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Motivation

Why do we study 4-dim String/M theory vacua?

* Non-Abelian gauge symmetry

e Chiral fermions

 Hierarchical Yukawa couplings

« Dynamical supersymmetry breaking
» Gauge coupling unification

Great! But can we make genuine predictions
even in principle?



» By compactifying to 4D, we obtain a multitude of
scalar fields — moduli, parameterizing internal metric
deformations, brane positions, etc.

* Thelr masses must be large enough to be compatible
with observations (BBN => M_. 4> O(10)TeV )

: SUthety f A QCD(M)
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™ light
e In String/M theory all masses and couplings are
functions of the moduli vevs

 Once the moduli are stabilized, all couplings are
completely fixed and are computable in principle

« Can we stabilize all moduli so that we can make
predictions?



* In particular, can String/M theory naturally explain the
hierarchy between the electroweak scale M,=90 GeV and
Planck scale My, ~10%° GeV ?

Strong hints In favor of low scale SUSY from bottom up:
v’ Stabilizes the hierarchy between the EW scale and Mg,
v Radiative Electroweak Symmetry Breaking naturally
occurs in the MSSM (large top Yukawa drives m,ﬁu <0)
v" MSSM gauge coupling unification

v LSP is a dark matter candidate (maybe)

« However, while supersymmetry alone can stabilize the
hierarchy, it still does not explain it!



Standard lore in mid 80s: strong hidden sector gauge
dynamics may generate a potential for the moduli and
break supersymmetry at a small scale (Witten 1981)

* Fluxless G, compactifications of M theory may

naturally implement this good old idea from top down
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* In fact, in this corner of the landscape, the gauge
hierarchy M, << Mg, ; Yukawa hierarchies and the
axion mass hierarchies (Axiverse) have the same origin!



Disclaimer:

* \We have not constructed an explicit realistic global G,
compactification (none exists thus far). Rather, we utilize
known properties of G, moduli space metrics and make
some assumptions that may ultimately be implemented in
explicit models.

» Modulo those assumptions, our construction is still very
general and may represent a large sample of possible G,
vacua (this Is not a toy model!)



M theory on G, manifolds

» Consider M theory compactifications on singular 7-dim
manifolds X with G, holonomy (required for A/=1 SUSY)

» The Riemannian metric g(X) can be expressed In terms
of the associative 3-form @ as
1

9; = (det S)_gsij’
Where SU ﬁq) (D (Drstgknlmrst 6_12...7:+1

« Expand @ in terms of basis harmonic 3-forms

O = Zs¢. ¢ € H>(X,Z), N =b*(X)



» Unlike CY, there is only one type of geometric moduli:

71:""'8', |:1,...,N; N:bB(X)
Axions \

(periods of the 3-form C,, periods of the associative 3-form @
transform under a shift symmetry) (fluctuations of the metric)

 This PQ-type shift symmetry guarantees that in the
absence of fluxes the entire superpotential is purely non-
perturbative => exponential hierarchies are natually
expected!

* Non-Abelian gauge fields are localized on three-
dimensional submanifolds Q € X along which there is
an orbifold singularity. Acharya. hep-th/9812205, hep-th/0011089



X

« Example: locally, M-theory on R3’1><Eg><(C2/ZN\)
IS the 11-dim SUGRA coupled to a 7-dim SU(N) gauge
theory on R*'xQ.
™ associative (supersymmetric) 3-cycle
» Chiral fermions are localized at point-like isolated

singularities p € X. Atiyah-Witten. hep-th/0107177, Acharya-Witten.
hep-th/0109152

« A particle localized at p will be charged under the gauge
group supported along the associative three-cycle Q if p € Q



Bulk Kahler potential

Beasley-Witten: hep-th/0203061; Acharya, Denef, Valandro: hep-th/0502060
1/
K =-3In(47"*V.)
» We know that the 7-dim volume V- is a
homogeneous function of the moduli S; of degree 7/3
S i . ! 0°K

