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1 Introduction 

1.1 Research Objective 

The objective of this qualitative study is to examine and document how introductory physics 

students treat the uncertainty of measurements.  In meeting this objective, the conceptions and 

practices of physics instructors (primarily graduate teaching assistants) are also examined in order 

to define a reference standard to which the student practices may be compared. 

1.2 Research Questions  

This study is guided by the following questions: 

1. What are the common conceptions, practices, or "Facets" (Minstrell 1992) demonstrated 

by introductory physics students regarding measurement uncertainty and error analysis? 

2. How do students treat the uncertainty in measurements differently than experts (graduate 

students, professors, and authors of reference materials)? 

3. Why do students believe what they do about measurement uncertainty? (Answering this 

question helps facilitate the development of more effective curricular materials for teaching 

measurement uncertainty.) 

1.3 Motivation for this Research 

Despite the fact that extensive research efforts have been made in recent years to better 

understand how students learn physics, very few studies have addressed students' understanding of 

the inherent uncertainty associated with physical measurements (Sere, Journeaux et al. 1993; 
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Lubben and Millar 1996; Allie, Buffler et al. 1998; Soh, Fairbrother et al. 1998). Of these studies, 

none have made a comprehensive effort to examine the scope of this concept, even though it is a 

critical component of all scientific investigations.  As nearly all physics lab instructors can attest, 

introductory students (and even advanced students) often have difficulty understanding and 

analyzing the uncertainties in their measurements (see Chapter 2).  Therefore, it seems prudent to 

investigate these difficulties and try to understand the cause for confusion and misunderstanding so 

that instruction on this subject can be improved.  This subject is also worthy of investigation 

because it has many diverse applications in a variety of disciplines as explained in the following 

sections. 

1.4 The Nature of Uncertainty in Measurement 

Measurement uncertainty is an intrinsic part of all scientific investigations.  Science is based 

on the systematic pursuit of knowledge involving the collection of data through observation and 

experiment, and the formulation and testing of hypotheses (Merriam-Webster 2000). The laws of 

nature as we know them have been developed and tested from years of scientific investigation.  

The process of scientific inquiry naturally leads to the important questions about how well an 

empirical result is known, whether or not the result agrees with a hypothesis or theoretical 

prediction, and whether the result can be verified by other researchers.  In order to answer these 

basic questions, the uncertainty of the measured result must be estimated and quantified to indicate 

the degree of confidence associated with the measurement.  Only after the uncertainty of an 

experimental result is established can a reasonable conclusion be made about how the result 

compares with a theoretical prediction or some other experimental value.  Therefore, the process 
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of determining the uncertainty of measurements (commonly called error analysis) is fundamental to 

all scientific investigations. 

Physics is the study of matter and energy interactions and is the most fundamental of the 

natural sciences. Nearly all of the physics principles taught to students are based on 

experimentation, and every experiment requires measurements that are inherently uncertain.  

Introductory physics laboratory courses provide a natural opportunity for students to learn the 

fundamental practices of experimentation and data analysis.  As will be shown in this dissertation, 

these practices are not easy for students to master, but the effort to do so is worthwhile since the 

concepts have important applications in a variety of fields beyond physics. 

The following quote summarizes the importance of improving instruction in the area of error 

analysis: 

It has been a considerable handicap to many experimenters that their formal scientific training 
has left them unequipped to deal with the common situation in which experimental error 
cannot be safely ignored.  Not only is awareness of the possible effects of experimental error 
essential in the analysis of data, but also its influence is a paramount consideration in 
planning the generation of data, that is, in the design of experiments.  Therefore, to have a 
sound base on which to build practical techniques for the design and analysis of experiments, 
some elementary understanding of experimental error and of associated probability theory is 
essential (Box, 1978, p.24). 

1.5 Student Difficulties with Measurement Uncertainty 

The primary reason for investigating student treatment of measurement uncertainty is that 

there is widespread anecdotal evidence from physics teachers that students have difficulty analyzing 

measurement errors.  A goal of this research is to determine how widespread these 

misunderstandings really are, and whether the situation is as bad as teachers believe.  Below are 

some common student behaviors that have been observed by the author and other physics 

instructors (a more comprehensive list can be found in Chapter 2):  
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• Students often fail to consider the uncertainty in measured values when evaluating whether 
two results are in agreement. 

• Students apply rules of significant figures without a firm conceptual understanding of why 
they are used. 

• Students frequently report results with more (in)significant figures than can be justified. 
• Student comments indicate limited thought about the nature of uncertainty:  

“We used a computer to analyze our data so there was no error in our result.” 
“The primary source of error in our experiment was human error.” 

 
Concern about these behaviors contributed to the motivation for this research.  A more 

extensive investigation of the student learning objectives targeted by this study is presented in 

Chapter 2. 

1.6 Applications in Physics 

Precision measurements are inherently linked to physics, especially in experiments designed 

to push the limits of what we know about the physical world. This is the reason that the National 

Institute of Standards and Technology (NIST) has a physics division that is responsible in part for 

continuing to measure and report the fundamental physical constants to the greatest precision 

possible.  NIST is a federal agency of the U.S. Department of Commerce and is responsible for 

communicating with industry to develop and apply technology, measurements, and standards.  To 

facilitate this communication, NIST has published guidelines for evaluating and reporting the 

uncertainty of measurements (Taylor and Kuyatt 1994). 

1.7 Applications Beyond Physics 

One reason for investigating student understanding of measurement uncertainty is that it is a 

truly fundamental concept that has applications in many diverse scientific fields including metrology 

(the study of measurements), statistics, physics, engineering, chemistry, economics, and even the 

social sciences.  The use of scientific data is certainly not limited to researchers, laboratory 
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technicians, and engineers.  The general public is also responsible for interpreting scientific reports 

and making decisions based on the results of experimental studies.  Unfortunately, many members 

of society are numerically illiterate and do not have the skills necessary to make sound decisions 

despite all the quantitative data that are available to them.  In his book Innumeracy, John Paulos 

gives numerous examples of situations where people often do not use or understand numerical data 

and the consequences this misunderstanding can have on their lives (Paulos 1988).  Students who 

learn data analysis skills (in a physics lab or by some other means) should be better prepared to 

make sense of numerical data they encounter in both their careers and personal lives.  This 

viewpoint is supported by an excerpt taken from a 1997 paper presented by Marye Anne Fox  at 

a symposium in Washington, D.C., held by the Center for Science, Mathematics, and Engineering 

Education to reflect on educational reform during the past 40 years since Sputnik: 

As scientists, mathematicians, and engineers, many of us are completely astonished by our 
students’ inability to understand scale. One of my colleagues asked his freshman students 
this fall to estimate the diameter of the earth. From a class of several hundred, he got two 
responses: 100 miles and 1.41 million miles. The first student had just arrived in Austin 
from Waco, a distance of about 100 miles, and perhaps the distance from home to college 
did represent the ends of the earth to him. But the second one? How can one be so wrong 
with such precision? How bewildering living every day within nature must be to such 
students? (Fox 1997) 
 
Every measured value has some degree of uncertainty, and while most circumstances do 

not warrant an extensive error analysis, there are numerous situations beyond the field of physics 

where a reasonably accurate determination of the uncertainty is important for making critical 

decisions. Several important examples are provided in the following sections. 
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1.7.1 Legal Decisions 

Many important legal decisions depend on the accuracy of scientific data that is inherently 

subject to uncertainty.  Consequently, the Federal Rules of Evidence for court testimony by experts 

and technical data were revised in 1993 to include the following points: (Bernstein 1993) 

1)  The court should determine whether the theory or technique in question can be (or has 
been) tested. 

2)  Peer review is an important consideration. 
3)  The known or potential rate of error of the technique should be determined, as should the 

existence and maintenance of standards controlling the technique's operation.  
 

The Federal Rules of Evidence place the responsibility on attorneys to validate the accuracy of any 

scientific evidence presented in court cases.  However, jurors should also have a reasonable 

understanding of the nature of errors associated with empirical data so that they can make well-

educated decisions, especially since their judgments will affect the future of other human beings. 

1.7.2 Environmental Risk Assessment 

 One specific application of measurement uncertainty is in the assessment of environmental 

risks for human health and safety.  The United States Environmental Protection Agency (EPA) 

often requires scientific testing to determine if environmental contamination levels are below a safe 

limit.  These tests must be precise enough to examine concentration levels at or below critical 

exposure levels.  A test that is not sufficiently precise cannot be used to make a reliable judgment, 

since the measurement result of "ND" (none detected) can give a false sense of security. 

An important environmental example that has significant global and economic 

consequences is the issue of global warming.  Scientists have been examining the possibility that the 

average temperature of the Earth is rising, which if unchecked, could result in devastating flooding 

of large areas from excessive melting of the polar ice caps. As with many scientific investigations, 



 

 7

the data that can be obtained and analyzed are limited, and while there appears to be an overall 

warming trend over the past few decades, the variability and uncertainty in the data must also be 

considered in any conclusions that are made (Jones and Wigley 1990). 

1.7.3 Economic Forecasting 

The level of uncertainty in measurements is especially critical when trying to predict future 

activity by extrapolating from current and past data.  Economic forecasting is used by financial and 

business planners in an attempt to predict future financial figures based on historical patterns.  The 

amount of uncertainty in these predictions can significantly affect the decisions of investors and 

financial officers.  Federal Reserve Board Chairman, Alan Greenspan, summed up the nature of 

uncertainty in economic forecasting by quoting the British economist John Maynard Keynes, who 

said, "It is better to be roughly right, than precisely wrong" (NPR 1997).  This quote (by a man 

whose words are heavily weighted) suggests that uncertainty in an estimate is acceptable, as long as 

all known systematic errors have been eliminated so that the estimate is (hopefully) centered on the 

target value (see Figure 4-1).  This statement also summarizes the expert perspective on 

measurement uncertainty − reasonably accurate results are more beneficial than precise results that 

have no validity. 

1.7.4 Weather Forecasting 

Weather forecasting is one of the most common examples where the uncertainty of a 

prediction is reported (e.g., “The chance of rain tomorrow is 80%”). Even with high-tech 

meteorological equipment there are no guarantees in predicting future weather conditions.  

Although weather forecasts are one of the few examples where an explicit probability is often 
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reported for a prediction, they are familiar to almost everyone.  Despite frequent exposure to 

weather forecasts where the probability is almost always rounded to the nearest 5 or 10%, some 

students insist on reporting unreasonably precise experimental values equivalent to stating that the 

chance of rain is 80.537%.  Evidently, simple exposure to correct reporting methods is not 

sufficient for students to recognize the purpose of significant figures. 

1.7.5  Public Opinion Polls 

 Results from public opinion polls are another one of the few instances where the margin of 

error is regularly reported in data that are presented to the general public.  Prior to taking a physics 

or chemistry class, the fine print beneath these poll results (e.g., the margin of error is ± 3%) may 

be the only exposure students have to notation that explicitly shows the relative uncertainty of a 

measurement (based on responses from student interviews). Unfortunately, this ± notation for 

margin of error represents a different confidence interval than is typically used in physics (see Table 

2-1). 

1.7.6 Quality Assurance and Control 

 Uncertainty estimates play a critical role in quality assurance and control processes.  

Statistical analyses form the basis of many of the decisions made in these areas.  In fact, the ISO 

9000 industry standards for quality assurance require that test measurements include an estimate of 

their uncertainty as specified in the International Standards Organization (ISO) Guide to the 

Expression of Uncertainty in Measurement (ISO 1993).  ISO 9000 standards state:  

The supplier shall determine the measurements to be made and the accuracy required, and 
select the appropriate inspection, measuring, and test equipment that is capable of the 
necessary accuracy and precision. Inspection, measuring, and test equipment shall be used 
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in a manner which ensures that the measurement uncertainty is known and is consistent with 
the required measurement capability. 
 

Students who intend to pursue careers in industrial engineering or manufacturing quality control 

could be better prepared by learning the fundamentals of measurement uncertainty in an 

introductory physics course. 

1.8 Physics Education Research 

Physics education research is a relatively new academic discipline, but one that is growing 

quickly.  Over the last twenty-five years, an increasing number of physicists, science education 

researchers, and cognition specialists have been carefully examining how students learn physics.  

These researchers have succeeded in uncovering many student misconceptions and the reasoning 

that underlies these conceptual difficulties.  Their research findings have been used to develop new 

curricula that intentionally address these difficulties, and which have been shown to dramatically 

improve students’ fundamental understanding of physics concepts.  The research for this 

dissertation is similar to other physics education studies that have investigated students' 

understanding in specific content areas.  Table 1-1 is a tally of such studies listed in a 1998 

Resource Letter on Physics Education Research (McDermott and Redish 1998).  While this list is 

not meant to be exhaustive, it at least provides insight into the relative emphasis that researchers 

have placed on various subjects. 

Table 1-1.  Recent empirical studies in physics education research 

Content Area Studies 
Mechanics  
   Kinematics 8 
   Dynamics 18 
   Relativity and reference frames 5 
Electricity and magnetism  
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   DC circuits 10 
   Electrostatics and magnetostatics 2 
   Electric and magnetic fields 6 
Light and optics  
   Nature of light, color, and vision 5 
   Geometrical optics 4 
   Physical optics 1 
Properties of matter, thermal physics  
   Heat, temperature, and thermodynamics 10 
   Pressure, density, and the structure of matter 4 
Waves and sound 4 
Modern physics 3 
Problem-solving performance 4 
Laboratory instruction and demonstrations 5 
Ability to apply mathematics in physics 4 
Attitudes and beliefs of students 11 
Student reasoning 4 
 

Despite their fundamental importance, the topics of measurement and precision have largely 

been ignored by physics education researchers, even though these areas are generally addressed in 

the very first chapter of most physics textbooks.  One possible reason for this deficiency is that 

measurement practices are generally covered in the laboratory section of introductory physics 

courses, and most physics education research has focused on the mainstream curriculum, as 

evidenced by the relatively few studies related to laboratory instruction (only 4 of the 108 studies 

listed in Table 1-1).  In fact, only one of the studies (Sere 1993) addresses students’ conceptual 

understanding of measurements. The purpose of this dissertation research is to begin to fill this gap 

in understanding how physics students think about the accuracy of measurements they make. 

Several educators have expressed their concern that procedural knowledge taught in labs 

has been de-emphasized relative to declarative knowledge taught in lectures and tutorials (Swartz 

1995; Osborne 1996; Allie, Buffler et al. 1998).  This study addresses that concern by examining 

the ability of students to make accurate measurements, estimate the uncertainty in those 
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measurements, evaluate the quality of their results, and design experiments based on the degree of 

precision required.  This investigation will help establish a research base on procedural knowledge 

for experimentation.  From this foundation, instructors can develop their curricula to better address 

the needs and learning difficulties of their students. 

1.9 Summary 

The principal objective of this research is to examine and document introductory physics 

students' conceptions and practices related to measurement uncertainty. Surprisingly little research 

has been conducted to examine students’ understanding of these topics, despite the fact that 

measurements and standards are usually addressed in the first chapter of most physics books and 

many other physics topics have already been investigated.  Expert knowledge (from reference 

materials and surveys) will serve as a standard to which the student performance will be compared.  

The ultimate goal of this research is then to provide the physics education community with useful 

information that can facilitate curriculum development and improved instruction on this fundamental 

topic.  
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2 Background 

2.1 Definitions of Terms 

Terminology and notation related to measurement uncertainty is not used consistently 

among experts.  In order to clarify the meaning of terms used in this dissertation, and to show the 

range of meanings, a compilation of key terms with definitions is included here. The definitions are 

taken from a sample of reference sources that represent the scope of this study (the three most 

popular reference books in Table 2-2, plus the ISO Guide and an industrial metrology reference 

book).  Definitions from Webster's dictionary are also included for several of the terms to show the 

contrast between common vernacular use and the specific meanings of these terms as they relate to 

scientific measurements. 

Sources: 
 
• Taylor, John.  An Introduction to Error Analysis: The study of uncertainties in 

physical measurements, 2nd ed.  University Science Books: Sausalito, CA, 1997. 
 
• Bevington, Phillip R. and D. Keith Robinson. Data Reduction and Error Analysis for 

the Physical Sciences, 2nd ed.  McGraw-Hill: New York, 1992. 
 
• Baird, D.C. Experimentation: An Introduction to Measurement Theory and 

Experiment Design, 3rd ed.  Prentice Hall: Englewood Cliffs, NJ, 1995. 
 

• ISO. Guide to the Expression of Uncertainty in Measurement.  International 
Organization for Standardization (ISO) and the International Committee on Weights 
and Measures (CIPM): Switzerland, 1993. 

 
• Fluke. Calibration: Philosophy and Practice, 2nd ed.  Fluke Corporation: Everett, 

WA, 1994. 
 
• Webster's Tenth New Collegiate Dictionary, Merriam-Webster: Springfield, MA, 

2000. 
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Notes:  The definitions presented below are provided to explain the meanings of terms used in this 

dissertation, and are therefore organized according to their meaning rather than an alphabetized list.  

Many of these terms are defined in the International Vocabulary of Basic and General Terms in 

Metrology (abbreviated VIM), and their identification numbers are shown in brackets immediately 

after the term (ISO 1993).  Since the meaning and usage of these terms are not consistent among 

other references, alternative (and sometimes conflicting) definitions are provided with the name and 

page number of the reference from the above list.  Comments are included in italics to elaborate 

on several of the definitions. References are only cited when they explicitly define a term. Omission 

of a reference for a particular term generally indicates that the term was not used or clearly defined 

by that reference. Even more diverse usage of these terms exists in other references not cited here. 

uncertainty (of measurement) [VIM 3.9] – 1. parameter, associated with the result of a 
measurement, that characterizes the dispersion of the values that could reasonably be 
attributed to the measurand.  The uncertainty generally includes many components which 
may be evaluated from experimental standard deviations based on repeated observations 
(Type A evaluation) or by standard deviations evaluated from assumed probability 
distributions based on experience or other information (Type B evaluation).  The term 
uncertainty is preferred over measurement error because the latter can never be known 
(ISO, p. 34). 2. An estimate of the error in a measurement, often stated as a range of 
values that contain the true value within a certain confidence level (usually ± 1 σ for 68% 
confidence interval) (Taylor, p. 14; Fluke, p. G-15). 3. Based on either limitations of the 
measuring instruments or from statistical fluctuations in the quantity being measured (Baird, 
p. 2).  4. Indicates the precision of a measurement (Bevington, p. 2). (All but this last 
definition suggest that the uncertainty includes an estimate of the precision and 
accuracy of the measured value.) 

 
 (absolute) uncertainty – 1. the amount (often stated in the form ± δx) that along with the 

measured value, indicates the range in which the desired or true value most likely lies 
(Baird, p. 14).  2. The total uncertainty of a value (Fluke, p. G-3). 3. The error (Taylor, p. 
14). (Taylor does not distinguish between the terms error and uncertainty, which is 
an unfortunate source of confusion for anyone who refers to this popular book.) 
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 relative (fractional) uncertainty – the absolute uncertainty divided by the measured 
value, often expressed as a percentage or in parts per million (ppm) (Taylor, p. 28; Baird, 
p. 14). 

   
 standard uncertainty, ui – the uncertainty of the result of a measurement expressed as a 

standard deviation (ISO, p. 3).  
 

combined standard uncertainty, uc(y) – the standard deviation of the result of a 
measurement when the result is obtained from the values of a number of other quantities.  It 
is obtained by combining the individual standard uncertainties ui (and covariances as 
appropriate), using the law of propagation of uncertainties, commonly called the “root-
sum-of-squares” or “RSS” method. The combined standard uncertainty is commonly used 
for reporting fundamental constants, metrological research, and international comparisons 
of realizations of SI units (ISO, p. 3). 
 
Type A evaluation of standard uncertainty – method of evaluation of uncertainty by the 
statistical analysis of a series of observations (ISO, p. 3). 

