The All-Loop S-Matrix of $\mathcal{N}=4$ Super Yang-Mills

Jacob L. Bourjaily
Princeton University \& IAS

in collaboration with
N. Arkani-Hamed, F. Cachazo, and J. Trnka also with Andrew Hodges and S. Caron-Huot, [arXiv:1012.6032], [arXiv:1012.6030], [arXiv:1008.2958], ([arXiv:1006:1899], [arXiv:0912.4912], [arXiv:0912.3249])

Outline

(1) Spiritus Movens

- MHV Amplitudes in Quantum Chromodynamics: A Parable
- The Generalization of Parke-Taylor's Formula Through 3-Loops
(2) Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux
- Colour \& Kinematics: the Vernacular of the S-Matrix
- Tree-Level Recursion: Making the Impossible, Possible
- Momentum Twistors and Geometry: Trivializing Kinematics
(3) Beyond Trees: Recursion Relations for Loop-Amplitudes
- The Loop Integrand in Momentum-Twistor Space
- Pushing BCFW Forward to All-Loop Orders
- The Geometry of Forward Limits

4 Local Loop Integrals for Scattering Amplitudes

- Leading Singularities and Schubert Calculus
- Manifestly-Finite Momentum-Twistor Integrals
- Pushing the Analytic S-Matrix Forward

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution to" the amplitude for $g g \rightarrow g g g g$.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution to" the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams
- using $\mathcal{N}=2$ supersymmetry to relate it to e.g., $\mathcal{A}_{6}\left(g^{+}, g^{+}, \phi^{+}, \phi^{+}, \phi^{-}, \phi^{-}\right)$
- employing the world's best supercomputers

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi Nattonal Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution to" the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams thousands of terms
- using $\mathcal{N}=2$ supersymmetry to relate it to

- employing the world's best supercomputers

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi Natoonal Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution to" the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- using $\mathcal{N}=2$ supersymmetry to relate it to e.g., $\mathcal{A}_{6}\left(g^{+}, g^{+}, \phi^{+}, \phi^{+}, \phi^{-}, \phi^{-}\right)$
- employing the world's best supercompute s

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi Nattonal Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA
Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution to" the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- using $\mathcal{N}=2$ supersymmetry to relate it to

$$
\text { e.g., } \mathcal{A}_{6}\left(g^{+}, g^{+}, \phi^{+}, \phi^{+}, \phi^{-}, \phi^{-}\right)
$$

- employing the world's best supercomputers

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi Nattonal Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution to" the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- using $\mathcal{N}=2$ supersymmetry to relate it to

$$
\text { e.g., } \mathcal{A}_{6}\left(g^{+}, g^{+}, \phi^{+}, \phi^{+}, \phi^{-}, \phi^{-}\right)
$$

- employing the world's best supercomputers

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi Natoonal Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution to" the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- using $\mathcal{N}=2$ supersymmetry to relate it to

$$
\text { e.g., } \mathcal{A}_{6}\left(g^{+}, g^{+}, \phi^{+}, \phi^{+}, \phi^{-}, \phi^{-}\right)
$$

- employing the world's best supercomputers
- final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi Natoonal Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution to" the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- using $\mathcal{N}=2$ supersymmetry to relate it to

$$
\text { e.g., } \mathcal{A}_{6}\left(g^{+}, g^{+}, \phi^{+}, \phi^{+}, \phi^{-}, \phi^{-}\right)
$$

- employing the world's best supercomputers
- final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi Natoonal Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke \& Taylor, Nucl. Phys. B269