A oSS =¥
= 1) o =; ‘as ,; ! 05,05,

\
I
|
U
»|3
I

 These properties and everything that follows from
them are all we use! In particular, no specific choice
of the 7-dim volume needs to be made in order to
compute the soft SUSY breaking terms!



e In earlier work
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we assumed a specific N-parameter family of the 7-
dim volumes consistent with G, holonomy

N N 7
V, =] [s", where > n, =—
=1 =1 3

+ We then also assumed a canonical Kahler potential
for charged chiral matter

K=¢¢
* In B. Acharya, KB hep-th/0810.3285, presented here, we
redid the entire analysis with no such assumptions



Kahler potential for matter fields

 Because charged chiral matter is localized at points In
the seven extra dimensions, we expect that the
corresponding kinetic terms should be “largely
independent of bulk moduli fields™

» A single conical singularity gives only N of SU(N)
which gives a trivial superpotential

* When W=0 there Is a one-to one correspondence
between holomorphic gauge-invariant operators (HGIO)
and D-flat directions Taylor, Luty, hep-th/9506098

 One cannot construct any HGIO from a single N => no
D-flat directions => no local moduli



Matter Kahler metric from dim reduction

 The physics of a conical singularity in M-theory does
not involve any new scale, aside from the 11d Planck
scale so the natural frame is the 11d Einstein frame.

» Lagrangian density in 11d frame
L ~ M1y 0, R+, A0y # Oy 9™ K(8)y Gy +-.

\ Peaked at the position of the

N
where ZS oK -0 matter multiplet

e
o OS.
=1 I \ Kinetic term 1s “largely

independent of bulk moduli1”

* Integrating over X gives
L~V7Mf1\/g74R+/c(si)g“"@#@8V¢ 94+



» Weil rescaling into the 4d Einstein frame gives

S) uva —
&) g0 50,650 +..
\

L~m:\/geRe +
e The kinetic term Is non-trivial in the 4d Einstein
frame — the standard frame in which we define the

Kahler potential.

 Read off the Kahler potential from the Kinetic term

sz(si)?



Matter Kahler metric from the finiteness of the
physical (normalized) Yukawa couplings

* In /=1 D=4 supergravity
’ ~ ~ ~ \1/2 ) L e N[ 2
Yo I 1Yo, | (KKK, ) Y0, 107K, KK,

a' gy

where (in M-theory on G,) the superpotential Yukawa
IS

N
-2V,
|Y0;ﬁ7 |~ € 5 ’Vaﬁ7 = Z miaﬂysi
i=1

e There are well-defined local models where manifold
X Is non-compact, I.e. \, —oc0=> m,, /M,; — o
LA 1
Y,z isfinite =K, ~K,~K; e
7



» Expand the fundamental associative three-form @ in a

basis of harmonic three-forms {¢}
b (X)

= Zsi¢i1 4 € H’(X,2Z)

 Choose the basis of {#} such that for all Poincare dual
four-cycles {4} the periods of *® are positive definite

[*®>0, VB, where PD, (4) =3 € H,(X)
bi
Then, we can ensure that all four-cycle volumes are
positive because
Vol(3) > j*cp >0
bi



» Consider an associative three-cycle Q

bs (X)) bs (X)

Vol(Q) = [®= ) s [4= D sN
Q Q

 Key point: we implicitly assume that we study any G,
manifold X containing an associative three-cycle Q
supporting a non-Abelian gauge theory, such that in the
above basis of harmonic three-forms {#} the integers
specifying the homology of Q are all positive definite

N, =[4>0
Q



Moduli stabilization and SUSY breaking

» Consider a hidden sector supersymmetric QCD with
SU(N+M) gauge group along a three-cycle Q that also
contains two separate co-dimension seven singularities
supporting the fundamental N+M and the conjugate

