing	the	derivatives	each	time	 is	not	required	–	merely	apply	 the	
equation	highlighted	in	yellow.		

	