 
Type B evaluation of standard uncertainty – method of evaluation of uncertainty by 
means other than the statistical analysis of series of observations (ISO, p. 3). 

 
precision – 1. the degree of consistency and agreement among independent measurements 
of a quantity under the same conditions (Fluke, p. G-11). 2. Indicated by the uncertainty 
(Bevington, p. 2), or 3. the fractional (relative) uncertainty (Taylor, p. 28).  4. The degree 
of refinement with which an operation is performed or a measurement stated (Webster).  
Precision is a measure of how well the result has been determined (without reference 
to a theoretical or true value), and the reproducibility or reliability of the result.  The 
fineness of scale of a measuring device generally affects the consistency of repeated 
measurements, and therefore, the precision. The ISO has banned the term precision 
for describing scientific measuring instruments because of its many confusing 
everyday connotations (Giordano 1997). 
 
accuracy (of measurement) [VIM 3.5] – 1. closeness of agreement between a measured 
value and a true value (ISO, p. 33; Fluke, p. G-3; Bevington, p. 2; Taylor, p. 95). 2. The 
term "precision" should not be used for "accuracy" (ISO, p. 33).  3. A given accuracy 
implies an equivalent precision (Bevington, p. 3).  4. Freedom from mistake or error, 
correctness; degree of conformity of a measure to a standard or a true value (Webster). 
 
true value (of a quantity) [VIM 1.19] – 1. value consistent with the definition of a given 
particular quantity.  A true value by nature is indeterminate; this is a value that would be 
obtained by a perfect measurement (ISO, p. 32).  2. The correct value of the measurand 
(Fluke, p. G-15). 3. The value that is approached by averaging an increasing number of 
measurements with no systematic errors (Taylor, p. 130). 
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Note:  The indefinite article "a," rather than the definite article "the," is used in conjunction 
with "true value" because there may be many values consistent with the definition of a given 
particular quantity (ISO, p. 32). (This distinction is not clear in other references that 
refer to "the true value" of a quantity.) 
 
result of a measurement [VIM 3.1] − value attributed to a measurand, obtained by 
measurement.  A complete statement of the result of a measurement includes information 
about the uncertainty of measurement (ISO, p. 33). 
 
error (of measurement) [VIM 3.10] – 1. result of a measurement minus a true value of 
the measurand (which is never known exactly); sometimes referred to as the "absolute 
error" to distinguish from "relative error" (ISO, p. 34).  2. Deviation from the "true" or 
nominal value (Bevington, p. 5; Fluke, p. G-7). 3. The inevitable uncertainty inherent in 
measurements, not to be confused with a mistake or blunder (Taylor, 3).  4. The amount 
of deviation from a standard or specification; 5. mistake or blunder (Webster). (Students 
often cite "human error" as a source of experimental error, and the dictionary 
definition of the term error only confuses this misused term.  Here again, Taylor does 
not distinguish between the terms error and uncertainty, which clearly have 
different meanings according to the ISO.) 

 
random error [VIM 3.13] – 1. result of a measurement minus the mean that would result 
from an infinite number of measurements of the same measurand carried out under 
repeatable conditions (ISO, p. 34).  2. Statistical fluctuations (in either direction) in the 
measured data due to the precision limitations of the measurement device (Fluke, p. G-12; 
Taylor, p. 94).  
 
systematic error [VIM 3.14] – 1. mean that would result from an infinite number of 
measurements of the same measurand carried out under repeatability conditions minus a 
true value of the measurand; error minus random error (ISO, p. 34).  2. A reproducible 
discrepancy between the result and "true" value that is consistently in the same direction 
(Baird, p. 14; Fluke, p. G-14).  3. A reproducible inaccuracy introduced by faulty 
equipment, calibration, or technique (Bevington, p. 3, 14). 4. These errors are difficult to 
detect and cannot be analyzed statistically (Taylor, p. 11).  5. Systematic error is 
sometimes called "bias" and can be reduced by applying a "correction" or "correction 
factor" to compensate for an effect recognized when calibrating against a standard. Unlike 
random errors, systematic errors cannot be reduced by increasing the number of 
observations (ISO, p. 5). 

 
mistake or blunder − a procedural error that should be avoided by careful attention 
(Taylor, p. 3). These are illegitimate errors and can generally be corrected by carefully 
repeating the operations (Bevington, p. 2). 
 
discrepancy − a significant difference between two measured values of the same quantity 
(Taylor, p. 17; Bevington, p. 5).  (Neither of these references clearly defines what is 
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meant by a “significant difference,” but the implication is that the difference 
between the measured values is clearly greater than the combined experimental 
uncertainty.) 
 
relative error [VIM 3.12] − error of measurement divided by a true value of the 
measurand (ISO, p. 34).  (Relative error is often reported as a percentage. The 
relative or "percent error" could be 0% if the measured result happens to coincide 
with the expected value, but such a statement suggests that somehow a perfect 
measurement was made. Therefore, a statement of the uncertainty is also necessary 
to properly convey the quality of the measurement.) 

 
significant figures − all digits between and including the first non-zero digit from the left, 
through the last digit (Bevington, p. 4).  (e.g., 0.05070 has 4 significant figures.) 
 
decimal places – the number of digits to the right of the decimal point. (This term is not 
explicitly defined in any of the examined references.) 
 
sample standard deviation – the positive square root of the sample variance (see 
standard error) 
 
standard error (standard deviation of the mean) – the sample standard deviation 
divided by the square root of the number of observations:   

     SE = 
n

s
sx =   where ∑ −

−
=

i

i

n
xx

s
1
)( 2

2  is the sample variance (ISO, p.38). 

Random errors are reduced by averaging over a large number of observations, because the 
standard error decreases as the sample size n increases (Taylor, p. 103). 
 
(Note: The ISO Guide and most statistics books use the letter s to represent the 
sample standard deviation and σ (sigma) to represent the standard deviation of the 
population; however, σ  is often used in casual error analysis discussions to indicate 
the sample standard deviation.) 
 
margin of error − range of uncertainty.  Public opinion polls generally use margin of 
error to indicate a 95% confidence interval, corresponding to an uncertainty range of x ± 
2σ  (Taylor, p. 14). 
 
tolerance – the limits of the range of values (the uncertainty) that apply to a properly 
functioning measuring instrument (Fluke, p. 3-7). 
 
coverage factor, k – numerical factor used as a multiplier of the combined standard 
uncertainty in order to obtain an expanded uncertainty, Uc.  Note:  k is typically in the 
range 2 to 3 (ISO, p. 3; Fluke, p. 20-6).  
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(e.g.,  If the combined standard uncertainty is uc = 0.3 and a coverage factor of  k = 2 is 
used, then the expanded uncertainty is Uc = kuc = 0.6) 
 
law of propagation of uncertainty − the uncertainty σz of a quantity z = f(w1, w2, …, 
wN) that depends on N input quantities w1, w2, …, wN is found from 
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where σi

2 is the variance of wi and ρij is the correlation coefficient of wi and wj.  If the 
input quantities are independent (as is often the case), then the correlation is zero and the 
second term of the above equation vanishes. The above equation is traditionally called the 
"general law of error propagation," but this equation actually shows how the uncertainties 
(not the errors) of the input quantities combine (ISO, p. 46; Bevington, p. 43; Taylor, p. 
75). 
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33 cm 40790or        cm 39785 ±±=∴V   when properly rounded. 
 
Note:  In this example, the absolute uncertainty in h is larger than for r, but because 
the radius is squared, σr contributes nearly twice as much as σh to the total 
uncertainty in V.  

 
Alternative approach: 

The above calculation can be simplified by dividing both sides of the equation by 
V2 to yield an equation in terms of relative uncertainties: 
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      (same relative uncertainty as above) 

 

2.2 Reporting Uncertainties 

When reporting the measurement of a physical quantity, some quantitative estimate of the 

quality of the result should be given so that people who use the result can assess its reliability.  

Without such an indication, measurement results cannot be compared, either among themselves or 

with theoretical or reference values.  Unfortunately, many scientists and engineers do not explicitly 

report the uncertainty of their measurements, so that the reader is forced to assume that the result is 

known to the precision implied by the number of significant figures.  For example, v = 20.2 m/s 

implies an uncertainty of ± 0.1 m/s or ± 0.5%.  However, there are many cases where data are 

improperly reported with excessive precision (extra digits) that is not justified by the experimental 

procedure, a practice that is careless, misleading, and could even be considered unethical. 

Even when the uncertainty in a measured value is explicitly reported (e.g., ± 0.1 m/s), the 

meaning is not always clear because there are various methods and formats for reporting 

uncertainties.  The following table shows the most common formats: 

 

 

 

Table 2-1.  Common formats for reporting uncertainties 

Example Explanation Reference 
m = 2.32 g with a 
combined standard 

uc is the combination of all Type A 
(statistical) and Type B 

ISO Guide to the 
Expression of Uncertainty 
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uncertainty uc = 0.05 g (systematic/other) errors; denotes 
approx. a 68% confidence level. 

in Measurement., 1993. 

m = 2.32 g with an 
expanded uncertainty U 
= 0.10 g 

Calibration certificates usually report 
a 95% confidence level with 
coverage factor k = 2. 

NIST Calibration Services 
Users Guide 1998, p. 4. 

 
 
m = 2.32 ± 0.05 g 

The meaning of ± 0.05 is vague and 
depends on various conditions; 
"reasonably certain" measured 
quantity lies in this range; margin of 
error. 

J. Taylor.  Error Analysis, 
1997, p. 14. 
 

 
m = (2.32 ± 0.05) g 

The uncertainty generally represents 
± 1σ or the 68% confidence level 
for the measurement. 

P. Bevington & K. Robinson.  
Data Reduction and Error 
Analysis for the Physical 
Sciences, 1992, p. 39. 

 
m = 2.32 ± 0.10 g 

In the field of chemistry, the 
uncertainty generally represents the 
95% confidence level. 

 

 
m = 2.324(52) g 

"numbers in parentheses indicate 
experimental uncertainties in last two 
digits" 
This notation is common in atomic 
and nuclear physics. 

Table of fundamental 
constants found in several 
popular physics textbooks. 
E. R. Cohen, B. N. Taylor, 
Rev. Mod. Phys. 1987, 
59:1121. 

accuracy = ± (1% of 
reading + 2 digits) 

Manufacturers typically specify 
instrument tolerance limits, which 
generally represent a 99% 
confidence level, but may be 95% 
or some other confidence level 
depending on marketing strategy. 

Fluke. Calibration: 
Philosophy and Practice, 
1994, p. 20-7, 22-4. 
Phone conversation with 
Fluke application engineer, 
March 1999. 

m = 2.32 g ± 2%  or 
m = 2.32 (2%) g 

2% is a relative uncertainty, but the 
confidence level is not clear 

 

m = 2.32 SE 0.01 g SE = standard error C. David. J. Chem. Educ. 
1996, 73, p. 46. 

55% favor candidate A 
(± 3% margin of error) 

The margin of error in a poll 
generally represents a 95% 
confidence interval  

J. Taylor.  Error Analysis, 
1997, p. 14. 

 

As can be seen from the table above, not only are there differences in notation with 

essentially the same meaning, but depending on the source and context, the quoted uncertainty 

could represent a 68%, 95% or even a 99% confidence interval.  In an effort to avoid this kind of 
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confusion, the International Organization of Standardization (ISO) has recently specified universal 

guidelines for expressing the uncertainty of measurements (ISO 1993). These guidelines are 

designed to provide a uniform method for comparing measurements made in different countries in 

the fields of science, engineering, industry, commerce, and regulation.  However, most physics 

teachers are not familiar with these guidelines (none of the physics instructors surveyed in this study 

cited the ISO Guide as a recommended reference).  Consequently, students are instructed to use 

methods of error analysis and reporting that may not be consistent with the ISO Guide (as 

indicated in the table above and also in the analysis later in this chapter).  Because there are various 

methods for treating measurement uncertainty, an important part of this dissertation research 

involves a careful examination of the instructional resources on this topic to better understand what 

introductory physics students are expected to know.  These findings are presented in the following 

sections. 

2.3 Summary of References 

As a first step in discerning what students are expected to know about measurement 

uncertainty, a ranking analysis was conducted to ascertain which references are most often cited by 

other sources or recommended by instructors. The analysis consisted of a cross-referencing matrix 

created in an electronic spreadsheet to sort references according to how frequently they are cited in 

the bibliography section of 8 reference books and 7 journal articles on the subject of error analysis. 

References recommended by 10 physics instructors from the Expert Survey (Appendix E) were 

also included in this analysis. The following table summarizes the results: 
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Table 2-2.  Error analysis references, ranked by number of citations  

(# Cited is the number of citations made by 25 different sources.) 

Author: Title Years 
Published 

# Cited 

J. Taylor:  An Introduction to Error Analysis 1982, 97 9 
P. Bevington:  Data Reduction and Error Analysis 1969, 92 8 
D. Baird:  Experimentation 1962, 95 5 
Y. Beers:  Introduction to the Theory of Error 1957 4 
N. Barford:  Experimental Measurements 1967 2 
G. Box:  Statistics for Experimenters 1978 2 
H. Braddick:  The Physics of the Experimental Method 1956 1 
W. Deming:  Statistical Adjustment of Data 1944, 84 1 
C. Dietrich:  Uncertainty, Calibration and Probability 1991 1 
W. Dixon:  Introduction to Statistical Analysis 1969, 83 1 
W. Fuller: Measurement Error Models 1987 1 
ISO: Guide to the Expression of Uncertainty in 
Measurement 

1993 1 

W. Lichten:  Data and Error Analysis 1988, 99 1 
L. Lyons:  A Practical Guide to Data Analysis for Physical 
Science Students 

1991 1 

J. Mandel:  The Statistical Analysis of Experimental Data 1964, 84 1 
H. Margenau:  The Mathematics of Physics and Chemistry 1943, 47, 56 1 
S. Meyer:  Data Analysis for Scientists and Engineers 1975 1 
M. Natrella:  Experimental Statistics 1963, 66, 83 1 
F. Pugh:  The Analysis of Physical Measurements 1966 1 
B. Schigolev:  Mathematical Analysis of Observations 1965 1 
G. Squires: Practical Physics 1965, 85 1 
C. Swartz: Used Math 1993 1 
NIST/B.Taylor:  Guidelines for Evaluating and Expressing 
the Uncertainty of NIST Measurement Results 
http://physics.nist.gov/Pubs/guidelines/contents.html 

1994 1 

E. Wilson:  An Introduction to Scientific Research 1952 1 
A. Worthing:  Treatment of Experimental Data 1946 1 
H. Young:  Statistical Treatment of Experimental Data 1962 1 
  

The books by Taylor and Bevington appear to be the most popular references, and each is 

cited by about one third of the resources surveyed.  Taylor's book provides a basic introduction to 
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error analysis, while Bevington's book covers the topic at a higher level suitable for upper-division 

undergraduate or graduate students.  Baird's book, which is similar to Taylor's, is the only other 

current publication that is frequently cited.  Interestingly, the Guide to the Expression of 

Uncertainty in Measurement, published by the International Organization for Standardization 

(ISO) in 1993, was not cited by any of the physics experts or reference books. (Its one citation 

came from the NIST guidelines, which were adapted from the ISO Guide).  It is surprising that the 

ISO Guide is not referenced more often, because this document is now recognized by industry as 

the primary reference on this subject.  It could be argued that the ISO Guide is not cited frequently 

because it is a relatively new publication.  However, there does not appear to be a strong 

correlation between the age of a reference and the number of citations in the above table since the 

Pearson correlation coefficient between these variables is only r = 0.2 for the top 10 references.  

More specifically, Taylor' book is cited most frequently despite the fact that it was first published 

after many of the less popular books. Based on conversations with physics teachers and graduate 

students, it appears that the ISO Guide is simply not well known in academia.  In fact, in a phone 

conversation with the author of the NIST guidelines, Dr. Barry Taylor encouraged me to help 

"spread the word" about the ISO Guide methods to the American Association of Physics Teachers 

(AAPT), the American Physical Society (APS), and the American Chemical Society (ACS) 

(Taylor 1999). He said that over 30,000 free copies of the Guide have been requested and 

distributed to users, and a modified version of the Guide is available to the public on the NIST 

website, but evidently the Guide is still not widely known and used in the physics community.  The 

consequences of this lack of familiarity are apparent from the expert responses to questions related 

to the uncertainty of measurements, as discussed in Chapter 4. 
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2.4 Previous Studies on Students’ Understanding of Measurements 

 As noted earlier, very little research has been documented to assess introductory physics 

students' understanding about measurement uncertainty.  In fact, searches in the ERIC database 

revealed only two published studies that explore university physics students' conceptions about 

measurement errors and the reliability of experimental data.  (The Educational Resources 

Information Center, ERIC, is the largest database for education research.)  Two additional papers 

were discovered through cross-references and direct contact with the authors.  These other two 

papers examined middle-school children’s understanding of measurements.  It is interesting to note 

that none of these studies were conducted in the United States, and all four studies examined 

students in different countries:  France, Great Britain, South Africa, and Korea.  Numerous other 

instructional references on measurements and error analysis were found (see Table 2-2), but none 

of these addressed the epistemologies of the learner. 

In 1993, Sere et al. analyzed students' concepts about the need for repeated 

measurements, distinctions between random and systematic errors, and their notion of confidence 

intervals (Sere, Journeaux et al. 1993).  This study involved detailed examination of the second-

semester laboratory work of twenty first-year physics students at the University of Paris.  From 

observations and follow-up interviews, the researchers learned that most of the students did not 

understand the significance of confidence intervals as demonstrated by their failure to consider the 

uncertainty of their measurement when deciding whether their measurements were consistent with 

each other.  The researchers were surprised that none of the students drew graphical 

representations of their results to examine the global view of the measurements. The students were 

also generally reluctant to take more than one or two measurements to find the focal length of a 
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lens, and when asked to make a series of ten measurements, they often placed more confidence in 

their first measurement and used subsequent measurements to judge the preceding ones.  Despite 

prior instruction on measurement errors and the use of statistics to analyze multiple measurements, 

these students failed to recognize the purpose of taking repeated measurements.  Students also 

confused systematic and random sources of error, and the concepts of precision and accuracy 

were also not clearly distinguished by many students.  As Thomson (1997) points out, this 

terminology is not used consistently even in physics publications. 

Lubben and Millar (1996) surveyed over 1000 United Kingdom students aged 11, 14, and 

16 about the reason for repeating measurements, how to handle repeated measurements and 

anomalous readings, and the significance of the spread in a set of data.  They identified a pattern of 

progression in the understanding of empirical data with age and experience (see Table 2-3).  They 

also suggested that other research tools using interviews should be developed for further 

investigation into students’ conceptions about measuring, accuracy and precision, random and 

systematic errors, sample size, and the evaluation of small differences between measurements to 

decide if the difference is significant or not.   

Table 2-3.  Model of progression of ideas concerning experimental data 

Level Student’s view of the measuring process (ordered novice to expert) 
A Measure once and this is the right value. 
B Unless you get a value different from what you expect, a measurement is correct. 
C Make a few trial measurements for practice, then take the measurement you want. 
D Repeat measurements till you get a recurring value.  This is the correct measurement. 

E You need to take a mean of different measurements.  Slightly vary the conditions to 
avoid getting the same results. 

F Take a mean of several measurements to take care of variation due to imprecise 
measuring. Quality of the result can be judged only by authority source. 

G Take a mean of several measurements.  The spread of all the measurements indicates 
the quality of the result. 

H The consistency of the set of measurements can be judged by the spread of the data, 
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and anomalous measurements need to be rejected before taking a mean. 

I The consistency of data sets can be judged by comparing the relative positions of their 
means in conjunction with their spreads. 

Note:  Levels A-H were proposed by Lubben and Millar, while category I was proposed by Allie et al. 
 

The suggestions made by Lubben and Millar were pursued by a group of researchers who 

conducted a study in 1998 to examine 121 first-semester physics students and their ideas about the 

reliability of experimental data (Allie 1998).  This study at the University of Cape Town, South 

Africa, used written questions and interviews with students to confirm many of the findings of 

Lubben and Millar and extend their model of ideas concerning experimental data (Level I in Table 

2-3).  Even though the students in this study were older than those in the secondary school study, 

the model proposed by Lubben and Millar was still useful for classifying the procedural ideas of 

these university students who mostly fell into levels F, G, and H.  The study used nine written 

“probes” or scenarios all related to the same experimental situation where a ball is released from 

rest, rolls down a ramp, and lands on the floor some distance d from the edge of the table on which 

the ramp is secured.  Findings from six of the probes are presented in the paper (there is no 

mention of the remaining three probes).  Three of the probes dealt with the reasons for repeating 

measurements and the other three dealt with sets of experimental data (how to handle an 

anomalous measurement, how to compare two sets of measurements having the same mean but 

different spreads, and how to compare two sets of measurements having similar spread but 

different means).  A clear majority (58%) of the students reasoned that measurements of the 

distance and time the ball fell needed to be repeated in order to establish an accurate mean value.  