» Assume that Q has a non-trivial fundamental group so
SU(N+M) can be broken by a discrete Wilson line

SU(N + M) — SU(N)xSU (M) xU (1)

N+M > (N,1)+(L,M); (N+M) = (N,1)+(1,M)
» Alternatively we may consider

SO(2(N +M)) — SU (N)x SU (M) xU (1) xU (1)

2(N+M)— (N,1)+ (1, M)+ (N,1) + (1, M)



 Superpotential Is generated by strong dynamics in the

hidden sectors (PQ symmetry => W is non-perturbative)
2 27z 2 2

W= Ad "o 1 Ag Mg ML

where the gauge kinetic functionis f — i N.z

, i=1
Eftective “meson” fields \ %
Integers specifying the
~ ~ homology of the
¢1 =+/2NN; ¢2 =+ 2MM hidden sector 3-cycle
Kahler potential

oy (S) - () , -
K==3InV; +—V7 ¢1¢1+—V7 0,9,

where we used
<N>:e‘91<N>; <M>_e'92< >a|ong the D - flat directions



 F-terms (first consider a simplified case x(s;) = x(S;)=1)

2
W

[ A1¢ N-1 eN 1 e

& 1

V7 Ti:%_‘-*q)
2 v

F :_—A2¢_M—1_1e'“/'—1f L '

S A T V,

in: ( A1¢1 el Nﬂ1f+ Az¢2M1 Mﬂlf]+i§\7(l+§/¢l+¢23\fz}/v

. a7 VW 35 (L dd ¢¢
F¢1 =0; F¢z e in :INi(¢1¢1+¢2¢2)V7 —HZ_V?(]__'_ 5 5
F, #0; = SUSY is broken!

Minimize the full scalar potential=> minima exist when |[N-M| > 3
N>2M+3 = F, >F, =0, F, =0

M2>2N+3 = F, >F, ~0,F, =0



e For concreteness we shall consider the case

M=>N+3 = F, >>F, =0,F, =0
Wi Agiele + Aels 4

Most economical way to fix moduli and get dS vacua !
All F-terms will have the same phase as W. Important for CP!

. An effective meson field  ¢#=+v2NN = ge"

« For SU(N) and SU(M) hidden sector gauge groups and
N; =1 flavor:

P M P



* Inverse Kahler metric (first consider x(s;)=1):

( A
- 4s;S; J : = 0 2
KU — - (A ) KI¢—i§ S|¢2 ;K¢¢ :V7 1+% 1 . 3\C/)
aj 1_|__0 (o=t Ui g A ~0 7

Vs V; \ 3V, )

“angular” (scale-invariant) coordinates on the moduli space

i 1 oK N 7 N N
. =——8S — = — 1y o — ok ij:
e T L s R

These contraction properties are completely general and
are crucial for our ability to minimize the scalar potential
and perform explicit computations of the soft terms!




N=1 D=4 SUGRA scalar potential

¢o

N N N.N -1\ij
I:;].ZZ&SJ i J(A; (bAl¢a —b,N-§ b2A2¢a szS)
_|_ 0

|1 =T j

6472\/ :

7

+4N§(bAl¢a blNS—bA2¢a bZNS)(A1¢a ble_A2¢a szs)
+7(bA1¢a blNS—b2A2¢a bZNS) (1+§;j_3(Al¢a ble_A2¢gle—b2N-§)2

7

4 b a —b, N5 —b a —b,N-§ ¥ 7 e R
P ( A1¢ §A2¢ )NS+—(A1¢0eblN _A2¢Oeb2N )
3 & 2
15—
3\/7

x(aA@a ble <¢/_0(Al¢a ble_A2¢a bZNS)J

V_7 Z 1 ¢02 aa —b, N-§ ¢_02 ag ble_ an —b, N5 1
1 (a/w vy (AgE "~ Agie )J

7




« Minimize the potential with respect to the moduli and
the meson to obtain a system of N+1 coupled equations

- Solve In the limit when the volume V, of the hidden
sector associative cycle Q is large /

* Moduli vevs: si:EEVQwhererz 1 PM In MA g,

- Parameters a; satisfya oK

system of N equations: 5Si a > Integers specifying the
NS homology of the hidden

sector 3-cycle Q

713
e 7-dim volume is fixed at: V, =VQ7’3(% xV,(s)|. _a
TN



» Alternatively, introducing a basis of dual variables

1
r=—TL="|gA*D==|*D
83 j 4 3!
* We find upon minimizing the scalar potential
ri:NiM>O, & *Oza-PD,(Q), O<acR
Q Fixed by the supergravity scalar potential

The co-associative four-form *® Is dynamically fixed by
the homology of Q!
* Recasting the volume V-, in terms of z; we can express:

4VQ O Integers specifying the homology
Sj = InV.(z,) /of the hidden sector 3-cycle Q
[ Ot a
T =Nk
* In Type IIB even more explicit: 7, ———In Zduk” nin,

K.B, V. Braun, P. Kumar and S. Raby: hep-th 1003.1982 3 on ,



 In Type |IB K.B, V. Braun, P. Kumar and S. Raby: hep-th/1003.1982

N5 G
. In dy NNy
\/BZd”kn n.n, 2 3 on, 2.5y Vo = 3\/3Zdukn n.n,

 Explicit three-parameter example (hep-th/1003.1982)

6 11 13 e e
71:%%1 72:%%’ 73:%%1 t1:t2:t3_3\/— Ve _9\/—

At the minimum all Kahler moduli are controlled by a
single parameter z, ! In G, this is true for all moduli!

» This approach to moduli fixing is highly constraining
and therefore potentially predictive For example: ! ~25

=1
h11 @ X .
Ol = va'sr =i 3 ZnV'S = In Zduk” nn | xogy



» Potential at the minimum in the leading order as a
function of the meson vev

VONH ) ¢o] (1_ 2 I 2 +¢o} ﬂ -
M-P V 24 SM-P) \M-P V ¢0

oV, & 2 7 2 1
= ~ + 1- +0
5¢ el o Vo MR R, ( 3(M - P)j (Pe?f }

0

14(3(M — P)-2)

V=0 = PB4y=
g " 9(M-P)-6,/6(M —P)
MA1¢(§J1 1 PeffM
where P, =PIn such that V. =
g ( PA, J O P

Vo >0&M >P= P, >0=>M-P2>3



Generalizing to the case when x(s,) # const

e The main difference iIs in the moduli vevs

where, r = § and the vev of the canonically normalized

meson ¢? = K(S) g T (1— 2 jisthesame

“M-P P, " 3M-P)
as when K(s,) 1. Parameters a, , ¢; can be found from

oK
S.




For M—P=3: P, ~61.65; ¢’ ~0.75; s, ~1.4 4 +|(\)|.37Ci x M

 Can we actually tune P, =P In[MA&¢0 j 62 ?

PA
S So

* Recall A = CPe 2°: A =CMe 2M
Ray-Singer torsions

* When the 3- cycle IS a len e S°/Z,, the/KK thresholds

arel S{ .y = 2NInq+2(N 2)In 4sIn (47zmw/q))

L sl (asin? (@l /g)) ¥
(4sm (47zmw/q)) >




Pt P M q I W n m
61.3 | 10 13 99 12 25 1 1
619 | 20 23 17 6 4 1 1
64.2 | 27 30 11 3 5 172 | 1/2

» Perturbative corrections may help fine tune the CC

ok _
N e Z(—l)”' (23, +DM’ M/ +...

« From non-Abelian SU(N) and U(1) gauginos:

&/OSU(Ni) = _iz Nizﬂiz(Ni’Wi)mézlelzl’ éVOU(l) 7 _izﬂfuz(wi)mszlzlvllzl
167 '\ 167
discrete Wilson line winding numbers

« Vary discrete Wilson lines to scan over all N; and w;

In all hidden sectors => Fluxless discretuum !