The remaining students were classified into nearly even clusters of thinking.  One cluster (7%) did 

not see a purpose in repeating distance measurements, but all of these “non-repeaters” reasoned 

that several time measurements need to be taken.  Another small cluster (8%) of “repeaters” 
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believed that additional time and distance measurements are needed to practice and perfect the 

experimental process of taking measurements.  The final cluster (10%) of “confirmers” suggested 

repeating distance measurements in order to find a recurring value.  Responses to the probes that 

dealt with sets of experimental data showed that students are not able to differentiate clearly 

between the overall spread of the data set and the differences between the individual data points 

within the set.  Details about the findings from these data set probes can be found in Chapter 4, 

where similar questions were examined for this study. 

A 1998 study (unpublished) conducted in Korea investigated the measuring abilities and 

conceptions of thirty middle-school students (age 14) (Soh, Fairbrother et al. 1998).  These 

students were asked to make measurements of length, time, volume, mass, and force using typical 

laboratory instruments.  Students’ ability to make accurate measurements (within the precision of 

the measuring instrument) ranged from 4% to 97% depending on the task.  Details about several of 

these measuring tasks are presented in Chapter 4.  The students were also interviewed about their 

conceptions on repeated measurement, use of several measurements of the same quantity, and 

measurement uncertainty.  The researchers found that a majority of the students repeated 

measurements only if they felt that their earlier measurements were inaccurate.   Students were 

asked, “Do you think completely accurate measuring is possible?  If it is possible, how can you 

achieve it?”  To this question, 41% of the students answered affirmatively, stating that tools or 

machines like computers could give accurate measurements, but humans cannot unless they are 

trained well.  Only one student said that both man and machine can make errors.  These results 

indicate that about half of the students do not understand the inherent nature of uncertainty in 

measurements. 
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In summary, these previous studies addressed several of the broader issues related to 

measurements:  the reasons for repeated measurements, concepts about accuracy and precision, 

random versus systematic errors, the treatment of anomalous data, and assessing the quality of 

measured data by the mean and spread.  However, none of these earlier studies examined the 

process by which students determine and quantify the uncertainty of a measurement, which is the 

focus of this dissertation study. In all of the above studies, the measurements made by students 

were analyzed on their own merit and without comparison to measurements made by instructors or 

other “experts.”  The studies generally failed to indicate the level of uncertainty that students should 

be expected to achieve.  This omission will be examined in substantial detail in this study where 

student responses to measurement questions will be compared to responses given by instructors 

and other “experts” who are familiar with these issues.  Relevant components of each of these 

earlier studies have been incorporated into the design of this dissertation study, and whenever 

possible, comparisons are made between the current and previous findings. 

2.5 What Are Students Expected to Know and Practice? 

After examining the existing references on this topic, the next step in this research project 

was to organize a list of student learning objectives pertaining to measurement uncertainty.  An 

initial list of 50 objectives was generated from personal experience conducting laboratory 

experiments and from teaching other physics students.  This list was refined by examining the major 

reference books on error analysis.  A focus group with eight physics education researchers was 

conducted to further examine what other physicists feel are the key issues that should be addressed 

by this study.  After analyzing the focus group discussion, the list of learning objectives was revised.  
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This revised list was presented to a group of about 25 physics graduate students and professors 

who rated each learning objective on a scale of 1 (lowest) to 5 (highest) for three different criteria: 

1.  How important is this concept for introductory physics students to understand? 
2.  How well do introductory physics students understand this concept? 
3.  How well do you personally understand this concept? 

 
This survey can be found in Appendix B, "Learning Objectives Survey."  The results of this survey, 

combined with responses from the Expert Survey (n = 28), are shown below. 

Expert responses to the question: 

What do you think are the most important concepts or skills students should learn 
about measurement uncertainty and error analysis? 

 
Note:  The following statements were written by experts, and were edited only enough to clarify 
meaning.  The bold category headings were added after the statements were compiled and sorted.  
This procedure is consistent with the “grounded theory” approach to qualitative research, where 
theoretical models are allowed to emerge from the empirical data. (Strauss and Corbin 1990) 
 

All measured values have uncertainty 
Every measurement has uncertainty no matter how careful you are. 
All measurements have a certain level of unavoidable uncertainty. 
All physical measurements have uncertainties associated with them. 
All measurements are uncertain. 
All measured values have uncertainty. 
Every measurement has some kind of uncertainty associated with it. 
Uncertainty results from estimation using tools of known precision. 
All measurement tools have limits. 
Know the accuracy of your apparatus. 
Physical quantities are never exactly known (like π  or e). 
Not all results have a "theoretical value." The value quoted in textbooks is usually an 

"experimental value." 
Always present 
Measurement results are not exact, but are in a range of results governed by a distribution 

law. There are different types of probability distributions, and we often use the normal 
distribution. 

 
Uncertainties must be estimated and clearly reported 

We must clearly convey the size of uncertainties to our readers. 
How the uncertainty is reported must be stated and must match the type of data and the 

needs of your audience. 
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How a number is to be used determines how it is usually reported. 
The necessity of providing measurement uncertainties. 
Importance of accurate estimation and reporting of uncertainty. 
Reporting uncertainties (acknowledge your ignorance!) 
Estimate and report random errors. 
Uncertainty should be reported in labs (via sig. figs. or other method). 
How to correctly present results from labs. 
How to estimate an error. 
 

Reporting proper number of significant figures 
Meaning of sig. figs./uncertainty. 
Significant figures − students are often insanely precise for one measurement when others 

are very imprecise.  
How to meaningfully interpret the results of a computer calculation (i.e., all 14 places are 

not significant). 
Not to report all digits on the calculator (i.e., significant figures). 
Truncate measured values according to the order of possible error. 
 

Propagation of errors 
Know how to propagate uncertainty. 
Methods exist for determining the uncertainty in a computed result (propagation of errors) 

or in a slope or intercept from a graph. 
Uncertainties propagate through the various calculations that are done with raw data. 
Error propagation. 
Estimate uncertainty in calculated numbers from uncertainty in data. 
How to calculate uncertainty. 
 

Identify and classify sources of error 
Be able to identify and classify sources of error in data. 
Difference between systematic and random errors. 
Systematic vs. random errors, selection effects. 
What a systematic error is. 
How to differentiate between human error and systematic error. 
What, why, and where certain kinds of errors occur. 
Types of error: random, systematic, etc. 
Relative source of errors. 
Sources of uncertainty. 
Where does the error occur − in the setup, the equipment? 
Distinctions among different kinds of uncertainties (imprecision, inaccuracy, limits of 

resolution, etc.) 
 

Interpreting and reducing errors 
Physical interpretation − is the error low or high?  What does that say about the 

experiment, and what should I do about it? 
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Taking multiple measurements reduces random error, but does not reduce systematic error. 
How to reduce errors. 
When human error is negligible in comparison with other errors. 
 

Use of uncertainty for comparing results or designing experiments 
Think about the uncertainties when comparing different estimates for the same value. 
Comparing results requires knowledge of the uncertainties. 
The most important issue for me is that students understand the function of error analysis − 

i.e., that the results of experiments are the subject of discourse in communities of 
scientists, and that statistical measures can serve to constrain this discourse.  For 
example, the community may not accept a claim unless it can be demonstrated that it is 
statistically significant at p < .05; it could even specify what sorts of tests should be 
done, e.g., chi-squared.  Viewed this way, error analysis should be part of 
experimental design and the execution of experiments, and not something that you do 
after the experiment.  Of course, defending experimental results in debate rarely is 
part of what students do, at least in introductory courses. 

Error analysis is connected to experimental design, and this allows us to compare two 
different experimental designs with the same aim ( e.g., using one photogate or two to 
measure the acceleration of a cart on an incline). 

 
Other 

Skeptical attitudes towards dogmas about uncertainties (e.g., “a result is worthless unless 
you quote an error,” “you must always put error bars on a graph”) 

The difference between a theoretical and experimental value. 
The meaning of "confidence interval." 
Don't discard data unless it is the result of instrument malfunction or your own mistake.  

(This is a serious problem in industry.) 
How to linearize functions (Linear regression analysis will most likely be used at some point 

in their careers.) 
Understand what one should expect in a problem. 
There are no right answers, but there are wrong answers. 
Use of error bars on graphs. 

 
Based on the above responses, it appears that the expert respondents believe it is most important 

for introductory physics students to understand the fundamental principles of measurement 

uncertainty, and that proficiency in performing detailed error analysis is not as important.  
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2.5.1 How Did Experts Learn Error Analysis? 

As part of the Expert Survey (Appendix E) that was administered to physics graduate 

students and professors, the following sources were listed in response to the question:  “Where or 

how did you learn to analyze errors in measurements?”  

 

 

Table 2-4.  Ways experts learned error analysis 

How experts learned error analysis: #Cited 
Undergraduate lab classes and manuals 12 
Teaching and performing lab experiments 6 
Physics classes 5 
Statistics courses 3 
College chemistry class 2 
Sophomore year in college 2 
On the job training and practice 2 
Journal articles 1 
Calculator manuals 1 
Books 1 
Experimental nuclear physics 1 
Astrophysics 1 
High school math class 1 
Graduate school advisor 1 
Common sense 1 
 
Clearly the most significant way that physics experts learn error analysis is from studying or 

teaching undergraduate lab classes.  Therefore, it is prudent to ensure that the error analysis 

instruction presented to students in introductory physics lab courses is accurate.  

2.5.2 Expert and Novice Approaches to Physics Problem Solving 

Since this research compares students' ability to analyze measurement errors with that of 

experts, it is worthwhile to present previous research findings on general differences related to how 
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experts and novices solve physics problems.  A large number of research studies have been 

conducted to examine expert and novice differences in problem solving, and so only the most 

relevant points will be summarized here. 

The approach to problem solving is different for novices and experts.  Experts work forward 

toward a solution while novices generally attempt a working-backward approach using a means-

ends analysis (comparing what is given in the problem with what is to be solved and trying to 

reconcile the difference) (Larkin 1981), (Chi, Glaser et al. 1983).  Novices tend to classify and 

solve problems according to the surface characteristics (e.g., a spring problem) instead of the 

underlying physics principles (e.g., conservation of energy) (Chi, Feltovich et al. 1981). Expert 

problem solvers usually draw a picture or diagram to help them think about the problem, while 

novices often skip this step and jump immediately to analyzing the problem using quantitative 

equations. Experts add this qualitative analysis step to better understand the problem from a 

broader perspective (Larkin and Reif, 1979; Chi, Glaser, and Rees, 1983). 

2.6 Summary 

Because of the various conventions that are used to discuss the uncertainty of measurements, it 

has been necessary to first identify and clarify these conventions by conducting a thorough review 

of the reference literature on error analysis.  These reference materials and expert survey responses 

have identified the student learning objectives that should be addressed by this research.   
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3 Research Procedures 

3.1 Research Methodology 

This study primarily uses qualitative research methods to gain a deeper understanding of 

students' epistemologies about measurement uncertainty.  Quantitative analyses of differences 

within and between groups of students are performed in cases where sufficiently large sample sizes 

allow for meaningful differences to be observed.  Several different types of research procedures 

are used to obtain insights into students' understanding from a variety of perspectives in an effort to 

triangulate upon a more accurate and balanced view rather than one that may be biased by 

examining only from a single perspective.  These research procedures include:   

1. a focus group and survey with colleagues to study the key issues that should be addressed 
in this study,  

2. a written student survey on measurement uncertainty designed to address the key issues,  
3. follow-up interviews with students to clarify their responses to the survey,  
4. a written expert survey designed to compare and contrast differences between expert and 

novice responses,  
5. an analysis of student laboratory reports, quizzes, and homework assignments to get an 

authentic perspective of how students communicate their ideas in their coursework,  
6. interviews with students on laboratory procedures and experiment design, 
7. and a lab practicum for students and experts to demonstrate their procedural knowledge in 

obtaining physical measurements. 
 

3.2 Qualitative Analysis 

Even though the subject of this study is numerical in nature (since the uncertainty in 

measurements can be quantified), qualitative research methods are primarily used to examine 

students’ treatment of uncertainty. An inductive grounded theory approach has been taken with 

this research to allow patterns and constructs to emerge from dense empirical data.  This approach 
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is described by Strauss and Corbin (1990) as distinctly different from the more traditional scientific 

process of formulating a hypothesis that is then tested against empirical observations.  The reason 

for the grounded theory approach is that this research is formative in nature, so the methodology 

should be broad-based and not confine the extent of the empirical data.  However, even an open-

ended investigation must have some direction in order to reach meaningful conclusions that address 

the questions that motivated the study.  The direction for this research is guided by feedback from 

physics instructors as described later in this chapter. 

The qualitative research methods used in this study are based on practices suggested by Gall, 

Borg, and Gall (1996), Miles and Huberman (1994), and Strauss and Corbin (1990).  As is 

common in most qualitative research, the data were coded into themes or categories based on 

patterns observed through repeated words, phrases, or numerical data that emerged from the 

student responses.  The coding process was often revised and repeated as additional data 

necessitated the modification of existing categories.  The accumulation and analysis of data was 

terminated when saturation was reached (no new findings emerged from additional data) or the 

available pool of data was exhausted.  A computer spreadsheet program (Excel) was the primary 

research tool used to organize and analyze the research data gathered for this study.  This program 

proved to be a flexible and effective tool that facilitated both qualitative and quantitative analysis of 

the data. 

3.3 Quantitative Analysis 

Although a variety of data sources were used to examine how students treat uncertainty in 

measurements, the same quantitative data analysis procedures are used throughout this study and 

consist of descriptive statistics and hypothesis testing.  Since the qualitative data is categorized, the 
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fraction of students in similar categories can be compared across sample groups to determine if 

there is a significant difference between the sample proportions.  A z-test can then be used to 

examine the difference between sample proportions.  Since the proportions are dichotomous (a 

student response is either in a category or not in that category), the sampling distribution for each 

proportion is defined by a binomial distribution.  The uncertainty associated with a proportion p 

from a sample size n is the standard deviation of the binomial sampling distribution: 

npp /)1( −=σ   
 

The sampling distribution for the sample proportion p is approximately normal if  np ≥ 10 and n(1-

p) ≥ 10 (Moore 1995).  A reference table with uncertainty values calculated for key proportions p 

and alternative proportions q = 1 - p is shown below. 

Table 3-1.  Relative uncertainty values for binomial distribution 

 Probability Splits (p%)/(q%) 
n  10/90 20/80 30/70 40/60 50/50 
5 13.4% 17.9% 20.5% 21.9% 22.4% 

10 9.5% 12.6% 14.5% 15.5% 15.8% 
20 6.7% 8.9% 10.2% 11.0% 11.2% 
30 5.5% 7.3% 8.4% 8.9% 9.1% 
50 4.2% 5.7% 6.5% 6.9% 7.1% 

100 3.0% 4.0% 4.6% 4.9% 5.0% 
200 2.1% 2.8% 3.2% 3.5% 3.5% 
500 1.3% 1.8% 2.0% 2.2% 2.2% 

1000 0.9% 1.3% 1.4% 1.5% 1.6% 
5000 0.4% 0.6% 0.6% 0.7% 0.7% 

10000 0.3% 0.4% 0.5% 0.5% 0.5% 
 

From this table, we can see that the uncertainty values decrease as the sample size increases and 

also as the proportions move away from a 50/50 split.  For example, a sample with n = 100 and a 

50% proportion has a standard deviation of 5%, while the uncertainty for a 10% proportion is 3%.  



 

 36

Since most of the sample sizes in this study are less than 100, the proportions of student responses 

have uncertainty values that are at least 3%.  This means that these proportions should be rounded 

to two significant figures so that the excessive precision is not implied by (in)significant digits (see 

section 4.5.1 on relative uncertainty and significant figures).  Consequently, all proportions 

tabulated in the results section of this report are rounded to the nearest whole percentage point. 

Just as the students in this study should consider the uncertainty of their measurements 

when designing an experiment, this same consideration is necessary for this research about the 

students.  Since comparisons will be made between groups of students, the expected variation in 

the response rates for each group should be used to determine the minimum sample size needed to 

show a meaningful difference between the groups.  The required sample size could be estimated 

from the binomial uncertainty table above, but a better procedure is to consider the hypothesis test 

that will be used to examine the difference between proportions. 

If the sample sizes are sufficiently large (see below), then a z-test can be used to compare 

the population proportions, p1 and p2, by considering the null hypothesis that these proportions are 

equal:  Ho: p1 = p2.  The alternative hypothesis is that these proportions are different:  Ha:  p1 ≠ p2 .  

The test statistic is then 









+−

−
=

21

21

11
)ˆ1(ˆ

ˆˆ

nn
pp

pp
z  

 
where 1p̂  is the proportion of responses in the category of interest for one group and 2p̂  is the 

proportion of responses in the same category for the other group.  The pooled proportion estimate, 

p̂ , is the weighted average of the sample proportions and is given by 
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The z-test statistic represents the ratio of the difference in proportions to the standard deviation of 

the distribution of proportion differences.  This statistic can be used for comparing proportions if 

for each sample, more than five observations fall in the category for which the proportion is 

estimated, and more than five observations do not fall in that category.  If this condition is not 

satisfied, then the distribution of the test statistic will not be sufficiently close to normal, and the 

Fisher’s exact test should be used (Agresti and Finlay 1997).  Since the Fisher’s exact test is 

accurate for both small and large sample sizes, it will be used for all analyses.  An example of the 

SAS procedure and data output for this analysis can be found in Appendix M. 

 The probability associated with a z-test is found from the standard normal distribution.  The 

p-value is the two-tailed probability found from a normal distribution table or a calculated value 

from a computer program.  If the p-value is below a specified significance level (α = 0.05 for this 

study), then the null hypothesis is rejected, and there is sufficient evidence to accept the alternative 

hypothesis that the sample proportions are different.  With an established significance level of α = 

0.05, there is only a 5% chance that a p-value less than 0.05 will result in an incorrect decision to 

accept the alternative hypothesis, when in fact the null hypothesis is true (this is called a Type I 

error). A Type II error would occur if the null hypothesis were accepted when there truly was a 

significant difference between the sample proportions.  These same judgment issues arise when 

students compare their experimental values with a predicted value, each of which have some 

degree of uncertainty (see section 4.7.1). 
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 The minimum sample size required to show a meaningful difference between two sample 

proportions can be found from the above equations.  If we believe that a proportion difference of 

at least 0.2 is meaningful, then sample sizes of at least fifty will yield a statistically significant 

difference between proportions p1 and p2.  Somewhat smaller sample sizes could yield this same 

20% resolution between p1 and p2 if the proportions are far from 50%.  For example, if both 

sample groups have 20 students, then a significant difference (p-value < 0.05) can be observed for  

p1 = 0% and p2 = 20%.  These minimum sample sizes were considered during the design phase of 

this study, and a sample size of 50 students was set as a target value. 

3.4 Determining the Key Issues to Investigate 

In addition to a careful review of the error analysis references already mentioned, several 

other methods were employed to narrow the scope of this research and obtain feedback from 

expert practitioners who have direct experience with students dealing with measurement uncertainty 

issues.  While the reference books provide a comprehensive view of error analysis, they generally 

do not indicate the areas that provide the greatest conceptual difficulties for students.  In order to 

investigate this cognitive aspect, it was necessary to consult directly with instructors who teach 

about measurements, and with the students themselves.  The following sections describe how this 

was accomplished. 

3.4.1 Review of Topics in Reference Books 

As discussed in Chapter 2, a concerted effort was made to determine what students are 

expected to know about the uncertainty of measurements.  For this reason, a sample of the most 

popular reference books on the subject, along with physics textbooks, laboratory manuals, and 
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other error analysis guides were reviewed to gain further understanding of the instructional content.  

This review provided a context for addressing the conceptual understanding of students and the 

difficulties they encounter in analyzing the uncertainty of measurements. 

3.4.2 Focus Group 

A focus group was convened in November, 1997 to get feedback on an initial list of 

perceived areas of difficulty that students encounter related to measurement uncertainty.  A 

transcription of the focus group, including the questions that were addressed, is provided in 

Appendix C.   This meeting included eleven members of the North Carolina State University 

Physics Education Research (PER) group – seven graduate students, three professors, and one 

administrator.  The hour-long discussion was recorded on audiotape, and then transcribed.  The 

comments expressed in this focus group helped shape the direction of this research study, as 

explained in Section 2.5. 

3.4.3 Survey of Learning Objectives 

A survey (Appendix B) was developed to solicit feedback from experts on the primary 

learning objectives that they felt should be addressed by this research.  This survey was 

administered in the early stages of this research to about 25 physics graduate students and 

professors at North Carolina State University.  The participants discussed the issues in groups of 

three or four and submitted their notes after the hour-long meeting.  A summary of these findings 

has already been presented in Section 2.5. 
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3.5 Measurement Uncertainty Survey 

One of the primary research instruments for this study was a written survey with open-

ended questions to address the objectives recommended by the experts.  The questions for this 

survey were designed to cover a broad range of objectives while still having some overlap between 

questions to provide reliability checks. The survey was designed to require less than thirty minutes 

for a typical student to complete, but students actually spent anywhere from 10 to 60 minutes to 

complete these surveys. Student volunteers were interviewed to determine if the questions were 

sufficiently clear and whether they elicited the desired responses.  Throughout the development 

phase, the survey was revised several times based on discussions with colleagues and responses 

from student interviews.  The final product consisted of two versions (A and B) to allow for greater 

breadth of topics that could be examined while keeping each survey to a reasonable length.  These 

surveys are provided in Appendix D. 

3.6 Expert Survey on Measurement Uncertainty 

A second survey for experts (Appendix E) was developed to gather responses from 

instructors to establish a “standard” to which student responses to similar questions could be 

compared.  The experts who completed this survey included physics professors and graduate 

teaching assistants. Invitations to experts were publicized on the physlrnr listserve, meetings of the 

American Association of Physics Teachers (AAPT), and the North Carolina Section of the AAPT.  

An effort was also made to solicit responses from chemistry professors and graduate students; 

however, only three of these people returned their surveys, so nearly all of the 28 experts who 

completed this survey are from the physics community.    
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Approximately twenty experts outside of academia were also contacted by telephone or in 

person and questioned about their practices of determining and reporting uncertainties in 

measurements.  These experts included industrial metrologists, application engineers, calibration 

engineers, and NIST employees.  While many of these conversations were helpful in understanding 

calibration and control processes, most were not directly relevant to this study.  When asked 

specific questions about the expression of uncertainty, most of these industrial contacts referred to 

the methods presented in the ISO Guide.  References to conversations with these experts have 

been included in this study when appropriate. 

3.7 Population and Sample Description 

The target population for this study is introductory physics students, which includes high 

school, college, and university students taking an introductory physic course.  The primary subjects 

in this study were all university students in either a first or second-semester physics course.  For 

comparison purposes, graduate teaching assistants (TAs) assigned to these courses were also 

included in the study.  A majority of the research findings come from data gathered at North 

Carolina State University (NCSU), but data were also obtained from the University of North 

Carolina at Chapel Hill (UNC) and the University of Hokkaido in Japan (Hokudai).  The North 

Carolina universities were primarily chosen for their accessibility to the researchers, but they are 

also believed to be representative of typical universities, which is an important consideration when 

generalizing findings beyond the scope of the sample being investigated.  
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3.7.1 NCSU Sample Description 

Nearly all of the physics students from NCSU who participated in this study were 

engineering majors.  They were enrolled in the first or second-semester calculus-based physics 

courses (PY205 and PY208).  Both of these courses used the textbook by Halliday, Resnick, and 

Walker: Fundamentals of Physics, 5th ed.  Multiple sections of these large-enrollment courses 

follow a similar curriculum since the students take common exams that are administered 

simultaneously across campus. Each of these 4-credit hour courses includes a required laboratory 

component, which counts for 10% of the students’ course grade.  Students meet for lab every-

other week and perform six laboratory experiments throughout the semester.  A complete, written 

laboratory report is required for each experiment.  The laboratory curriculum is typical of many 

university physics labs, and about half of the experiments utilize personal computers for data 

acquisition and analysis. 

Nearly all of the NCSU students in this study are sophomores (65%) or juniors (25%) who 

have already taken a chemistry course, which includes a laboratory component where many error 

analysis concepts are introduced.  The proportion of female students in this NCSU sample ranged 

from 15% to 39%, which is comparable to the overall proportion for the university (40%), and the 

fraction in the school of engineering (19%). 

Table 3-2.  NCSU student sample demographics 

Course 
# 

Course 
Description 

Course 
Content 

Lab 
Practic. 

Sample 
Size 

Female 
Fraction 

PY205 Calculus physics for engineers Mechanics – waves Survey 28 15% 
PY208 Calculus physics for engineers E & M – modern Survey 71 18% 
PY205 Calculus physics for engineers Mechanics – waves Ver. A 37 27% 
PY205 Calculus physics for engineers Mechanics – waves Ver. B 36 39% 
PY208 Calculus physics for engineers E & M – modern Ver. A 34 32% 
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PY208 Calculus physics for engineers E & M – modern Ver. B 32 31% 
 

 The Student Measurement Uncertainty Survey was administered to nearly 100 students 

during the last laboratory period of the fall semester in 1998.  The administration of this survey was 

conducted in conjunction with pre-post testing to evaluate the gains made by students in their 

conceptual understanding of course-specific physics topics.  Students who participated in the pre 

and post testing received extra credit equivalent to a 100% on one additional laboratory report.  A 

representative sample of laboratory sections was selected to collect data from at least thirty 

students in each of the two courses taught by six different instructors.  Students in these sections 

were asked to complete the measurement uncertainty survey instead of one of the post-testing 

instruments, and they received the same extra credit as their peers. 

3.7.2 UNC Sample Description 

The UNC students in this study were enrolled in one of four classes.  Physics 24 and 25 are 

the required introductory physics courses for pre-medical students and other health science majors. 

This algebra-based sequence used the textbook by Serway and Faughn, College Physics, 5th ed.   

Physics 26 and 27 are the first two semesters of physics for students who plan to major in physics, 

chemistry, computer science, or other technical majors that require calculus-based physics. This 

sequence used the textbook by Halliday, Resnick, and Walker: Fundamentals of Physics, 5th ed.   

Each of the 4-credit hour UNC physics courses includes a required laboratory component, 

which counts for 25% of the student’s overall course grade. Students meet for lab every week and 

perform nine laboratory experiments throughout the semester.  A complete, written laboratory 

report is required for each experiment.  The laboratory curriculum is typical of many university 
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physics labs and is similar between the algebra and calculus-based tracks.  Therefore, both of the 

first semester students (Phys24 and 26) were given the same lab practicum for mechanics 

experiments (Appendix G.1), and the second-semester students (Phys25 and 27) used the same 

activity designed for electricity and magnetism experiments (Appendix G.2). 

The UNC lab practicum was administered at the end of the fall semester in 2000 as a 

makeup lab activity for students who had missed a lab sometime during the semester.  These 

students were assessed on their performance and received scores that were normalized to 85% 

(the average lab score) and counted the same as a regular laboratory report score.  The grades 

were assigned by the students’ regular laboratory instructor and were based on the grading rubric 

that was designed for this activity. 

Two significant differences exist between the laboratory curriculum at UNC compared with 

NCSU.  The first difference is that the UNC labs do not use computers to collect data with 

interface probes like the NCSU labs do.  Students only use computers to analyze their data using 

KaleidaGraph or Excel software. The second and most important difference for this study is that 

the topic of error analysis is emphasized much more in the UNC physics labs than it is at NCSU.  

Students are required to estimate the uncertainty in their results (calculating standard errors and 

propagating uncertainties as needed) for practically every UNC physics experiment.  This same 

level of rigor is not emphasized in the NCSU labs.  This difference between the two curricula is 

apparent when comparing the level of detail in the measurement sections of each lab manual 

(Appendix A.1 and A.2).  One of the reasons that samples were selected from each of these two 

schools was to examine the hypothesis that students from the UNC sample should demonstrate a 

better understanding of measurement uncertainty than students from NCSU. 
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Table 3-3.  UNC student sample demographics 

Course 
Number 

Course 
Description 

Course 
Content 

Lab 
Exam 

Sample 
Size 

Female 
Fraction 

Phys24 Algebra physics for pre-meds Mechanics – waves I 23 52% 
Phys25 Algebra physics for pre-meds E & M – nuclear II 14 64% 
Phys26 Calculus physics for scientists Mechanics – waves I 17 47% 
Phys27 Calculus physics for scientists E & M – Optics II 9 44% 

 

The total enrollment at UNC is similar to NCSU, but the admissions standards are higher 

for UNC (see average high school Grade Point Average and SAT scores in Table 3-4).  About 

50% of the UNC students in this study are female, which is slightly lower than the overall university 

enrollment which is 60% female. 

Table 3-4.  NCSU and UNC student population statistics 

 NCSU 
1997 

NCSU 
1999 

UNC 
1997 

UNC 
1999 

Total enrollment 27,529 28,011 24,189 24,635 
Undergraduate 19,097 19,027 15,321 15,434 

Women 40.1% 41.1% 60.1% 60.6% 
White 81.3% 81.0% 81.3% 81.2% 

African American 12.1% 10.6% 11.1% 11.2% 
Freshmen Profile:     

Average SAT Verbal 567 577 609 620 
Average SAT Math 587 602 611 625 

Average SAT Combined 1154 1179 1220 1245 
H.S. GPA 3.69 3.86 4.02 4.06 

Sources:  www2.acs.ncsu.edu:80/UPA,   www.ais.unc.edu/ir 
               

3.7.3 Hokudai Sample Description 

In the summer of 1998, I had the opportunity to travel to Japan and Korea to collaborate with 

other physicists who were also interested in students’ understanding of measurements.  In Japan, I 

collaborated with Dr. Shigeo Sugiyama, a professor of science history in the physics department of 
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Hokkaido University (also called Hokudai).  In South Korea, I met with Jongah Soh, a physics 

graduate student at Seoul National University, who under the direction of Dr. Sungjae Park, was 

investigating how well her junior high school students understood measurements they made.  While 

these collaborations were not the primary focus of my dissertation study, the discussions and 

insights that resulted from these visits were invaluable. 

In addition to collaborating with Japanese and Korean researchers, I also planned to compare 

the responses of Japanese and Korean students with answers from similar American students.  My 

expectation was that the Asian students would demonstrate a higher level of understanding about 

measurement uncertainty than their American counterparts.  This hypothesis was based on the 

superior past performance of these groups of students on the Third International Mathematics and 

Science Study (TIMSS, 1996). 

Table 3-5.  TIMSS rankings for selected countries 

Country Math 
rank (score*) 

Science 
rank (score*) 

Singapore #1 (643) #1 (607) 
Japan #3 (605) #3 (571) 

South Korea #2 (607) #4 (565) 
England #25 (506) #10 (552) 

United States #28 (500) #17 (534) 
South Africa #41 (354) #41 (326) 

*Average score of 13-year olds on TIMSS. 
  Average score of all 41 countries = 500 
 
Time and resources did not permit a detailed investigation of Korean students; however, I was 

successful in gathering responses from over 150 Japanese students at Hokkaido University, thanks 

to the gracious assistance of Dr. Sugiyama, who coordinated the administration of my 

Measurement Uncertainty Survey in several different classes. 
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Hokkaido University has a total enrollment of about 12,000 undergraduate students and 

5,000 graduate students. Of the approximately 200 universities in Japan, Hokudai ranks in the top 

10.  Like NCSU, Hokudai was originally an agricultural college.  The college of medicine is now its 

largest “faculty.”  

The Japanese school year begins in April, so these students were in their first semester 

when they were surveyed in June, 1998.  An experimental physics class is required of all physics 

majors, and most take this lab course after completing their first year of physics.  Since all of the 

students who participated in this study were in their first year, none had taken this lab course, but 

nearly all had physics laboratory experience from high school. 

 

Figure 3-1.  Hokudai sample:  number of students represented in each major 

 

 The Measurement Uncertainty Survey (Appendix D) was translated into Japanese by Dr. 

Sugiyama (Appendix D.3 and D.4).  Both the English and the Japanese versions of the survey were 
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delivered to students in six different courses: history of science, English, biology, physics, chemistry, 

and engineering.  The students were not given any compensation for completing and returning the 

survey, so the only motivation was obligation (their instructor asked them to do this) or kindness.  

The procedure for delivery and collection of the surveys was not tightly controlled since Dr. 

Sugiyama was also acting as coordinator on a volunteer basis. Consequently, the response rate 

varied from 100% in classes where students were asked to complete the survey in class (i.e., 

History of Science, taught by Dr. Sugiyama) to only about 20% in the chemistry and engineering 

classes.  This low response rate is a serious threat to the internal validity of the sample because the 

students who did respond were essentially self-selected.  It is believed that self-selecting students 

would feel more confident in their ability, and therefore should perform at a higher level than a 

randomly-selected sample from the same population. 

Follow-up interviews were conducted with 20 students to clarify their responses to the 

survey questions.  These twenty students were selected based on their willingness to be 

interviewed, their availability during the interview period, and their major.  In addition, two graduate 

students were interviewed to gain another perspective from outside the population of interest. One 

of Professor Sugiyama’s graduate students, Kaori Takaguchi, assisted with translation during the 

interviews. 

3.7.4 TA Sample Description 

The responses of graduate teaching assistants (TAs) were included in this study to serve as a 

standard to which the student responses could be compared.  The TAs who participated included 

all of the laboratory instructors for the NCSU and UNC students who were the primary subject of 

this investigation.  These TAs are considered to be valid experts since they were the ones most 
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familiar with the laboratory curriculum, and they were responsible for assessing the laboratory and 

data analysis skills of the students they taught.  However, these TAs are not considered to be 

authorities on measurement uncertainty since their experience and training is primarily limited to 

their physics teaching experience and training, research lab experience, and their own 

undergraduate laboratory experiences as a student.  The TAs participated primarily out of 

obligation as part of their job responsibilities, so their motivation was also different than that of the 

students.  This difference in motivation is a potential threat to the validity of the responses. 

3.8 Physics Lab Practicum 

An important research tool used in this study was a laboratory practicum that was developed 

to assess students’ procedural knowledge.  The Lab Practicum tested students’ ability to make 

accurate measurements, correctly use common laboratory equipment, and analyze experimental 

data.  The questions on this exam were selected to cover the topics and types of activities required 

in the lab course, with approximately equal numbers of direct measurement and computational 

questions.  The exam was administered at the end of the semester both at NCSU and UNC.  The 

NCSU students received extra credit for their effort equivalent to 100% on one additional lab 

grade.  The UNC students took the practicum as a makeup lab activity, so unlike their NCSU 

counterparts, their performance was assessed and their score (normalized to 85%) counted toward 

their course grade. 

3.8.1 Interviews on Experimental Design 

Six experimental design interviews were conducted during the development phase of the 

Lab Practicum.  Two or three students participated in each interview as they explored an open-
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ended investigation with questions designed to address key aspects of each experiment (Appendix 

I).  The students in these interviews were from a special section of the NCSU PY208 course, and 

they received extra credit towards their lab grade for volunteering to participate.  Each student 

signed an informed consent form that explained the objective, procedure, and potential 

consequences of the research (Appendix H).  These experimental design interviews were used 

primarily to guide the development of the Lab Practicum, so a detailed analysis of the student 

procedures and responses was not performed. 

3.9 Limitations 

As with any qualitative research, there are limitations to the ability to generalize the research 

findings to the broader population of interest, and even more limitations to consider when 

practitioners try to apply the findings to their own situation. While the student samples selected for 

this study were chosen to be representative of typical university physics students, the findings from 

this study may not be consistent with all groups of students within this target population.  The most 

significant internal and external threats to validity are presented below. 

3.9.1 Threats to Internal Validity 

Threats to internal validity are factors that can confound an observed difference between an 

experiment group and a control group.  The internal validity of an experiment is the extent to which 

extraneous variables have been controlled by the researcher, so that any observed effect can be 

attributed solely to the treatment variable (Gall, Borg et al. 1996). This study did not employ a 

traditional experimental design to examine the effect of varying one single variable and observing 
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the outcome, but comparisons are still made between different sample groups, and the factors that 

could obscure any observed differences between these groups should be considered.   

• Differential selection 

The observed differences between responses from student groups could depend as much or 

more on the inherent differences between these groups (e.g. intelligence, prior education, and 

experiences of the students) as on the differences in the physics laboratory curriculum.  Random 

assignment of students into treatment and control groups is the best safeguard against differential 

selection, but this was not possible (or even relevant) since this study was not a traditional 

experiment design.  However, it is expected that the effect of these individual differences would be 

less noticeable with increased sample size. 

• History 

Observed differences between groups of students may be affected by other events or factors 

that occur over a period of time.  This study examines different groups of students with varying 

degrees of experience with physics.  It is quite possible that factors other than their physics 

instruction could influence the ability of these students to analyze measurement problems.  The most 

significant of these additional factors are knowledge and experience gained from courses in 

statistics, chemistry, and laboratory research experience. 

3.9.2 Threats to External Validity 

 Threats to external validity are factors that limit the ability to generalize the findings of a 

study.  External validity is the extent to which the findings of a study can be applied to individuals 

and settings beyond those that were studied (Gall, Borg et al. 1996). 

• Population validity 
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There is inherent risk in generalizing from the sample of students selected from the locally 

accessible population of students at NCSU and UNC to the larger target population of 

introductory physics students nationwide.   

• Ecological validity 

The generalization of findings from this study are also limited by the extent to which the 

environmental conditions of the study approximate the actual conditions of the subjects in the target 

population.  For this study, these concerns relate primarily to whether or not the research 

instruments are “authentic” or contrived.  The most authentic sources of data for this study come 

from the analysis of student lab reports and homework. These regular student assignments provide 

a natural source of data, unlike the student surveys, interviews, and lab practica, which were 

developed or conducted specifically for this research.  These research instruments are subject to a 

variety of factors which can influence student performance. 

• Motivation 

The students in this study were generally volunteers who received extra credit or sometimes no 

tangible reward for their willingness to answer questions.  These same students might give different 

answers if given the same questions as a graded homework assignment or on an exam where the 

stakes are higher. 
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4 Research Findings 
 

4.1 Overview 

Detailed findings from each of the research methods described in Chapter 3 are presented 

here, organized by subject, from simple to complex levels of reasoning.  The order follows the list 

of topics that experts believe students should know (Section 2.5), and this same order is preserved 

in Chapter 5, where a taxonomy of student difficulties is presented as a summary of these findings.  

The vast majority of data from this research comes from the Lab Practicum and the Measurement 

Uncertainty Survey, as these two research tools proved to be the most useful in gathering the 

desired breadth and depth of insight into students’ treatment of measurement uncertainty.  Findings 

from student interviews, lab reports, and homework supplement these primary research 

instruments. 

4.2 The Nature of Uncertainty in Measurements 

All measurements have some degree of uncertainty, no matter how carefully the 

measurement was obtained.  However, a significant number of students (~50%) believe that exact 

measurements can be made if high-quality equipment is used and there is no "human error" 

(mistakes made by the person taking the measurement) (Soh, Fairbrother et al. 1998). 

4.3 Accuracy, Precision and the Use of Standards  

 Students often confuse precision and accuracy.  A common mistake made by students is to 

assume that a precise instrument or measurement is also accurate, when this may not be the case 

(i.e., there is a systematic error).  Misconceptions about measurements that may be “precisely 
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wrong” suggest a lack of understanding for the need to calibrate equipment referenced to traceable 

standards.  

 One example of the confusion between these terms was explored by asking NCSU 

students to rate the accuracy and precision of the target shooting scenarios depicted in Figure 4-1.  

A tally of their responses is provided in Table 4-1. 

 
 
 
 
 
 
 
 
 
 
 

Figure 4-1.  Accuracy versus precision – target shooting example 

Reference: (Doran 1980) 
 

Table 4-1.  Student rating of precision and accuracy 

n = 61 A B C 
Good 59 (97%) 2 (3%) 13 (21%) Accuracy 
Poor 2 (3%) 59 (97%) 48 (79%) 
Good 59 (97%) 48 (79%) 3 (5%) Precision 
Poor 2 (3%) 13 (21%) 58 (95%) 

  Bold indicates “correct” answers according to the author of this study. 
 

Student responses are consistent with the definitions of the terms accuracy and precision, 

except for target C, where the shots are scattered (low precision), but on average they are 

centered on target (good accuracy).  One explanation is that students were asked to evaluate the 

accuracy and precision of diagrams similar to, but not identical to the one above.  In one case, the 

last target was drawn with the shots scattered and none were within the inner circle or “bullseye”.  