* When M-P=3 and the CC is tuned P,; =60, the volume
of the hidden sector cycle is

> Iv”:)eff 1OM
VQ:Imf:ZNiSi: ~

Y4 T

the contributions of the leading condensates are fixed!
27

W, ~e M"° xeg®

 Consider another rigid 3-cycle Y, supporting an SU(M")
gauge group. Its volume is also proportional to M |

v, })J iy N

— N,
* The extra contrlbutlons to the superpotential can be
suppressed relative to the leading ones when M >>M"

- M xO(1)

—2—”vY —2;;%@(1)

MW, .~eM =e << W,

extra



 Gravitino mass Is fixed once coarse tuning is done

i P
S P_M C Ao ot
4 ‘ 2o P~ 9x10°(TeV) 2

my, =m,e

g \/;\/73/2 V73/2
3 \/7/3 2/3
e Extract V. from 1 o Aaur Vo, L(Qui) Friedmann and Witten,
; 8rm’,  322°M&,V, hep-th/0211269

- For typical values og}; =V, ~25, My,; ~2x10°GeV

» Obtain V, ~137.4x L(Q,.)**, where L(Q,,.) = 4sin*(5zw/q)

q 2 3 4 4 6 6 6
W 1 1,2 1,3 2 1,5 2.4 3
V, 5496 | 5945 | 549.6 | 8724 | 453.7 | 943.7 | 1143.2

My, IC,| 70Tev | 62TeV | 70TeV | 35Tev | 93TeV | 31TeV | 23TeV




* Moduli: M; #0(200-300)xm,,, m ~O@)xm,, <2xm,,

* M,, ~O(10)TeV => moduli are heavy enough to
decay before BBN.

* Non-standard cosmology: large entropy production at
late times, but before BBN; dark matter Is generated
non-thermally.

* When the LSP is mostly Wino => relic density is
compatible with observation
Acharya, et.al, hep-ph/0804.0863, astro-ph/0908.2430



AXxiverse and Strong CP

e To fix all axions we must include the truncated non-
perturbative contributions s. Acharya, KB, P. Kumar; hep-th/1004.5138

W — A1¢aeib1f _I_Azeibzf _I_Z:Akeibkfk

k>2

 The leading contributions freeze the geometric moduli
S; and a single linear combination of axions

cos((b, —b,)N -t +a@) =—1

» Effective scalar potential after including the
remaining non-perturbative terms and freezing all s;

3 AK/2 —b;V;
V =V, —my,me Z D.e "' cos(y,—x;)

]>2

Zj:ijj°f; ){1=b1N-f+a¢9



* The axion mass spectrum before the QCD effects

3
m :
Pl 2 /pK2p iy 25
.|:2
I

m
m, ~ 0(200—-300)xm,,,, m’~O(1)

where k
3 N
Vi=7 Vo2

 Consider b=27z, m,,~10 TeV, V,=1000, f=101°GeV
15<V, <40 = 107eV <m; <1eV

e In generic G, compactifications N=b,(X) ~ O(100)
— String Axiverse with a multitude of light axions
Arvanitaki et. al hep-th/0905.4720, hep-th/1004.3558



* From QCD instantons oVocp = A‘ECD(l—COS HQCD)

where N N -+1 N N-+1
vis 1 vis 2785
QQCDZZ”ZNi Gis "”*K’ ?EZ N; U U,
i—1 K=1 fK f._ i 2 K= K

* The QCD instanton mass matrix Is rank one =>
N +1
(M2 Joep =0, VK =1..,N; (mZ,, -

|_=1i;—|_2
» QCD effects give mass to the lightest mass eigenstate
i Inside the linear combination representing Gycp