Accuracy:  Good 
Precision:  Good 

Accuracy:  Poor 
Precision:  Good 

Accuracy: Good? 
Precision:  Poor 

A B C
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Of the 31 students in this particular group, 29 (94%) rated the accuracy low.  This response rate 

was significantly different (p = 0.009) for another group of students in the same course (same 

population) where 19/29 (66%) of the students rated the accuracy low.  In this second class, one 

of the shots was drawn within the bullseye.  In discussing the responses with students, several of 

the students said that they rated the accuracy high for target C because of the mark in the center. 

This finding is similar to when students get 0% error and do not consider the uncertainty of their 

experimental result (they ignore the scatter). 

4.4 Reporting the Best Estimate of a Measured Value  

Before examining students’ practices related to the uncertainty in a measurement, we should 

first discuss the proper procedure for determining and reporting the best estimate of the measured 

value itself.  This procedure is quite simple if only one measurement is made:  the measured value 

should be reported to a reasonable number of significant digits, along with a variable name and 

appropriate units. (Ex.  Diameter = 3.25 cm) 

When multiple measurements (replicates) are made of the same value, then the sample mean 

(average) is most commonly used to represent the central tendency of the data set.  The mean for n 

individual measurements is defined as:  
n
x

x iΣ
= .  If the sample distribution is skewed by extreme 

values, and there is sufficient justification to omit these outliers from the data set (see below), then 

the mean of the remaining values may be used to represent the best average value.  If there is no 

good reason to omit outliers from the data set, then the median (middle value) is considered to be 

a better estimate of a typical central value for the sample (Moore 1995). 
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4.4.1 Recognizing Anomalous Data 

A common problem that arises when making measurements and analyzing data is the 

question of how to treat anomalous data.  Most experts agree that data should not be discarded 

without good reason, but what criteria should be used to decide whether an outlier should or 

should not be omitted from the data analysis?  The simplest and safest solution is to never discard 

any measurements.  However, this practice of including outliers may significantly skew the sample 

data set so that the mean is not the best estimate of the target value.  The solution that generally 

yields the most accurate results is to apply Chaevenet's criterion, which states that a data point 

should be discarded if less than half an event is expected to lie further from the mean than the 

suspect measurement (Bevington and Robinson 1991; Taylor 1997).  This criterion accounts for 

outliers that will exist with some predictable probability depending on the sample size and variance.  

Another reasonable criterion is to discard a data point if it lies more than 3 standard deviations 

away from the mean, but to do so with reasonable judgment, especially if the data set is small 

(Baird 1995).  Perhaps the best solution is to re-examine the suspect data point and repeat the 

measurement if possible.  Many great scientific discoveries have been made from investigating what 

first appeared to be an anomaly. 

 In the South Africa study (Allie, 1998), one of the probes presented two alternatives for 

dealing with an anomaly, and students were asked to choose which one they agreed with and 

explain their reasoning:  

A group of students have to calculate the average of their (distance) measurements after 
taking six readings.  Their results are as follows (mm):  443, 422, 436, 588, 437, 429. 

The students discuss what to write down for the average of the readings. 
A: “All we need to do is to add all our measurements and then divide by 6.” 
B: “No. We should ignore 588 mm, then add the rest and divide by 5.” 
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Table 4-2.  Summary of responses to the South African anomaly probe 

 
Category Description 

Frequency 
of response 

n = 121 
The anomaly must be included when taking an average since all readings 
must be used 

37 (30%) 

The anomaly is noted, but it has to be included in the average since it is part 
of the spread of results 

14 (12%) 

The anomaly must be excluded as it is most likely a mistake 30 (25%) 
The anomaly must be excluded as it is outside the acceptable range 38 (31%) 
Not codeable 2 (2%) 

 
Only about half of the students excluded the anomaly, which lies about 19 standard 

deviations from the mean of the other 5 data points.  Such a distant outlier is almost certainly a 

mistake and should be excluded from the data analysis.  It is surprising that more students did not 

exclude the anomalous point, especially when the students were explicitly confronted with the 

question of whether or not the suspect data should be omitted from the average.  

In an effort to replicate the above findings and investigate how readily students recognize an 

outlier, the South Africa probe was modified and included in the Student Measurement Uncertainty 

Survey (Appendix D) administered to NCSU and Hokudai students. The Lab Practicum 

(Appendix G) administered to NCSU and UNC students also included these questions. Version A 

asked the following question:  

A group of students are told to use a meter stick to find the length of a hallway.  They take 
6 independent measurements (in cm) as follows:  440.2,   421.7,   434.5,   523.4,   437.2,   
428.9.  What result should they report?  Explain your answer. 
 

Version B asked the same question with one different data point (492.5 instead of 523.4):   

440.2,   421.7,   434.5,   492.5,   437.2,   428.9 

The data could be graphically represented on a number line (not shown to students): 
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Figure 4-2.  Data points for length of hallway problem 

(Note that the anomalous data points lie well beyond the cluster of other measurements.) 

 
The purpose for the two different versions of the same question was to see if there was any 

difference in how students treated the anomalous data point depending on whether it was 1.0 m or 

0.5 m from the mean of the other 5 measurements.  The measurements 523.4 and 492.5 were also 

chosen to see if students more readily recognized an outlier when the first digit is different from the 

other measurements.  In both cases, the suspect measurement lies at least 8 standard deviations 

from the mean, and therefore is most likely a mistaken result (possibly a counting error from 

repeatedly moving the meter stick).  The data sets were also chosen so that the average of either 

the 5 or 6 data points yielded a mean ending in an even digit followed by a 5.  The purpose of this 

unusual condition was to see if students would round their result up or down in accordance with 

two different recommended procedures (Bevington and Robinson 1991; Serway and Beichner 

2000). 

 According to their laboratory instruction manuals (Appendix A), students should answer 

this question by omitting the extreme outlier and calculating the mean and standard error of the 

remaining five measurements:  L = (432 ± 3) cm.   However, most of the NCSU and UNC 

students averaged all six data points and reported the mean to four significant figures with no 

uncertainty estimate.  Here is a summary of how students answered this question: 
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Table 4-3.  Summary of responses to treatment of data question 

 
Student treatment of data 

Hokudai 
Students 
n = 52 

NCSU-A 
Students 
n = 36 

NCSU-B 
Students 
n = 37  

NCSU 
TAs 

n = 13 

UNC 
Students 
n = 40 

UNC 
TAs 

n = 10 
Number who reported a value 30 29 27 11 37 10 
Averaged all 6 data points 15%* 62%* 89%* 27% 80% 80% 
Omitted single outlier and 
averaged other measurements 

35% 17% 4% 64% 8% 20% 

Omitted high and low from avg. 50% 3% 4% 0 0 0 
Reported median or other value 4% 17% 3% 9% 0 0 

Reported 4+ significant figures 86% 87% 96% 73% 86% 30% 
Reported 2 or 3 significant figs. 14% 13% 4% 27% 14% 70% 
Showed explicit uncertainty 10% 10% 11% 82% 73% 100% 
   Bold indicates response that is most correct according to expert opinion. 
   * indicates significant differences between samples 
 
Significant differences were observed among the sample groups in how they treated the data and 

reported a best estimate.  A much higher fraction (85%) of the Hokudai students omitted one or 

more data points before calculating an average value, while only about 15% of the NCSU students, 

and only 8% of the UNC students rejected the outlier before finding a mean value.  This wide 

discrepancy in the treatment of the data prompted further investigation.  During the follow-up 

interviews, several of the Japanese who had omitted both the highest and lowest value explained 

that they had learned this “trimmed mean” procedure in their statistics class, and they gave an 

example from the Olympics of dropping the high and low scores for skating competitions.  Except 

for the Hokudai students, the percentage of students and TAs who excluded the outlier was 

significantly less than the ~50% rate of the South African students who were explicitly confronted 

with this issue.  It appears then that most students (and TAs) followed the routine practice of 

calculating an average value without considering the distribution of the data.  This conclusion is 

supported by the lack of drawings similar to Figure 4-2 on any of the student (and only 2 of the 

TA) papers.  It is quite likely that a larger fraction of the students would have recognized and 
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rejected the outlier if they had plotted the data points on a number line to visualize the distribution 

of the data.  As stated by Box (1978, p. 25), “a dot diagram is a valuable device for displaying the 

distribution of a small body of data (up to about 20 observations).” 

 Slight differences were also observed between the two versions of this data analysis 

question.  As expected, a larger fraction (17%) of NCSU students recognized and omitted the 

outlier 523.4 from the data set compared with the 4% fraction of students who omitted the outlier 

492.5.  However, these differences are not statistically significant at the 0.05 level, so no general 

conclusions can be drawn.  The seemingly large difference between the proportions of NCSU and 

UNC TAs who averaged all 6 measurements may also be due to random chance since the 

difference is barely significant at the 0.05 level (the 2-tailed probability from Fisher’s exact test is p 

= 0.03). 

4.4.2 Ability to Make Accurate Measurements 

Several questions on the Lab Practicum assessed students’ ability to make simple 

measurements.  Two such questions asked students to measure the diameter of a penny as 

accurately as possible with both a ruler (1 mm resolution) and with a Vernier caliper (0.05 mm 

resolution).  The ability of students and TAs to make and report an accurate measurement was 

surprisingly low for such a simple task.  Only about 60% of NCSU students and 70% of the TAs 

accurately reported the diameter of penny measured with a ruler within 0.5 mm, and 15% did not 

correctly give a value within the 1 mm precision of the ruler. The UNC students demonstrated a 

significantly higher level of competence with 88% of the students reporting accurate values within 

0.5 mm and 100% within 1 mm of 1.90 cm, which is the median value of all responses.  It is 

surprising that a higher percentage of the UNC students performed better on this task than did their 
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teaching assistants, but the difference is not statistically significant (p = 0.065).  The one UNC TA 

whose answer was not within the 1 mm resolution reported a diameter of 0.12 cm, which is clearly 

a mistake. 

The most significant difference between the student groups was for the proportion of 

students who reported an explicit uncertainty value (as required).  Even though nearly all of the 

students remembered to include proper units with their measurement, none of the 37 NCSU 

students reported an uncertainty value, while about 40% of the UNC students did so. Section 4.5 

discusses this issue of reporting uncertainties in greater detail. 

Table 4-4.  Measuring the diameter of a penny with a ruler (1 mm resolution)  

 NCSU UNC-CH Signif. 
D = 1.90 ±±  0.05 cm Students TAs Students TAs Diff.? 

 n = 37 n = 6 n = 40 n = 10 (Fisher) 

within 0.5 mm (1.85 to 1.95 cm) 21 (57%) 4 (67%) 35 (88%) 6 (60%) 0.0042 
within 1 mm (1.8 to 2.0 cm) 31 (84%) 5 (83%) 40 (100%) 9 (90%) 0.0098 
value reported to 1 sig. fig. 4 (11%) 0 (0%) 0 (0%) 0 (0%) 0.049 
value reported to 2 sig. figs. 26 (70%) 5 (83%) 26 (65%) 4 (40%) 0.64 
value reported to 3 sig. figs. 7 (19%) 1 (17%) 14 (35%) 6 (60%) 0.13 
explicit uncertainty reported? 0 (0%) 2 (33%) 18 (45%) 7 (70%) <0.001 

reasonable uncert. (0.025 to 0.1 cm) 0 (0%) 1 (17%) 15 (38%) 6 (60%) <0.001 
units shown? 35 (95%) 6 (100%) 40 (100%) 10 (100%) 0.23 

wrong units? (do not match value) 8 (22%) 2 (33%) 4 (10%) 1 (10%) 0.21 
The significant difference column gives the probability for the 2-tailed Fisher’s exact test that 
compares the proportions of NCSU and UNC students; p-values less than 0.05 are shown in bold 
to indicate statistically significant differences between these proportions. 
 

The performance for all groups dropped considerably when using the Vernier calipers to 

obtain the same measurement within the same error limits.  Ironically, it appears that students lose 

accuracy with this measuring instrument that allows for much greater precision.  What is even 

more surprising is that only two-thirds of the students and TAs in both groups reported diameter 

measurements that were consistent with each other.  The failure of one-third of students to 
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recognize a discrepancy between their two measurements of the same quantity with different 

instruments is another indication that students do not associate a meaning to the quantities that they 

measure and report – they are just numbers.  

Table 4-5.  Measuring the diameter of a penny with calipers (0.05 mm resolution) 

 NCSU UNC-CH Signif. 
D = 1.905 ±±  0.005 cm Students TAs Students TAs Diff.? 

 n = 37 n = 6 n = 40 n = 10 (Fisher) 

within 0.5 mm (1.85 to 1.95 cm) 20 (54%) 5 (83%) 27 (68%) 7 (70%) 0.25 
within 1.0 mm (1.80 to 2.00 cm) 21 (57%) 6 (100%) 30 (75%) 8 (80%) 0.10 

value reported to 1 sig. fig. 4 (11%) 1 (17%) 0 (0%) 0 (0%) 0.049 
value reported to 2 sig. figs. 22 (59%) 2 (67%) 6 (15%) 1 (10%) <0.001 
value reported to 3 sig. figs. 7 (19%) 2 (67%) 21 (53%) 2 (20%) 0.0040 
value reported to 4+ sig. figs. 2 (5%) 1 (17%) 13 (33%) 7 (70%) 0.0034 
explicit uncertainty reported? 0 (0%) 2 (33%) 15 (38%) 6 (60%) <0.001 

reasonable uncert. (0.002 to 0.05 cm) 0 (0%) 1 (17%) 11 (28%) 5 (50%) <0.001 
units shown? 27 (73%) 6 (100%) 39 (98%) 10 (100%) 0.0026 

wrong units? (do not match value) 5 (14%) 2 (33%) 4 (10%) 0 (0%) 0.73 
agrees with ruler measurement? 24 (65%) 4 (67%) 29 (73%) 7 (70%) 0.62 

The significant difference column gives the probability for the 2-tailed Fisher’s exact test that 
compares the proportions of NCSU and UNC students; p-values less than 0.05 are shown in bold 
to indicate statistically significant differences between these proportions. 
 
 A third question on the Lab Practicum asked students to determine the radius of a steel ball 

as accurately as possible using any available equipment.  The intent of this question was to see how 

many students would correctly use the Vernier calipers (instead of a ruler) without explicit 

instructions to do so.  The student performance on this task was disappointingly low, with only 

about half the students reporting an accurate radius measurement.  A summary of the results are 

shown in the following table. 
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Table 4-6. Accurately finding radius of a steel ball using any available equipment 

 NCSU UNC-CH Signif. 
R = 0.79 ±±  0.01 cm (NCSU) Students TAs Students TAs Diff.? 
R = 0.951 ±±  0.001 cm (UNC) n = 36 n = 7 n = 40 n = 10 (Fisher) 

Radius reported within 1 SD 5 (14%) 3 (43%) 18 (45%) 6 (60%) 0.0054 
Radius reported within 5 SD 10 (28%) 4 (57%) 22 (55%) 6 (60%) 0.021 

Diameter reported instead of R 7 (19%) 2 (29%) 6 (15%) 4 (40%) 0.76 
Reported using calipers 13 (36%) 0 (0%) 24 (60%) 7 (70%) 0.043 
used calipers correctly 2 (6%) 0 (0%) 18 (45%) 7 (70%) <0.001 

Value reported to 1 sig. fig.* 15 (42%) 2 (29%) 1 (3%) 0  (0%) <0.001 
Value reported to 2 sig. figs.* 15 (42%) 3 (43%) 18 (45%) 2 (20%) 0.82 
Value reported to 3 sig. figs.* 5 (14%) 2 (29%) 20 (50%) 8 (80%) 0.0013 
Value reported to 4+ sig. figs.* 0 (0%) 0 (0%) 1 (3%) 0 (0%) 1.0 

Explicit uncertainty reported 1 (3%) 3 (43%) 17 (43%) 6 (60%) <0.001 
Reasonable uncertainty 1 (3%) 1 (14%) 11 (28%) 5 (50%) 0.0027 

Units shown 31 (86%) 7 (100%) 35 (88%) 10 (100%) 1.0 
units consistent with value 31 (86%) 7 (100%) 33 (83%) 10 (100%) 0.76 

* Number of significant figures reported has been adjusted to account for those who reported 
diameter instead of radius. 
The significant difference column gives the probability for the 2-tailed Fisher’s exact test that 
compares the proportions of NCSU and UNC students; p-values less than 0.05 are shown in bold 
to indicate statistically significant differences between these proportions. 
“Correct” responses are also shown in bold. 
 

The most significant difference between the NCSU and UNC groups is the percentage of 

students who reported an explicit uncertainty value. Although these particular measurement 

questions for the penny and sphere did not explicitly ask students to include an estimate of their 

uncertainty, this requirement was clearly stated at the beginning of the instruction sheets.  Despite 

this, only one of the NCSU students included an uncertainty estimate on any of these three 

questions, while about a third to half of the UNC students did so.  Of the UNC students who did 
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report an explicit uncertainty, about three-fourths had reasonable uncertainty values (as defined by 

expert judgment).  This issue of determining and reporting uncertainty values is explored in greater 

detail in the following section. 

The TAs from both schools reported uncertainty values with their measurements more 

readily than the corresponding groups of students, but the UNC TAs consistently reported 

uncertainty values more frequently (and correctly) than the TAs from NCSU.  This difference 

reflects the level of emphasis placed on error analysis in the laboratory curricula of the two schools.   

4.5 Determining and Reporting the Uncertainty of a Measurement 

The ability of students to estimate the uncertainty of a measurement is a skill that is necessary 

for the higher-level task of evaluating the quality of the measurement.  Unfortunately, many students 

fail to report an uncertainty for a measurement, even when they are explicitly asked to do so.  Of 

those who do report a quantitative estimate of the uncertainty, this value often indicates a level of 

precision that is unreasonably low or high.  One instructor emphasized this point on the Expert 

Survey:   “My philosophy is that a value for the uncertainty is necessary, but the mathematics 

should be kept as simple as possible.  The point is that the result should be reasonable.” 

The following tables summarize how UNC students reported uncertainty values on the Lab 

Practicum. (Less than 10% of the NCSU students reported explicit uncertainty values for these lab 

practicum questions, so a meaningful analysis of this small sample group was not possible with such 

a low response rate.) Some of the questions explicitly or implicitly required an uncertainty value as 

noted in the table below.  Questions labeled “no mention” mean that students were not reminded to 

include an uncertainty value.  However, the general instructions on the first page of the practicum 

stated that “for questions that require a numerical result, write your answer as you would for a 
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formal lab report or scientific journal to indicate an appropriate degree of accuracy (proper number 

of significant figures and uncertainty).” 

 

 

 

 

 

Table 4-7. Student reporting of uncertainty values from UNC lab practicum 

# of Sig. Figs  
Question from Lab Practicum 

 
Type* 

Uncertainty 
Required? 1 2 3 4 

Response 
Frequency 

1.  Measure radius of steel ball M no mention 17    17 (43%) 
2.  Report length of hallway C no mention 6 6 17 1 30 (75%) 
4.  Report sin(85° ± 1°) C suggested 26 7 2  35 (88%) 
5.  Meas. dia. of penny with ruler M no mention 18    18 (45%) 
6.  Meas. dia. of penny with caliper M no mention 15    15 (38%) 
7.  Find race car accel. from graph C/M required 6 8 1  15 (38%) 
9.  Report accel. of falling ball C required 15 11 6 2 34 (85%) 
10. Find rotating mass from data C suggested 8  1  9 (23%) 
11. Meas. density of nickel coin M no mention 5 1   6 (15%) 
12. Meas. g with pendulum M no mention 2 3   5 (13%) 

Average:          12 3.6 2.7 0.3 18 (45%) 
*M/C indicates whether the question required a direct measurement, calculations, or both. 
 

The response rate for reporting explicit uncertainty values ranged from 13% to 88% on 

these questions, with lower response frequencies corresponding to questions that required direct 

measurements and did not explicitly remind students to include an uncertainty estimate.  The 

response frequency also appears to have diminished with time, since about 45% of the students 

included uncertainty estimates with direct measurements at the beginning of the practicum, but the 
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response frequency decreased to about 15% by the end of the practicum (which took students 

about two hours to complete).  

Somewhat surprisingly, the UNC students reported uncertainty values with an appropriate 

number of significant figures (1 or 2) about 90% of the time.  Students only reported uncertainty 

values with excessive precision (3 or more significant figures), on questions that required a 

calculated result.  A similar trend was observed for the result values (as opposed to the uncertainty 

values), as shown in Table 4-8. 

 

 

 

 

Table 4-8.  Student reporting of significant figures for UNC lab practicum 

Question from Lab Practicum Type2 n 1 2 3 4 5+ U/O4 d5 

6.  Meas. dia. of penny with caliper M 40 0 6 21 12 1 U -0.80 
4.  Report sin(85° ± 1°) C 39 4 4 25 5 1 U -0.67 
5.  Measure dia. of penny with ruler M 40 0 26 14 0 0 U -0.65 
1.  Measure radius1 of steel ball M 40 1 17 183 4 0 U -0.48 
12. Measure g with pendulum C/M 32 0 0 16 16 0 O 0.50 
2.  Report length of hallway C 37 0 3 2 32 0 O 0.78 
7.  Find race car accel. from graph C/M 36 2 11 13 6 4 O 0.97 
9.  Report accel. of falling ball C 38 0 3 31 3 1 O 1.05 
10. Find rotating mass from data C 32 0 6 15 7 4 O 1.28 
11. Measure density of nickel coin C 36 0 4 18 13 1 O 1.31 
Notes: 

1)  The number of significant figures has been corrected to account for students who reported 
the diameter instead of the radius of the steel ball. 
2)  M/C indicates whether the question required a direct measurement, calculations, or both. 
3)  Bold indicates the “correct” number of significant figures for each question. 
4)  U/O indicates whether students tended to report values with too much (O = overly 
precise), or with too little precision (U = under-reported).  
5)  d is the average number of significant figures above or below the ideal number.  
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  There appears to be a correlation between the type of question (measured or calculated) 

and the implied precision of the reported values.  Students tend to report values with too many 

significant figures if the result comes from calculations, but insufficient precision is often reported for 

direct measurements.  One explanation is that students underestimate the uncertainty in a single 

measurement because they often consider only the instrument precision (± 1/2 division or ± 1 

division) and do not include other sources of error that contribute to the overall uncertainty.  This 

was the case for 7 out of 10 lab groups in the French study in which 20 students were asked to 

measure the focal length of a lens, where f was not well-defined over a 4-mm range (Sere, 

Journeaux et al. 1993).  Even though these students recognized that a variety of factors contribute 

to the uncertainty in the focal length, only one group attempted to account for these factors in their 

evaluation of the uncertainty.  

An attempt was made to confirm the findings from the French study by asking a similar 

question on the Lab Practicum given to the NCSU and UNC students.  The students were told to 

use a light ray box (which can produce 5 parallel light rays) to measure the focal length of a 

diverging lens with less than 5% uncertainty in the measurement.  The accepted answer (based on 

careful measurements and analysis of the TA responses) was f = -12.5 ± 0.5 cm, which has a 

relative uncertainty of 4%.  A summary of the responses given by the students and TAs is provided 

in Table 4-9. 

Table 4-9.  Uncertainty values reported for the focal length of a lens  

Uncertainty 
(cm) 

NCSU 
Students 

NCSU 
TAs 

UNC 
Students 

UNC 
TAs 

0.5 n = 2/28 n = 3/5 n = 10/19 n = 2/6 

0.8  1   
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0.5 1    
0.3    1 
0.2   1  
0.24   1  
0.225   1  
0.10  1 2 1 
0.05 1 1 3  
0.01   2  

     
Correct f value? 2 (7%) 3 (60%) 2 (10%) 3 (50%) 

f < 0 ? 0 0 5 (26%) 0 
units reported? 26 (93%) 5 (100%) 17 (89%) 6 (100%) 

 

The student response rate for reporting an explicit uncertainty was quite low on this question, 

especially given that the question directly stated that the uncertainty of the measurement should be 

less than 5% (implying that an uncertainty value be reported). Only 2 out of the 28 NCSU students 

reported an explicit uncertainty, while about half of the UNC students and both groups of TAs 

showed uncertainty values.  Even more surprising is that only about 10% of the students 

successfully reported a focal length measurement that was within 1 cm (2σ, or 10%) of the 

accepted value, and only about half of the TAs did so.  We should note that none of the students 

or TAs reported the focal length to be negative as required for a diverging lens.  The only 

successful part of this question was that over 85% of the students and all of the TAs included units 

with their reported values (although 5 of the NCSU students reported mm when they meant cm). 

From these poor performance results, it is clear that there are more fundamental issues at stake 

than the more esoteric matter of correctly reporting uncertainty values. 
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4.5.1 Relative Uncertainty and Significant Figures 

Even when an explicit uncertainty is not reported with a measured value, the number of 

significant figures implies a certain degree of precision.  More specifically, the implied precision is 

based on the assumption that the last reported digit is uncertain.  This uncertainty may be ± 0.5 or 

± 1 last digit depending on the context (Taylor 1997). 

Table 4-10.  Correspondence between significant figures and relative uncertainty 

Sig. 
Figs. 

 
Value 

Implied 
Uncertainty 

Implied Relative 
Uncertainty 

1 1 ± 0.5 or ± 1 50% or 100% 
1 9 ± 0.5 or ± 1 5% or 11% 
2 10 ± 0.5 or ± 1 5% or 10% 
2 99 ± 0.5 or ± 1 0.5% or 1% 
3 100 ± 0.5 or ± 1 0.5% or 1% 
3 999 ± 0.5 or ± 1 0.05% or 0.1% 

 
 
 The number of significant figures reported in the uncertainty of a measurement should 

accurately reflect the appropriate confidence of the uncertainty estimate. The precision of the 

uncertainty value is limited by the lowest precision factor that contributes to the overall estimate of 

this value.  In many cases, an uncertainty estimate can only be known with about 50% confidence, 

which means that this value should be reported with only one or two significant figures.  Even if the 

uncertainty is represented by the standard deviation of the mean, a very large sample size (n > 10 

000) would be needed to justify the use of more than two significant figures. This practice of 

reporting uncertainties to only one or two significant figures is consistent with nearly all of the error 

analysis sources referenced in this study. 

Table 4-11.  Relative uncertainty of the sample standard deviation 

   Valid  
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n Exact 1/sqrt[2(n-1)] Sig. Figs. Implied Uncertainty 
2 76% 71% 1 10% to 100% 
3 52% 50% 1 10% to 100% 
4 42% 41% 1 10% to 100% 
5 36% 35% 1 10% to 100% 
10 24% 24% 1 10% to 100% 
20 16% 16% 1 10% to 100% 
30 13% 13% 1 10% to 100% 
50 10% 10% 2 1% to 10% 
100 7% 7% 2 1% to 10% 

10000 0.7% 0.7% 3 0.1% to 1% 
Source:  ISO Guide to the Expression of Uncertainty in Measurement, 1993. 
 
The approximate expression for the relative uncertainty of the standard deviation for a sample of 

size n is: 

)1(2

1

−
=

nσ
σσ  

From the figures in the above table, the approximate and exact expressions for the uncertainty of 

the standard deviation are essentially equivalent for n > 5. 

4.5.2 Lab Practicum Question on Relative Uncertainty 

Cognitive insights about relative uncertainty were gathered from both NCSU and UNC 

students and TAs who took the Lab Practicum that was administered at these schools.  One 

particular question directly asked students to explore the connection between the number of 

significant figures and the relative uncertainty implied by a number. The question and responses are 

provided below: 

 
The number of significant figures reported for a measured value suggests a certain degree of 
precision.  What is the relative uncertainty implied by the following numbers?  

a)  0.20   implies an uncertainty of  ± _______ % 
b)  9.8 implies an uncertainty of  ± _______ % 
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c)  40 implies an uncertainty of  ± _______ % 
d)  0.103    implies an uncertainty of  ± _______ % 

Table 4-12.  Relative uncertainty responses for UNC and NCSU students 

0.20 
 

(%) 

9.8 
 

(%) 

40 
 

(%) 

0.103 
 

(%) 

Rationale NCSU 
TAs 
n = 8 

NCSU 
Stud. 
n = 23 

UNC 
Tas 

n = 16 

UNC 
Stud. 
n = 61 

5 1 2.5 1 (±±  1 last digit)/value  1 0 11 15 
5 1 0.25 1     1 
5 2 2.5 1  1    
5 10 2.5 1  1   1 
5 10 20 1   1   
5 10 100 0.5  1    
5 5 10 2.5   1   

0.05 0.01 0.25 0.01     1 
0.05 0.2 1 0.003     1 
0.05 0.01 0.03 0.01     1 
0.05 0.01 0.03 0.029     1 
2.5 0.51 1.25 0.485 (±±  1/2 last digit)/value    1 2 
2.5 0.5 1.25 0.049     1 
2.5 0.5 1.2 1.5    1  
2.5 0.5 12.5 0.48  1    
25 0.51 12.5 4.85     1 
25 0.51 10 4.85 :    1 
25 2.56 12.5 2.43     1 
25 5.1 12.5 4.85  1    
2.5 10 25 5   1   

1-10 1-10 1-100 0.1-1 sig. fig. table in lab manual   3 15 
1 5 1 1     1 
10 1 0.1 0.1     1 
1 10 200 0.1     1 

0.01 0.1 1 0.001 absolute uncert. in last digit  2  5 
0.01 0.1 10 0.001   1  3 
0.01 0.1 10 0.0001   1   
0.1 1 10 0.01   2   

0.01 1 10 0.001   1   
0.1 0.1 10 0.01   1   

0.01 0.1 0 0.001     1 
0.1 10 1 0.1     1 
0.1 1 2.5 0.9   1   
0.1 4.9 20 0.0515   1   

0.005 0.05 0.5 0.0005 half of last digit 2 1   
0.05 0.5 5 0.005 ± 5 in last sig. fig.    2 
0.01 0.05 0.5 0.005     1 
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10 10 20 5   1   
10 100 1000 0   1   
10 30 90 5   1   
20 5 2.5 5   1   
20 40 0 50   1   
20 980 4000 10.3 percent equivalent of value?    1 
2 98 100 1.03     1 

0.02 0.98 1 0.001   1   
20 10 0 30  1    
71 71 100 50 1/sqrt(n-1), n = # sig. figs.    1 
47 58 7 100   1   
1 10 10 0.1   1   

Table 4-13.  Relative uncertainty responses for 1st and 2nd semester UNC lab students 

0.20 
 

(%) 

9.8 
 

(%) 

40 
 

(%) 

0.103 
 

(%) 

Rationale UNC 
TAs1 
n = 10 

UNC 
Stud.1 
n = 38 

UNC 
TAs2 
n = 6 

UNC 
Stud.2 
n = 23 

5 1 2.5 1 (±±  1 last digit)/value  5 10 6 5 
5 1 0.25 1   1   
5 10 2.5 1   1   

0.05 0.01 0.25 0.01   1   
0.05 0.2 1 0.003   1   
0.05 0.01 0.03 0.01     1 
0.05 0.01 0.03 0.029     1 
2.5 0.51 1.25 0.485 (±±  1/2last digit)/value  1 1  1 
2.5 0.5 1.25 0.049     1 
2.5 0.5 1.2 1.5  1    
25 0.51 12.5 4.85   1   
25 0.51 10 4.85   1   
25 2.56 12.5 2.43   1   

0.05 0.5 5 0.005 ± 5 in last sig. fig.    2 
0.01 0.05 0.5 0.005     1 
0.01 0.1 1 0.001 absolute uncert. in last digit  5   
0.01 0.1 10 0.001   1  2 
0.01 0.1 0 0.001   1   
0.1 10 1 0.1   1   

1-10 1-10 1-100 0.1-1 sig. fig. table in lab manual 3 6  8 
1 1 1 0.1   1   
1 5 1 1   1   
10 1 0.1 0.1   1   
1 10 200 0.1     1 
20 980 4000 10.3 percent equivalent of value?  1   
2 98 100 1.03   1   
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71 71 100 50 1/sqrt(n-1), n = # sig. figs.  1   
 

There were no significant differences at the α = 0.05 level in the proportion of responses 

from the first and second semester UNC students.  However, there were significant differences 

among the groups of TAs who answered this question correctly.  None (0/8) of the TAs from 

NCSU gave correct values for the relative uncertainties, while over half (11/16) of the TAs from 

UNC correctly answered this question (p = 0.004).  The difference in responses from these groups 

could be explained by the differing emphasis and exposure to this particular concept in the curricula 

at the two schools.  What is most interesting is that there may also be a difference (p = 0.09) 

between the UNC TAs who taught the first and second semester lab courses.  Despite the fact that 

the first semester lab TAs had studied and answered this same question during their training session 

at the beginning of the semester, only 6 out of 10 answered this question correctly, while all (6/6) of 

the experienced TAs who taught the second-semester labs supplied the correct answer.  Even with 

the small sample sizes, the difference between these proportions is significant at the α = 0.10 level.  

It is also surprising that more of the NCSU and second-semester UNC students did not 

correctly answer this question because most of these students had used WebAssign for submitting 

their physics homework assignments. WebAssign is an on-line homework delivery system that 

directly confronts students with the connection between significant figures and relative uncertainty 

since the default setting only accepts numerical answers within 1% of the internally calculated value.  

This 1% tolerance means that students must submit numerical answers with at least 2 or 3 

significant figures.  Evidently, this connection was either not well understood by these students, or 

the question on the Lab Practicum was confusing. 
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Students’ failure to recognize the connection between significant figures and relative 

uncertainty can be understood partially from previous research that has examined difficulties 

students have in understanding ratios and proportions (Arons 1990). The findings from this study 

confirm that students have greater difficulty thinking in terms of proportions than absolute measures.  

4.5.3 Propagation of Uncertainty in Calculations 

The uncertainty in a calculated value depends on the uncertainties associated with each 

term used to compute the result. A conservative but simple method of estimating the uncertainty in 

a result can be found by computing the maximum and minimum values based on the uncertainties of 

each term (this is sometimes known as the “max-min method”). The proper method of computing 

the uncertainty in a calculated result is to add the variances of the input quantities according to the 

propagation of uncertainty equation (see Section 2.1). This process of computing uncertainty values 

can be tedious and time consuming, but the calculations can often be simplified by ignoring terms 

that do not significantly contribute to the total uncertainty.  An “error budget” can be compiled by 

listing each of the uncertainty factors and ranking them according to how much each contributes to 

the overall uncertainty (see Table 4-18).  This technique facilitates identification of the primary 

source of uncertainty in a result; however, it is rarely performed by students or even instructors. 

Based on interview results, students generally do not recognize that the “rules of significant 

figures” for addition and multiplication are simply a quick and easy way to estimate the precision of 

a calculated result from the errors that propagate from the original data.  These rules can be stated 

as follows: 

When adding or subtracting measurements, the result should be rounded to the same 
number of decimal places as the number with the lowest precision (fewest decimal places). 
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When multiplying and dividing, the number of significant figures that are reliably known in a 
product or quotient is the same as the smallest number of significant figures in any of the 
original factors. 

 
While these rules of significant figures are an efficient means of propagating uncertainty and 

estimating the appropriate degree of precision in many calculations, they are not valid for 

mathematical functions like exponentials, logorithms, and trigonometric functions. 

 One of the questions on the Lab Practicum required students to find the uncertainty of a 

calculated result based on the uncertainties given for two independent factors: 

A student performs a simple experiment to find the average acceleration of a falling object.  
He drops a baseball from a building and uses a string and meter stick to measure the height 
the ball was dropped.  He uses a stopwatch to find an average time of fall for 3 trials from 
the same height and reports the following data:   
h = 5.25 ± 0.15 m,  t = 1.14 ± 0.06 s. 
 
Use the equation a = 2h/t2 to determine the average acceleration and its uncertainty. 
 
Answer using propagation of uncertainty:  a = 8.1 ± 0.6 m/s2 
Answer using max-min method:  a = 8 ± 1 m/s2 

Table 4-14.  Uncertainty reported for acceleration of falling ball 

uncertainty 
value 

reported 

NCSU 
Students 
n = 22/36 

NCSU 
TAs 

n = 7/7 

UNC 
Students 
n = 34/40 

UNC 
TAs 

n = 10/10 
< 0.02 1  3  
0.06 1  7  

0.07, 0.08 2  3  
0.11 1  3  
0.2 3    

0.3, 0.33 1 1 3  
0.5    1 
0.6 2  1 4 

0.7, 0.8 2 2 1 2 
0.88, 0.9  1 10 3 

1, 1.1 3 3   
> 1.2 4  3  
other 2    

% correct 19% 86% 30% 90% 
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The correct response rate of 30% for the first-semester UNC students is slightly higher than (but 

not statistically different from) the 19% correct response rate of the first-semester NCSU students.  

However, both of these student groups performed at a level significantly below the ~90% correct 

response rate of their lab TAs.  This suggests that practice and experience with propagating 

uncertainties does make a difference, but a single semester is not sufficient to master this skill.  

4.5.4 Uncertainty in slope and y-intercept from linear regression 

Even though the issue of determining the slope from a linear regression was not a strong 

concern that emerged from the Expert Survey (this topic was only mentioned once), it is an issue 

that is commonly encountered in introductory physics laboratory experiments.  Therefore, two 

questions on the Lab Practicum were designed to address this concept.  For each question, 

students were given a set of non-linear data (distance versus time for a car that is accelerating, and 

voltage versus time for a charging capacitor).  The students were instructed to analyze the data to 

find either the acceleration or the time constant.  Unfortunately, fewer than 10% of the students 

(and only about 25% of TAs) analyzed these data sets correctly, so it was not possible to 

investigate how students treated the uncertainty in the slope of a linear regression fit for these 

problems.  These exercises clearly demonstrate that students do not have the skills needed to 

decide how to analyze a set of data (this procedure is usually specified for students in their lab 

manuals – “plot a graph of velocity versus time”).  While the issue of determining the uncertainty in 

the slope is important for drawing conclusions, it is secondary compared to the more fundamental 

task of finding a reasonable estimate of the intended result. 
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 Despite the lack of student data for this topic, a brief discussion is warranted to address the 

determination of the uncertainty in the slope and y-intercept from a linear fit.  If students graph their 

data by hand, the uncertainty in the slope can be estimated by drawing linear fits with the maximum 

and minimum slopes that appear to reasonably fit the general trend of the data.  The uncertainty is 

then half this range in the slope value (Baird 1995).  Likewise, the uncertainty in the y-intercept can 

also be estimated as half the range in the intercept values for the maximum and minimum slope fits.  

The easiest and most accurate method for students to find the uncertainty in the slope and y-

intercept is from a software program that automatically computes and reports these values.  Several 

such programs are widely used in introductory physics labs (e.g., Graphical Analysis and Logger 

Pro by Vernier; Science Workshop and Data Studio by Pasco).  Some data analysis programs, 

like Excel, report the correlation coefficient, r or r2, instead of the standard error of the slope and 

y-intercept.  For a linear fit of the equation, y = a + bx, to a set of n data points, the standard 

error of the slope b and the y-intercept a can be found from the correlation using the following 

formulas (Lichten 1999): 

2
1)/1( 2

−
−

=
n
r

bbσ      and     
n
x

ba

2Σ
= σσ  

Determination of the uncertainty in a power-law fit or other non-linear least squares fits are beyond 

the scope of this study since these more complex procedures are not even addressed in many of 

the reference books on introductory error analysis. 

4.6 Identifying Sources of Error 

Measurement errors result from a variety of sources that include the precision and accuracy 

of the measuring instrument, the ability of the experimenter to read and interpret the measurement, 
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and the uncertainty inherent in the phenomenon being measured.  As instructed in the ISO Guide, 

all of the known sources of error should be included in the overall estimate of the uncertainty of a 

single measurement.  However, as stated earlier from the French study (Sere 1993), students tend 

to focus on the instrument precision when specifying the uncertainty in a measurement.   Students 

also seem to believe that more expensive or high-tech instruments may reduce or eliminate 

experimental error (Soh, Fairbrother et al. 1998).  This sentiment is supported by one NCSU 

student in this study who reported that “there was no error in our experiment because we used a 

computer to collect and analyze our data.” 

4.6.1 Accuracy of Typical Physics Laboratory Equipment 

Before discussing student views on the sources of error, it is logical to first examine the 

precision and accuracy that can be expected of measuring instruments that students typically 

encounter in an introductory physics lab.  To this end, I conducted a cursory investigation of the 

physics laboratory equipment available to NCSU and UNC students.  The precision of each 

instrument was based on its resolution.  The accuracy was determined from technical specifications 

in catalogs, owners manuals, NIST calibrated standards, or a conservative estimate from the 

typical relative precision of the instrument.  In general, these values can only be estimated to the 

nearest order of magnitude, because various grade instruments are available and most instruments 

can measure values over a range that is at least one order of magnitude. 