4
)QCD = AQCD

» Can easily achieve | cp[<<10?, as long as at least
one of the mass eigenstates inside ¢, Is lighter than

mZ, =102 (M2, )oep = (L0 eV |

exp



* Pre BBN cosmological history is non-thermal so the
standard estimates on the axion relic density do not
apply. The mass of the QCD axion Is such that It starts
coherent oscillations during moduli dominated era. For

all axions whose masses are greater then
Iy, ~O() mx(: ~10™"*eV; m, ~50TeV
the relic abundance |ps Independent of their mass
Q,.h? = 0(10)( Ty T( To j{eﬁk )

2x1016c3ev 1MeV
Fox, Pierce, Thomas hep-th:0409059

Qpyh® <011 = (67 )<10°

» Modest fine tuning of the misalignment angle. The
entropy dilution due to late time moduli decays allows

decay constants f, much closer to the GUT scale



Kahler potential for the visible sector matter

* For the visible sector matter fields, the Kahler potential
may generally include a tree-level interaction term with the
hidden sector

P P ~ [ a ( )Q QIB b
K=K_;QQ" == v (1+C(Si)§v—¢7]

* In the above we assumed that the flavor structure of K 2
Is completely determined by the matrix x_; (S.). Here this
form 1s motivated by the suppression of the FCNCs from
the bottom up. Another way to suppress FCNCs is to
assume that c(s;) = 0.



*Key point:

To find the soft supersymmetry breaking parametrs we do

not need to know the explicit values of @, and S, ! The

following general contraction properties are all we need to
know!

Zai :g’ Z(A_l)ijaj =a, Z(A_l)ij —f

=1



Computing soft SUSY breaking terms

 Use the general contraction rules to obtain

e’ F* ~ —i2s, o7 . AR s o X My,M,
Peff ¢c (M -~ P) Peff

e /?F? z¢/1— e Sl [
\ 3Py ¢c2(M e P) Pes b
 Notice two key properties of the F-terms:

F'~s xconst, and F'<<F’

« When computing the soft terms use homogeneity:

2 F'o

K,p
s

K [ K
~ CoNstx )" s,0, V“ﬂ - V“ﬁ x const
i 7 7



Summary of the soft SUSY breaking terms

Peff ¢c2 (M x P) Peff

mll/2'°°p~a:“ ((3C ZC jK STy Zc jxmg/z

tree _ 4z 2
Aaﬂ7/ [K g Peff (1_'_ ¢C2(M 4 P) Qupy & m3/2

. \

1 2 o i
ms ~ ——[1+ + ]x m,, <<mj,,since Py ~ 60

ALo0P o e Yy XMy, Volume of the cycle Q,, that
o connects three co-dimension
T e seven singularities supporting

m; ~ (1- C)( 3/2 g(mlm ) charged chiral matter

ol 2 > 50, 1. - e



GUT-scale soft SUSY breaking terms after
setting M-P=3 and P_+=61.65

2
maj ~ GUT scale input: m3,2,m},'77,5,tan,8

* EXpress c:l—(
m3/2

Canset =1
e Recast the soft terms as

M, ~ e 7m,,, (= (0.031+0.00026 x 5)7 + ty; (~0.225+0.523(m,, / m, ,)? )
M, ~ e 7m, (= (0.081+0.00026 x 81 + ctgy; (— 0.034+0.555(m,, /m,,)? )
M, ~ e 7m,, (- (0.031+0.00026 % 5)7 + zgyy; (0.102+ 0.476(m,, / m,,,)?)