Table 4-15.  Typical uncertainty values for common physics laboratory equipment 

Dimension Instrument Typical 
Precision 

Typical 
Accuracy 

Common Limiting Error 
Factor 

time digital stopwatch 0.01 s  1 to 10 ppm* reaction time (~0.2 s) 
time photogate 0.001 s 0.01% data processing 

length meter stick 0.5 to 1 mm <0.5% visual resolution 
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length Vernier calipers 0.05 to 0.1 mm 0.1% misreading scale 
length micrometer 0.001 mm 0.01% failure to zero, misusing 
mass electronic balance 0.01 to 0.1 g 0.1% calibration 
mass triple beam balance 0.1 g 0.1% calibration 
mass brass mass sets 1 g 0.1% calibration 

volume graduated cylinder 1 to 10 mL 1% to 5% calibration 
frequency signal generator 3 to 4 digits 0.1 to 1% calibration 
voltage multimeter 1 to 4 digits 1% calibration 
V, freq. oscilloscope  2 digits 1% to 3% visual resolution, calib. 
current multimeter 1 to 4 digits 1% to 5% calibration 

resistance multimeter 1 to 4 digits 1% to 3% extra resistance, calib. 
capacitance capacitance meter 1 to 3 digits 5% to 15% calibration 
inductance LCR meter 1 to 3 digits 5% to 15% calibration 
mag. field Hall probe 2 digits 5% calibration 

*ppm = parts per million (1 ppm = 0.0001% accuracy) 
 

From the above table, it is clear why very few introductory physics experiments yield results 

with less than 1% error.  The uncertainty of many of the above measurements is limited by the 

accuracy of the device, not the precision (resolution).  This means that students are often 

confronted with situations where the measurement they obtain is more precise than it is accurate.  A 

notable exception is for time measurements. Quartz crystal resonators are now widely used in most 

timing devices, and even though they are inexpensive, they provide measurements that are several 

orders of magnitude more accurate than any other common lab equipment.  It is interesting then, 

that so many students (and reference books) mention the accuracy of a timer as a likely source of 

error:  “Another source of error is that our stopwatch was not accurate [it ran too fast or slow].” – 

quote from student 
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4.6.2 Sources of Error Reported for Nickel Coin Experiment 

One part of the Lab Practicum asked students to decide if nickel coins are made of pure 

nickel based on their measured density.  The actual text from this exercise is provided here, along 

with a summary of the responses to this exercise. 

Use a Vernier caliper and a balance to measure the density of a nickel coin.  Does your 
density value match (agree with) the density of pure nickel? (ρnickel = 8.912 g/cm3).  From your 
measured density, can you determine whether nickel coins are made of pure nickel?  Which of 
your measurements contributes the most error to your measured density value? 
 

Table 4-16.  Measured density of nickel coins  

 
Density 
(g/cm3) 

NCSU 
Students 

(n = 32/36)1 

NCSU 
TAs 

(n = 7/7) 

UNC 
Students 

(n = 36/40) 

UNC 
TAs 

(n = 10/10) 
Average 10.6 6.8 7.5 7.0 
Median2 7.2 7.1 7.1 7.2 
Maximum 70.3 7.5 48.4 9.2 
Minimum 0.6 4.4 3.2 1.2 
Std. Dev. 16.5 1.1 7.2 2.1 

1Some samples had less than 100% response rate. 
2Best estimate measured by author: 8.8 ± 0.4 g/cm3. 

 
 A surprisingly wide range of density measurements was reported for this exercise.  The 

outliers in the student samples especially skewed the average density values for these groups, so 

the median values are more representative of values typically reported.  These median values are 

consistent (within 2% of each other) across all four sample groups, yet these median values are 

about 20% lower than the density of nickel coins based on their composition.  The reason for this 

dramatic discrepancy is discussed below. 

Table 4-17.  Are nickel coins made of pure nickel? 

 
Answer 

 
Reasoning 

NCSU 
Students 

(n = 27/36) 

NCSU 
TAs 

(n = 6/7) 

UNC 
Students 

(n = 32/40) 

UNC 
Tas 

(n = 8/10) 
no none 16 (59%)  3 (50%) 26 (81%) 4 (50%) 
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no density too low 4 (15%) 2 (33%) 3 (9%) 4 (50%) 
no cost 2 (7%)    

probably not density too low  1 (17%) 2 (6%)  
maybe  1 (4%)    
not sure  4 (15%)  1 (3%)  

yes  0 0 0 0 
According to the U.S. Mint, nickel coins are 25% nickel and 75% copper.  So even though the best 
estimate of the measured density of the nickel coins (8.8 ± 0.4 g/cm3) matches the density of pure 
nickel, we can not conclude that these coins are made of pure nickel because any number of 
combinations of metals could yield the same density (as is the case here).  However, if the measured 
density of the coin was significantly different than 8.912 g/cm3, then we could conclude that the coin 
was not pure nickel. 

 
 

Table 4-18.  Sources of error reported for measuring the density of a nickel coin 

 
Source of 

Error 

Actual 
Error 

Contribution 

NCSU 
Students 

(n = 27/36) 

NCSU 
TAs 

(n = 8/7) 

UNC 
Students 

(n = 27/40) 

UNC 
TAs 

(n = 7/10) 
thickness (height) 5% to 20% 4 (15%)* 3 (38%) 16 (42%)* 3 (43%) 
diameter (radius) 0.5% to 1% 5 (19%) 2 (25%) 6 (16%) 1 (14%) 

mass 0.1% to 2% 11 (41%)* 3 (38%) 6 (16%)* 3 (43%) 
volume  2 (7%)  2 (5%)  

reading caliper  1 (4%)  4 (11%)  
measurement error  2 (7%)  2 (5%)  

human error  2 (7%)  1 (3%)  
parallax    1 (3%)  

* statistically significant difference between student groups at the α = 0.05 level. 

The most popular source of error specified by the UNC students was the thickness (height) 

of the nickel coin.  This source of error clearly contributes the most to the total uncertainty in the 

density calculation because of the indentations on the front and back faces of the coin.  Many of 

these students correctly recognized and stated this fact in response to the question about the 

primary source of error. The NCSU students, however, stated the thickness at a significantly lower 

rate (p = 0.028) and instead primarily believed that the mass measurement contributed the most to 

the overall uncertainty in the density.  One possible reason for this difference is that the NCSU 

students used a triple-beam balance to weigh the nickel coins, while the UNC students used a 
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digital electronic balance.  Even though both of these instruments had the same resolution 

(precision) of 0.1 g, there appears to be a perception by the students that the analog instrument is 

less accurate than the digital balance.  A more carefully designed experiment with a randomly-

assigned split sample would be needed to confirm this observation since the difference here is 

between sample groups. 

It is rather surprising that even though a significant fraction of the students recognized that the 

raised surfaces on the coins are a source of error, nearly all of the students and TAs in this study 

failed to account for this factor in their calculation of the density.  As a consequence, all but three 

students’ density values were unreasonably low due to the inaccurate thickness measurement.  This 

systematic error resulted in about 90% of the students and TAs concluding that nickel coins are not 

made of pure nickel, and none stating that the coins are pure nickel. While it is true that nickel 

coins are 25% nickel and 75% copper (according to the U.S. Mint), the average density of this 

nickel alloy is 8.92 g/cm3, which is indistinguishable from the density of pure nickel (8.912 g/cm3) 

(Weast 1988). Since the relative uncertainty of the measured density is at least ± 5%, it is 

impossible to resolve the 0.1% difference in densities with this measurement procedure.  Despite 

the fact that nickel coins should appear to be made of pure nickel based on their density, only two 

out of the 76 students in this study stated that nickel coins might be pure nickel. 

One additional observation from this analysis is that even though “human error” appeared 

several (3) times as a source of error, it was not nearly as popular a response as is perceived by 

laboratory instructors who regularly complain about students using this vague explanation in their 

lab reports. 
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4.6.3 Sources of Error from Student Laboratory Reports 

Student laboratory reports were examined to determine if students could identify the primary 

source of error in an experiment.  After only a brief period of investigation, it became obvious that 

this question could not be clearly answered because students generally did not identify the single 

most important source of error.  Instead, they tend to cite a “laundry list” of all possible factors that 

could contribute to the experimental uncertainty, perhaps hoping that at least one of these might be 

valid and satisfy the lab instructor who is grading the report.  Unfortunately, many of these 

supposed sources of error were not relevant to the experiment or did not adequately explain the 

observed difference between the experimental and predicted results.  Nearly all students fail to give 

quantitative arguments for the sources of error they list.  Instead, these factors tend to be based on 

the students’ “feel” for the experiment (as verified in student interviews).  Nowhere in this entire 

study did a single student (or TA) provide an error budget which lists the sources of error along 

with a numerical estimate of each contribution to the total experimental uncertainty (as 

demonstrated in the ISO Guide and many NIST publications).  Such detailed uncertainty analysis is 

not warranted for most introductory physics experiments; however, exposure to simple uncertainty 

budgets might be a useful tool for giving students a clearer understanding of which factors 

contribute the most to the total uncertainty. 

4.7 Use of Uncertainty for Comparing Results 

One of the most important reasons for determining the uncertainty of an experimental result 

is to provide a meaningful way to compare the result with other similar values.  By comparing 

results, researchers can decide if an experimental result agrees with a theoretical prediction, or if 

results from similar studies are consistent with each other.  While it is important to be able to 
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compare experimental results with known uncertainties, it is not trivial to do so because of the 

inherent uncertainty in the measurements.  Even when there is a prescribed procedure for deciding 

when results do or do not agree, the evaluation may not be reliable since the procedures for 

evaluating and reporting the uncertainties vary among experimenters (see Table 2-1).  Judging the 

agreement between uncertain results is also challenging because evaluation is the highest level of 

cognitive reasoning: 

Bloom’s Taxonomy of the Cognitive Domain (Bloom 1956) 

1. Knowledge – memorization of facts, words, and symbols 
2. Comprehension – understanding the meaning of knowledge 
3. Application – applying concepts to various situations 
4. Analysis – breaking apart complex ideas 
5. Synthesis – putting individual ideas together to form a complete explanation 
6. Evaluation – making decisions and judging the merits of ideas 

 
As Benjamin Bloom asserts, reasoning at the higher cognitive levels (analysis, synthesis, and 

evaluation) requires an understanding at the lower levels.  This hierarchy can explain why students 

struggle to make valid conclusions when evaluating empirical data.  If they do not have the skills 

and experience necessary to comprehend and analyze their results, then the process of evaluation is 

nearly impossible.  

The research for this section was driven by the following questions: 
  

1. How does the evaluation process of students differ from that of experts? 
 
2. What criteria do students use to decide whether two results agree? Do students consider 

the spread of the data, the average, or both when deciding? Students often say that results 
agree if they are “close”.  Does their judgment depend on the number of significant figures, 
the magnitude, relative difference, or something else? 

 
3. Is there a particular representation that helps students correctly decide on agreement? 
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4.7.1 Criteria for Judging Agreement 

 The experts and reference sources on error analysis do not agree on the criteria used to 

decide if two results are consistent with each other.  In fact, some references (e.g. ISO Guide, 

Bevington) do not even address this critical issue and leave the judgment to the reader.  One simple 

criterion is that results are consistent when their uncertainty ranges overlap, and they are discrepant 

when their uncertainty ranges are not close to overlapping (Taylor 1997).  This “overlap criterion” 

also emerged as the most common viewpoint among the 25 experts who responded to the 

Measurement Uncertainty Survey and 12 new graduate Teaching Assistants in the Department of 

Physics and Astronomy at UNC-CH (see table). 

 Table 4-19.  Expert criteria for deciding agreement between measurements 

 
Criteria 

Expert Survey 
Respondents 

(n = 25) 

UNC 
TAs 

(n = 12) 
if uncertainty ranges overlap 10 8 

if 1σ overlap 4  
less than 2 standard errors 3 1 

if difference < 3 σ   1 
use t-test (with pooled variances) 3  

not sure 2 1 
other 3 1 

 

 A short survey was designed to further analyze students’ criteria for agreement between 

measured values.  This Data Comparison Survey (Appendix K) was administered to two small 

groups of TAs (n = 11) and students (n = 12) at UNC.  Four measured values with uncertainty 

were presented in the survey, and respondents were asked to decide if each pair agreed with each 

other.  These values and uncertainties were carefully selected so that the six possible combinations 

span the various degrees of overlap.  A graphical representation of the data with error bars was 
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also shown on the survey.  Normalized Gaussian distributions that correspond to each measured 

value are shown here for comparison purposes (but were not shown on the survey). This Data 

Comparison Survey addressed two main questions:   

1) When do two measurements with known uncertainties agree with each other? 
2)  What representation is most helpful for deciding whether results agree or disagree?   

 
This second question was answered directly, and a clear majority of students (8/11) responded 

that the graphical representation with error bars was the preferred notation. It is quite interesting 

then that none of the 200+ students in this study ever drew such a graph to help them evaluate 

whether two values overlapped. This observation is consistent with the study by Sere, et al. (1993) 

where none of the 20 students drew a graph to compare the values and the uncertainty intervals. 
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C = 11 ±±  4 
D = 17 ±±  3 

 
 

 

Figure 4-3.  Comparison of results with error bars 

 
 

Figure 4-4.  Corresponding Gaussian distributions 

   Note:  This figure was not shown on the survey. 

 

Students and TAs were allowed approximately ten minutes to consider their answers to 
each question and write them on the survey.  A summary of their responses is shown in  
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Table 4-20.  Do these measurements agree? 

UNC 
Students 

UNC 
TAs 

 
Comparison 

 
Degree of Overlap 

p-value 
from 
z-test Y N ? Y N 

B = C? Ranges overlap both midpoints 0.76 9 1 1 10 0 
B = D? One midpoint within other range 0.49 4 3 5 10 0 
C = D? Ranges overlap but not midpoints 0.23 3 6 3 9 2 
A = C? Ranges meet but no overlap 0.18 3 5 4 5 4 
A = B? Almost overlap 0.14 0 12 0 0 11 
A = D? No overlap 0.001 1 11 0 0 11 

Y = yes, they agree;  N = no, they do not agree;  ? = not sure, more information needed 

From the above table, the criteria for agreement between two results appear to depend on the 

degree of overlap between the uncertainty ranges.  This criterion is more clearly defined in the 

responses from the TAs than in those of the students, who were more likely to say that an 

overlapping pair did not agree, but who were also more uncertain of their answers (a closer 

examination of the student criterion is presented in section 4.7.3).   The borderline case is where 

the ranges just meet but do not overlap, as seen from the 5 to 4 split in opinion from the TA 

respondents.  This borderline case is examined in the following section. 

4.7.2 Overlapping Uncertainties versus t-test 

While it is easy to identify uncertainty ranges shown by error bars that do or do not 

overlap, this criterion for agreement has several hidden complications that make it much less clear 

than might be expected.  An uncertainty value can represent a variety of different meanings, so an 

evaluator must ask a few basic questions:  What confidence interval does each uncertainty 

represent?  Do the error bars indicate some multiple of the standard deviation, the standard error, 

or the standard uncertainty?  How many degrees of freedom are associated with each uncertainty, 

or what was the sample size? Are the uncertainties of the measurements being compared similar in 
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size, or is one much bigger than the other?  Is it appropriate to assume that the point estimates 

come from normal population distributions? Are the measurements correlated so that the 

uncertainties are not independent of each other?  Each of these factors can affect the conclusion 

made from a comparison between two values and their uncertainty. 

When conducting statistical hypothesis tests, two point estimates are considered 

significantly different if the test statistic indicates sufficient evidence against the null hypothesis 

(Ho) that the two values are equal.  This evidence is given by the probability (p-value) that the test 

statistic would take a value as extreme or more extreme than the actually observed outcome, if Ho 

were true (Moore 1995).  If the p-value is as small or smaller than a specified significance level α, 

then the data are statistically significant at level α.  A common significance level for general 

hypothesis testing is α = 0.05 (Agresti and Finlay 1997). Some experts say that if the p-value is 

less than 0.01, there is a highly significant difference between the values (Taylor 1997).  The z-

test statistic is used with the standard normal distribution to compare two mean scores with known 

variances.  An interesting question then arises:  Is the z-test statistic with a significance level of α = 

0.05 consistent with the overlap criterion? Answering this question requires two key assumptions: 

1. The measurement uncertainty represents the 68% confidence interval corresponding to 
x ± 1σ. 

2. The sampling distribution for x is approximately normal (not skewed). 
 
A z-score is the difference between the results divided by the pooled standard error, which is then 

used with the standard normal distribution to find the two-tailed probability that z could be greater 

than the absolute value of this observed statistic. 

2
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The p-values corresponding to each of the six possible pair-wise comparisons from the 
Data Comparison Survey are listed in  

 

 

 
Table 4-20.  These probability values were calculated based on the assumption that the midpoint is 

a mean and the uncertainty is a standard error. The borderline case where the uncertainty ranges 

barely overlap corresponds to a p-value of about 0.2 (actually 0.16 to 0.32 depending on the 

relative uncertainty of each value). This means that the overlap criteria used to determine agreement 

will result in a Type I decision error occurring about 20% of the time, which is more frequent than 

the typical α = 0.05 significance level that is used for comparing mean values in statistical 

hypothesis testing.  (A Type I error occurs when a researcher concludes that two values are 

significantly different when in fact they are not.)  From the range of p-values, it appears that the α = 

0.05 cutoff approximately corresponds to the situation where the ± 1σ uncertainty ranges come 

close to overlapping, but do not meet.  

Since there appears to be a common belief that experimental values agree if their 

uncertainty ranges overlap, it might be reasonable to suggest that a certain coverage factor k be 

used to expand the experimental error bars to be consistent with the widely-used α = 0.05 

significance level.  As stated earlier, if the error bars represent ± 1σ, then a Type I error will be 

made about 20% of the time.  However, the risk of a Type I decision error could be reduced to α 

= 0.05 if the error bars represent ± kσ, such that when the error ranges barely overlap, the 

corresponding z-test probability would be 0.05.  The z-statistic that corresponds to a probability of 
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p = 0.05 for a two-tailed hypothesis test is z = 1.96.  Therefore, to find the appropriate value for k, 

we use the condition that: 

96.1
2

2
2

1

21 =
+

+
=

σσ

σσ kk
z  

The desired value of k then depends on the relative magnitude of each uncertainty, and the limiting 

cases occur when the uncertainties are equal in size or when one of the uncertainties is zero.  These 

two extremes yield a desired range of:    

k = 1.39 (when σ1 = σ2)   to   k = 1.96  (when σ1 = 0 or σ2 = 0) 

Since this range is closer to k = 2 than k = 1, it seems that scientific or industrial disciplines which 

report uncertainties as ± 2σ  are more consistent with accepted statistical interpretations than are 

disciplines like physics where uncertainties are typically quoted as ±1σ  (see Table 2-1).  It is 

interesting to note that the ISO Guide to the Expression of Uncertainty in Measurement does 

not specify a particular coverage factor that should be used for an expanded uncertainty, but 

mentions that values of k = 2 or 3 are common, since they correspond to approximately 95% and 

99% confidence intervals for an assumed normal distribution. 

 A recent article in The American Statistician (Schenker and Gentleman 2001) examined 

this issue of evaluating the significance of differences between two point estimates by comparing the 

overlap between their 95% confidence intervals with the standard method of testing significance 

under the assumptions of consistency, asymptotic normality, and asymptotic independence of the 

estimates.  The “standard method” rejects the null hypothesis at the 0.05 level if the 95% 

confidence interval for the difference between the point estimates does not contain 0.  This 

difference interval is computed as follows: 
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where x1 and x2 are the point estimates, and σ1 and σ2 are the standard errors associated with 

each point estimate.  The “overlap method” rejects the null hypothesis at the 0.05 level if the 95% 

confidence intervals for each point estimate do not overlap.  The nominal 95% confidence intervals 

for each point estimate are given by: 
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If these confidence intervals overlap, then there is no significant difference between the estimates.  