A ~e "m,,(L.5(m, /m,,)? —0.003(—(46/5) g2, +6Y. +Y2))
A, ~e 7m,,(1.5(m, /m,,,)? —0.003(—(44/5)g2,; +Y2 +6Y. +Y?))
A ~e 7m,,(L5(m, /m,,)? —0.003(—(24/5)g2,; +3Y,72 +4Y?2))

» Used SOFTSUSY to get the EW scale spectrum



Gaugino masses at the EW scale
(generated by SOFTSUSY package)

M ,(GeV) M (GeV)
~200¢ m,., =30TeV e o=-15
000 mm=saee 3/2 L200F e,
~. e e
—400F N L e .
: ~ o~ T
~500 - ~ T S
: ~ —400 ~.  TTmeEs
—600 ;, \ \ i \ \ ~a
~700 - N -500; S
I M; ==---- ~ F M, ====--- ~
g M ~N ~
~800; My —— ~ —600 My ~
i ~ M, —_—— ~N
-900 - ~N ~
E S S @ 4 m3/2(TeV)
-10 0 10 20 25 30 35 40 45

tan f=2.5cc=0,u<0,n=1

 Pure Wino LSP is rapidly excluded as o 'Is increased
» For typical values 0 < ¢ < 1 get pure Bino LSP



GUT scale

input <

Benchmark spectra (masses are in GeV)

m3/ 5 20000 | 20000 | 20000 | 20000 | 30000 | 50000 [ 30000
o -15 -12 0 -15 15 -15 -15
C 0 0 0 0.1 0.5 0 0
tanB| 3 | 265 | 265 | 3 3 2.5 3
H -11943 | -13377 | -13537 | -10969 | -10490 | -34019 | +17486
LSP Wino Wino Bino Bino Bino Wino Bino
M : 165 173 203 181 484 434 252
M s 158 173 225 189 662 421 242
M 3 262 297 423 328 1328 673 395
mg 401 449 622 492 1784 1001 597
Moo | 4451 | 4556 |+ 189 |=170 | 473 | 3734 271
Moo | 153| 159 { 2143 | 1815 | 7024 | 397 | 3342
M. 1"1452 | 1558 | 2145 | 181.7 | 702.6 | 373.6 | 3342
"% | 9130 | 8779 | 8662 | 8928 | 11151 | 22887 | 14264
"5, | 15342 | 15250 | 15224 | 14635 | 16783 | 38473 | 23236
My | 1164 | 1143 | 114.6 | 1160 | 1159 | 1151 | 114.6




Computation of soft SUSY breaking terms

» Since we stabilized the moduli we can compute the

terms in the soft-breaking lagrangian
Nilles: Phys. Rept. 110 (1984) 1, Brignole et.al.: hep-th/9707209

* Tree-level gaugino masses

e“2F"o f
M :m n ~sSm
2 RS O mife

where the SM gauge kinetic function

N
1:sm = Z I\Iism [

7.
=1 \ Integers specifying the homology
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» Use the expressions for the F-terms to compute
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 The tree-level gaugino mass is always suppressed for
the entire class of dS vacua obtained in our model

V,=0&M -P=3= P, ~61.65
— M,, ~— "% (0.031+0.00026 x 5) x M, ,
« Depending on N we find typically |o|<0O(1-10)

*Vary 61<P, <62=-0(my,m,)* <V, <+O(m,,m)’
* However, M, stays virtually inert!



« Anomaly mediated gaugino masses:
Gaillard et. al.: hep-th/09905122, Bagger et. al.: hep-th/9911029
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e In the limit ¢ —1 Konishi anomaly contribution
vanishes. In this case we obtain a particular example of
mirage pattern for gaugino masses




e Assume a SUSY GUT broken to MSSM

 Require zero CC at tree-level and M —P =3 to
obtain tree-level plus anomaly gaugino masses:

M, ~ e " (- (0.031+0.00026 x 8)17 + a7 (— 0.225+0.523(1— ¢ )))x m,,

M, ~ e 7 (=(0.031+0.00026 x 8)77 + g,y (—0.034 + 0.555(1—¢)))x m,
M, ~ e (- (0.031+0.00026 x 6)77 + agr (0.102+ 0.476(1—c)))x m,,,
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» From KK threshold corrections ~y =1— SQGLZJT T
Friedmann and Witten, hep-th/0211269 87