The authors of this article conclude that the overlap method has lower statistical power than 

the standard method, especially when the point estimates have similarly-sized standard errors. If the 

null hypothesis is true according to the standard method (no significant difference), the overlap 

method rejects the null hypothesis less often (is more conservative).  If the null hypothesis is false 

according to the standard method (a significant difference does exist), the overlap method fails to 

reject the null hypothesis more frequently (is more conservative; lower power).  The overlap 

method approaches the standard method in the limit as one point estimate has a standard error that 

is much less than the other (assuming that the 95% confidence limits are employed).  The authors 

acknowledge that the overlap method is simple and often convenient, but they conclude that the 

overlap method should not be used for formal significance testing.  However, the analysis in this 

article only considers a 95% confidence interval for each point estimate.  As discussed earlier in 

this section, a 68% confidence interval is most often used in physics, and this tends to have the 

opposite effect of having a Type I error more often than would occur with the standard method and 

α = 0.05. 
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This article only examined the case for large sample sizes where the standard error is fairly 

well known.  However, introductory physics labs often have small sample sizes (generally n = 1 to 

10 data points), so the error (or uncertainty) in a measurement is not well known.  In such cases 

where assumptions of normality are not met, the standard method may not be valid and the overlap 

method is better justified since no judgment about significant differences can be made with high 

confidence.  For example, with only 5 data points, the Student’s t-statistic that corresponds with an 

α  = 0.05 is t = 2.25 when σ1 = σ2.  In this case, a confidence interval using k = 2 instead of k = 1 

would yield overlap judgments that are more consistent with the standard method. 

 In conclusion, the overlap method is more intuitive to both undergraduate and graduate 

students, especially if they have not studied tests of statistical significance.  A graphical depiction of 

the overlapping confidence intervals also aids students in concluding whether their experimental 

results do or do not agree with a theoretical prediction within the uncertainty of their measurements.  

As discussed in the next section, students tend to make judgments about the quality of their data 

without even considering the uncertainty associated with the measurements.  While the standard 

method is most accurate for evaluating the difference between large sample averages, the overlap 

method appears to be the best option for introductory physics students to use since it provides a 

simple and reasonably accurate way to decide if two measurements are consistent with each other. 

4.7.3 Case Study for Judging Agreement 

An effort was made to replicate the findings from a previous study where students were 

confronted with a situation where there is not clear agreement between two data sets.  In the study 

conducted by S. Allie et al., 121 students were asked to defend one of two positions taken in a 
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scenario where a ball is allowed to roll down a ramp and fall onto the floor a distance d from the 

edge of the table: 

 
Two groups of students compare their results for 5 releases of a ball at h = 400 mm. 
Group A:  441   426   432   422   444        Average = 433 mm 
Group B:  432   444   426   433   440        Average = 435 mm 
Group A says:  "Our result agrees with yours." 
Group B says:  "No, your result does not agree with ours." 

 

The following table categorizes the responses given by the students: 

Table 4-21.  Responses from South African students about agreement of measurements 

 
Code 

 
Description 

Number of 
Students 
(n = 121) 

 
Yes 

 
No 

1 It depends on how close the averages are 62 (52%) ~35% ~17% 
2 It depends solely on the relative spreads of the data 4 (3%) 0 3% 
3 It depends on the degree of correspondence between 

individual measurements in the two sets 
10 (8%) unclear unclear 

4 It depends on both the averages and uncertainties 34 (28%) unclear unclear 
5 Not codeable 11 (9%) unclear unclear 

 

According to the researchers, the most prevalent idea was to compare the average values and then 

decide whether the averages were “close, far, or consistent.”  About two thirds of this Category 1 

group concluded that the two averages were consistent by suggesting that “the averages might not 

be the same but they are only different by 2 mm, which is a very small distance.”  The remaining 

third expressed the contrary view that “433 and 435 are totally different numbers,” and several 

students stated that “the answers aren't exactly the same, so how can they agree with each other?”  

It is interesting to note that the students considered the absolute difference between the average 

values (2 mm) instead of the relative difference between the values (0.5%).  This type of thinking is 

consistent with novice problem solvers (Arons 1990). 
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Students in Category 2 expressed statements like, “the results do not agree since the 

uncertainty in group A will be greater than group B.”  Category 3 students compared individual 

measurements between the sets of data and typically reasoned that “the values for the two groups 

match almost exactly.”  The most sophisticated reasoning was demonstrated by about a third of the 

students (Category 4) who considered both the uncertainty or spread in conjunction with the 

average to come to a conclusion.  However, this group had some difficulty expressing their ideas, 

making statements like, “if we find the uncertainties in A and B the average of A will most likely fall 

in the range of B(av) ± B and the same will apply to the average of B to A(av) ± A,” and “with 

every average there should be a standard deviation and chances are both will be in the same 

range.” 

 This same scenario was presented in the Data Comparison Survey to a first-semester 

physics laboratory course at UNC, and these students gave similar responses.  Of the 11 students 

surveyed, 8 said that the results of Group A agreed with those of Group B.  As can be seen from 

the written responses provided below, these students possess a wide array of vague and unclear 

criteria for judging agreement.   

a. What do you believe?  Do these results agree with each other?  Please explain your answer. 
b. In general, what criteria do you use to decide if two measurements agree with each other?” 
 

1a. Yes, they agree with each other.  Both averages and sets of data are similar leading to 
a conclusion that the results are at least accurate and most probably precise.  
1b. Their accuracy or closeness to each other is the criteria I would use. 

 
2a. Yes they agree, despite the fact that in each single release, the results can vary greatly, 
the averages come out to be close to one another. 
2b. How close their averages are, how precise the data of one group is compared to the 
other. 
 
3a. Yes; they have almost identical average, and individual drops of both groups are within 
the same range. 



 

 96

3b. Consistency 
 
4a. I think that these results do agree with each other.  Compared to the large (>400 mm) 
distance being measured, a difference of 2 mm is not significant enough to create a 
discrepancy between the results.  If group B is being exact, then any difference at all, even 
one of 1 x 10-10 mm would create a discrepancy. 
4b. I look at how significant the difference is in relation to the magnitude of the data being 
measured.” 
 
5a. Yes, neither shows big discrepancies from the mean, so they agree with each other. 
5b. Precision and accuracy; the difference in the averages. 
 
6a. I would say the results agree because 3 of 5 of their numbers match and numbers 
which don’t are within bounds of the experiment with the exception of 422. 
6b.  Yes, for the same reason stated above. 
 
7a. I believe that the results agree with each other.  Their expected difference is very 
similar.  From just eyeing the data, it appears their standard deviations would overlap. 
7b. First accuracy. If the results are too widely varied, I wouldn’t consider them valid. 
 
8a.  The results of both groups are similar to each other; in three cases, they had the exact 
same number.  In another comparison between one of the two remaining sets of numbers 
(the ones that don’t match), the difference is only 1 mm.  The last comparison is off by 
more – 11 mm.  This could be due to a human error, so in all, I think that the results are in 
agreement. 
8b.  Graphing is a more precise method, the eye can catch a difference more easily. 
 
9a. Generally the results agree with each other due to the fact that the final answers of each 
group is fairly close.  But they do not exactly agree with each other.  Therefore, it really 
depends on how close you want to be.  Overall, they do not agree. 
9b. The final average, the closeness of each individual drop, the overall spread of the 
drops. 
 
10a. I believe that the data doesn’t agree because the amounts vary by too much.  Of 
course errors will occur in both labs, but a difference of 2 mm is too much. 
10b. I try to decide by how much the 2 measurements differ, in order to see if they agree. 
 
11a. No.  While the averages are nearly the same, the data is not.  Group B had the one 
“low” data point at 426 mm and it is basically that one point that makes their average even 
close to group A’s, who have more than one data point in that general vicinity. 
11b. Not only do the average data measurements have to be nearly the same, but the 
patterns of the individual points must also be nearly alike. 
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Table 4-22.  Criteria used by UNC students to judge agreement 

Criteria Frequency 
(arbitrary) closeness of average results 3 
same or different individual data points 3 
similar spread or range of data 3 
small relative difference in results 2 
precision or consistency of data values 2 
average and patterns must match 1 
2 mm difference is too much 1 
 

Based on the above responses, the criteria used by students to determine agreement 

between responses is much more vague than the overlap criterion used by experts.  Students often 

make judgments about the closeness of the agreement without considering the inherent variability of 

the data.  These judgments are based on arbitrary standards or the student’s “feel” for the size of 

the difference between the results.  This conclusion is supported by statements made by students in 

interviews and in their lab reports.  One student explained that the percent error between an 

experimental and theoretical value should be less than 10%, because that is what his high school 

teacher had told him (thus basing his judgment on an authority figure instead of his own empirical 

data).  Another student used a 5% cutoff limit for an acceptable percent error, since that is what he 

learned from his statistics class (he had confused the α = 0.05 level of significance with the concept 

of percent error).  Several other students simply stated that they “felt” their experimental error was 

acceptable because it was “small.”    

Students also seem to focus their attention on the agreement of individual data points rather 

than the general trend of the data.  All of these epistemologies are distinctly different from the 

expert model of thinking, which considers the difference between the results in terms of the 

uncertainty or spread in the results for the specific situation being investigated. 
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Based on student lab reports, it seems that students are often reluctant or unable to make 

judgments about whether their results agree or disagree with similar results.  Students also have the 

tendency to claim that their experimental result agrees with (or even proves!) a theory, even when 

such claims cannot be justified in terms of the data they collected and analyzed. 

4.7.4 Best Representation for Judging Agreement 

In order to examine this data comparison issue from another perspective, a combination 

oral/written survey was administered to the NCSU PY205 SCALE-UP (first semester calculus-

based physics) class of 44 students on November 3, 1999 (which was after the students’ third lab 

of the semester).  This survey was presented via a PowerPoint presentation titled, "An Examination 

of Scientific Data:  When are two results different?"  (See Appendix J for original wording of 

questions).  No explicit instruction had been given to students prior to this survey to judge 

agreement between measured values, yet they had been asked to discuss in their lab reports the 

results they got from experiments compared with what they expected from theoretical predictions. 

Below are the student responses to each of the eight questions that were asked.  Following 

each question is an analysis of the results and an attempt to make sense of the results in comparison 

with the South Africa study. 

“Suppose an experiment has been conducted to examine the effect of an independent 
variable on the time for an object to move along a given path.” 
 
Question #1.  Do these results suggest a significant difference?   

without treatment:  t1 = 1.86 s 
with treatment:       t2 = 2.07 s 

        Student Responses (n = 44): 
• YES - explain why   19 (43%) – “correct” response 
• NO - explain why   12 (27%) 
• CAN’T TELL - explain why  13 (30%) – “correct” response 
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Since the difference between these values (0.21 s) is much greater than the precision of 

either value (0.01 s), there is clearly a discrepancy between the values as they are stated with no 

explicit uncertainty.  Despite this fact, about a third of the 44 students answered that there is no 

significant difference between these values.  Evidently these students assumed some degree of 

uncertainty for each value and decided that the absolute difference of 0.21 s, or the relative 

difference of 11%, was not large enough to consider these values to be significantly different.  This 

type of reasoning is clearly much different from that of experts who judge agreement or 

disagreement between values based on the amount of uncertainty associated with the values.  

Question #2. What if 2 more trials were run?  Does t1 = t2 ? 

Trial # t1 (s) 
w/o treatment 

t2 (s) 
with treatment 
 

1 1.86 2.07 
2 1.74 1.89 
3 2.15 2.20 
Averages: 1.92 2.05 

 

        Student Responses (n = 44): 
• YES - explain why   10 (23%) – “correct” response 
• NO - explain why   22 (50%) 
• CAN’T TELL - explain why  10 (23%) 
• Other       2 (4%)  

 
Here the two data sets agree because they overlap almost entirely, although this overlap is not 

entirely obvious by simply glancing at the values in the data table.  (The mean values also agree 

statistically since a t-test yields a p-value of 0.42, which is hardly sufficient evidence to reject the 

null hypothesis.)  It would be easier to visualize this overlap if the data ranges were presented 

graphically, which is the purpose of the next question.  It is interesting that many students 
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maintained their same position as they did for the first question – the values are not equivalent, 

despite the additional information about the variation in these numbers.  This finding is somewhat 

consistent with the S. Africa study where 17% of the students said that the two average values they 

were examining (433 and 435) were not equivalent. 

 Question #3.  Does t1 = t2 when plotted? 

               

Experimental Results

1.5 1.7 1.9 2.1 2.3 2.5

X1

X2

 

       Student Responses (n = 44): 
• YES - explain why   14 (32%) – “correct” response 
• NO - explain why   26 (59%) 
• CAN’T TELL - explain why  3 (7%) 
• Other     1 (2%) 

 
It is not clear why most of the students responded that the two values were not equivalent since the 

general consensus from both students and experts is that two results agree with each other when 

their uncertainty ranges overlap.  Perhaps this question is perceived differently from Question #3 

above, or maybe the students answering the questions were confused about the series of questions. 

4.7.5 Conclusions about the Agreement of Measured Results 

Multiple methods were used to examine student and expert thinking about the agreement 

between measurements.  From this analysis, it appears that novices tend to think more in terms of 

absolute differences between results and ignore the uncertainty of the values while experts think 
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more in terms of relative differences and also consider the uncertainty of the values when making 

comparisons. The “overlap criterion” is most commonly used by physics laboratory instructors to 

decide whether two results agree with each other.  More advanced experts use the statistical t-test 

to decide agreement, but the conclusions found from applying a t-test do not always correspond 

with the overlap condition.  The criteria used by students to judge agreement is often arbitrary and 

not as clearly defined as that of experts.  Students often claim that their results agree with a 

theoretical prediction even when such a claim cannot be justified by the uncertainty of their 

experimental data. 
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5 Summary 

5.1 Overview 

The objective of this broad-based study was to examine the fundamental practices 

demonstrated by students related to the treatment of uncertainty associated with measurements. 

The research was guided by the following questions: 

1.  What are the common conceptions and practices demonstrated by introductory physics 
students regarding measurement uncertainty and error analysis? 
2.  How do students treat the uncertainty in measurements differently than experts? 
3.  Why do students believe what they do about measurement uncertainty? 

5.2 Principle Findings from Students 

Through this investigation, the following principle findings were discovered.  These findings are part 

of a comprehensive list that is presented in Appendix B.1. 

• Arbitrary evaluation of results without considering uncertainty - Students often make 

arbitrary judgments about the agreement between results and fail to consider the uncertainty 

estimates when making these comparisons.  It appears that students do not recognize that the 

primary reason for determining the uncertainty in measurements is to convey the quality of the 

result and to make objective decisions about the agreement between results. 

• Failure to report uncertainty - Students tend to avoid specific statements that quantify the 

uncertainty of a measurement, even when they are explicitly instructed to include an uncertainty 

estimate.  This reluctance is more pronounced for directly measured values than for calculated 

values. 

• Failure to identify primary source of error - Students have difficulty identifying the primary 

source of error in an experiment, and they generally do not analyze the effects of individual 



 

 103

uncertainty contributions to the total uncertainty of the result.  Instead, students often list a 

variety of possible factors that might have affected the experimental results, but these factors 

are rarely quantified or ranked to indicate which ones are most significant. 

• Improper use of significant figures - Students tend to overstate precision (too many 

significant figures) of calculated values, and understate the precision of directly measured 

values. 

• Improved but limited expertise with increased exposure  - The quality of responses to 

measurement questions was generally aligned with the amount of training and exposure students 

had to the subject.  While this finding is not surprising, it provides encouragement that 

instruction does appear to make a difference.  However, even graduate teaching assistants 

made many of the same mistakes or omissions that were common among student responses, 

which suggests that these issues are not trivial to learn and apply. This conclusion is also 

supported by comments made by instructors who were reluctant to call themselves “experts” in 

the subject of error analysis. 

5.3 Additional Findings 

While the focus of this research was an examination of introductory physics students’ understanding 

of measurement uncertainty, several important findings outside this scope were discovered and 

should be highlighted: 

• In 1993, the International Standards Organization (ISO) published a new set of guidelines for 

expressing the uncertainty in measurements.  Nearly all of the physics instructors and students 

surveyed in this study were unfamiliar with these recommended procedures that are now widely 

accepted and practiced throughout the world in industries that strive to be ISO certified.  The 
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ISO recommended practices should be incorporated into academic curricula to better prepare 

students for careers in science and industry.  

• The notation used to express the uncertainty in measurements varies considerably among 

experts, which was the reason for the introduction of the ISO guidelines cited above. This 

inconsistency gives students confusing and conflicting instructional examples, and can result in 

distinctly different conclusions when comparing two values with error estimates, depending on 

the interpretation of the confidence level associated with each uncertainty. 

• Despite the numerous possible confidence levels implied by error bars, a clear majority of both 

students and instructors use the “error bar overlap” criterion to decide if two results agree with 

each other.  This finding emerged from the research (a result of the grounded theory approach) 

and was not expected a priori.  The consequence of this widely used criterion is that it results 

in a Type I error 16% to 32% of the time if the error bars represent ± 1σ.  This means that 

students will conclude that two results are significantly different more often with this overlap 

criterion than they would using a t-test with 5% significance level. 

• Physics instructors reported that they learned to analyze measurement errors primarily from 

studying or teaching undergraduate laboratory classes.   In fact, the undergraduate laboratory 

experience was cited twice as often as any other source for learning error analysis.  This is 

strong motivation to ensure that students learn proper procedures for expressing uncertainties 

early in their academic careers, rather than postponing introduction of this subject until 

advanced undergraduate labs or graduate school. 

• Perhaps the most important discovery from this research is the realization that students have 

significant difficulties simply obtaining accurate measurements of physical quantities (as 
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evidenced from the Lab Practicum).  The issue of determining the uncertainty of a measurement 

is secondary compared to the importance of finding a reasonable estimate of the intended 

measurement.  

5.4 Questions for Future Research 

As with all scientific research, one interesting question naturally leads to other new pathways 

that could be investigated.  Below are several questions that were raised but not fully answered in 

this study.  

 

• Why do students believe what they do about measurement errors? 

 

While this question is one of the three original research questions, this study primarily examined 

how students treat errors in measurement.  The epistemological why question can only be 

examined and understood after first understanding how students and instructors treat uncertainty.  

Explanations for some of the student difficulties have been presented here, but further investigation 

is needed to better understand the rationale behind the student practices. 

 

• How effective is the graphical error bar representation at getting students to use the uncertainty 

of their measurements to draw a valid conclusion about the agreement or difference between 

two values? 

 

Although the “overlap method” is commonly employed by physics students and instructors, 

hardly anyone in this study used error bars to visually examine the overlap between uncertainty 
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ranges.  An Excel spreadsheet has been developed to easily allow students to enter measurement 

and uncertainty values and see these error bars.  This Data Comparison tool is now available to 

physics laboratory students at UNC, and the effectiveness of this tool should be evaluated. 

 

• How frequently do students find that their experimental result does not agree with the 

theoretical value?   

 

Based on the limited data obtained for this study, it appears that students often obtain 

experimental uncertainties that underestimated, so that a Type I error occurs more frequently than 

32% of the time (as expected for an experimental value with a 68% confidence interval compared 

to a theoretical value with negligible uncertainty).  If this perception is correct, why does it occur 

and should it be corrected by having students use a 95% confidence interval (or some other 

confidence interval) to estimate experimental uncertainties? 

 

• How close together must two results be for students to decide they agree? 

 

From this study, it was discovered that students often ignore the uncertainty of a measurement 

when evaluating a result, and they use arbitrary criteria to decide if a result is acceptable.  Learning 

more about the students’ evaluation criteria would be beneficial for developing instructional 

strategies to correct this common occurrence.  
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• If research-based curricula are developed and implemented, how effective will they be in 

helping students make the transition from novice to expert treatment of uncertainty? 

 

Now that we have a basic understanding of the challenges facing students’ understanding of 

measurement uncertainty, new curricula can be developed to address these problem areas, as has 

been done with other subjects through research in physics education.  Implementation and 

evaluation of the curriculum is part of the continuing research - curriculum development - instruction 

cycle.  

 

5.5 Concluding Statement 

The findings from this study reveal that students have difficulties with many of the fundamental 

aspects related to measurements and the comparison of measured values.  The most significant of 

these are the reluctance to specify a quantitative estimate of the uncertainty in a measured value, the 

inability to identify the primary source of uncertainty in an experimental result, and the failure to 

consider the uncertainty of a result when comparing measured values. While these are important 

findings, they are secondary to more fundamental problems that students have with making 

accurate measurements and analyzing data.  Hopefully the research documented in this study will 

help educators improve instruction of this subject that is fundamental to all types of scientific 

investigations. 
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