» Ray-Singer torsion 7, =In(4sin’(5zw/ g))
« a.,r ~1/25 is fixed from gauge coupling unification

* For the case when ¢=0, the Konishi anomaly is large
such that the tree-level and anomaly partially cancel



e 1 - problem : _
In superpotential  from Kahler potential (Giudice-Masiero)
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e 1 -parameter can vanish if the G, manifold has a discrete

symmetry F. Also used to solve the doublet-triplet splitting problem
Witten, hep- ph/0201018

- Since Z(z;,Z,,4,4) isunknown p=Zgm,, Bu=Z5m;,

» If Z4f ~O(1) then typically expect gz~ O(my,)

» Heavy higgsinos and tan £ ~ O(1)



From Higgs-Higgsino loops, at the weak scale get

an extra contribution to M, and M.

Pierce, et.al, hep-ph/9606211; Gherghetta et.al, hep-ph/9904378;
Arkani-Hamed, et.al hep-ph/0601041
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used that tan #~0O(1) and % ~1
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When u ~ O(1)m,,, , such contributions can change
the type of the LSP, depending on the sign of u !



 In /=1 D=4 sugra, the unnormalized scalar masses:

M2 ~ K (M3, +V,) —e“F"F"(0,0,K ; —8,K, K”0,K ;)

* In our construction we obtain (using homogeneity)
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» For generic values of c the scalars are very heavy

* Tree-level mass vanishes in the limit C=1 — get
tachyons in the scalar spectrum.

 \WWe restrict our analysis to the values of ¢ when

1 m_
S
167 m,,




. Trilinear couplings:
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» Total trilinear couplings for M-P=3 and zero CC.:
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 \We assumed that the third generation Yukawas arise

from colliding singularities and thus dropped the

volume terms Friedmann and Witten, hep-th/0211269
Atiyah-Witten. hep-th/0107177

» For generic values of 0<c<1: Ab ~O@@) xmy,



Electroweak Symmetry Breaking

* In most models REWSB Is accommodated but not

predicted, i.e. one picks tan £ and then finds z,
which give the experimental value of M,

e Recall H = Zeffm3/2’BlLl Zeff 3/2

 Radiative EWSB Is generic in our construction for a
large range of values 0.1<Z3’ <3

« However, generically get M, ~ O(m,,)

« Getting M, ~91GeV requires fine tuning up to
0.01% level



Conclusions

» Generalized the previous construction by relying only
on the most basic property of the bulk Kahler potential

* Presented a very general form of the Kahler potential
for chiral matter and used it in the construction

 All moduli are stabilized by the potential generated by
the strong gauge dynamics in the hidden sector. The
superpotential Is very simple, contains only two terms!

 Supersymmetry is broken spontaneously via F-terms
(no antibranes are needed for uplifting)



» Constrained My, ~ O(10) TeV from CC=0

« Demonstrated via explicit computations that the soft
breaking terms are independent of the detailed
microscopic structure of the Kahler potential

- Gauginos are always light: M, , ; ~ O(100-1000) GeV
» Gauge coupling unification and REWSB are generic
* The little hierarchy problem leads to 0.01% tuning

« Typical spectrum: light gauginos and heavy scalars
and higgsinos, Bino LSP is generic but can be Wino



Related work

 Found a robust solution to the Strong CP problem and

realization of the String Axiverse
( K.B. with Bobby Acharya and Piyush Kumar; hep-th/1004.5138)

 Constructed a new class of compactifications in Type
1B on CY orientifolds, completely analogous to the M-
theory models described here. Found explicit CY

examples that implement the idea. (k.B with Volker Braun,
Piyush Kumar and Stuart Raby: hep-th 1003.1982)

Things to do in the future
 Baryogenesis (AD mechanism is a good candidate)
* Yukawa couplings and neutrino masses
* Inflation (probably need to know the details of V-(s;))