412
SI. Purke, T.R Tastor/ Four phonon prosuction
gluons. The cross section for the scattering of two gluons with momenta p_{1}, p_{2} into Tour gluons with momenta $p_{s,}, p_{4}, p_{y}, p_{4}$ is obtained from eq. (5) by setting $I=2$ and Teplacing the momenta $p_{3}, p_{4}, p_{s}, p_{6}$ by $-p_{3}-p_{4}-p_{s}-p_{4}$
As the result of the computation of two hundred and forty Feynman diagrams, eobtain
$A_{\left(3_{2}\right)}\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{2}\right)$
where $\mathscr{S}_{,} \mathscr{P}_{\infty} \Phi_{\sigma}$ and $S_{\text {, are }} 11$-component complex vector functions of the momenta $P_{1} P_{2} P_{3}, P_{s} P_{g}$ and P_{e} and $K_{1} K_{s} K_{\sigma}$ and K, are constant 11×11 symmetric matrices. The vectors $S_{\mu} \mathscr{S}_{\sigma}$ and $S_{,}$, are obtained from the vector \mathscr{S} by the permulations $\left(p_{3} * p_{p}\right),\left(p_{s} * p_{k}\right)$ and $\left(p_{2} \leftrightarrow p_{s}, p_{s} * p_{0}\right)$, respectively, of the momentum variables in 2. The individual components of the vector \mathcal{M} represent the sums of all contribumatrices K, which are the suitable sums over the color indices of products of the color bases, contain two independent structures, proportional to $N^{(}\left(\boldsymbol{N}^{2}-1\right)$ and $N^{2}\left(N^{2}-1\right)$, respectively (N is the number of colors, $N=3$ for $Q C D$):
$K=\mathrm{L}^{2} \boldsymbol{N}^{2}\left(N^{2}-1\right) K^{(4)}+\frac{1 g^{2}}{} N^{2}\left(N^{2}-1\right) K^{(2)}$,
Here 8 denotes the gauge coupling constant. The matrices $K^{(1)}$ and $K^{(5)}$ are given in table 1. The vector S is related to the thirty-three diagrams $D^{\circ}(I-1-33)$ for wo-gluon to four-scealar scattering, eleven diagrams $D^{f}(I=1-11)$ for two-fermion of fourscalar scattering and sixteen diagrams $D^{8}(I=1-16)$ for two-scalar to
four-scalar scattering, in the following way:
 $\left.-2 s_{4} G\left(p_{s}+p_{s}, p_{s}+p_{6}\right) C^{s} \cdot D_{8}^{4}\right\}$,
$\mathscr{S}_{2}=\frac{s_{14}}{s_{3}} C^{\square} \cdot D_{2}^{6}$,
where the constant matrices $C^{\circ}(11 \times 33), C^{f}(11 \times 11)$ and $C^{\Sigma}(11 \times 16)$ are given in table 2. The Lorentz invariants s_{s} and t_{s+} are defined as $s_{q}=\left(p_{v}+p_{p}\right)^{2}, t_{u k}=$ $\left(p_{1}+p_{1}+p_{k}\right)^{2}$ and the complex functions E and G are given by

$\sigma\left(p_{*} p_{p}\right)=E\left(p_{*}, p_{s}\right) E\left(p_{n} p_{*}\right)$,

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution to" the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- using $\mathcal{N}=2$ supersymmetry to relate it to

$$
\text { e.g., } \quad \mathcal{A}_{6}\left(g^{+}, g^{+}, \phi^{+}, \phi^{+}, \phi^{-}, \phi^{-}\right)
$$

- employing the world's best supercomputers
- final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi Nattonal Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

Parke \& Taylor, Nucl. Phys. ${ }^{\text {B26 }}$
S. Parke, T.R. Taylar/ Faur given penfuctoven

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution to" the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- using $\mathcal{N}=2$ supersymmetry to relate it to

$$
\text { e.g., } \quad \mathcal{A}_{6}\left(g^{+}, g^{+}, \phi^{+}, \phi^{+}, \phi^{-}, \phi^{-}\right)
$$

- employing the world's best supercomputers
- final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi Nattonal Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA
Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution to" the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- using $\mathcal{N}=2$ supersymmetry to relate it to

$$
\text { e.g., } \mathcal{A}_{6}\left(g^{+}, g^{+}, \phi^{+}, \phi^{+}, \phi^{-}, \phi^{-}\right)
$$

- employing the world's best supercomputers
- final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi Nattonal Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution to" the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- using $\mathcal{N}=2$ supersymmetry to relate it to

$$
\text { e.g., } \quad \mathcal{A}_{6}\left(g^{+}, g^{+}, \phi^{+}, \phi^{+}, \phi^{-}, \phi^{-}\right)
$$

- employing the world's best supercomputers
- final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi Nattonal Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke \& Taylor, Nuce. Phys: Bz69

```
416 SJ. Parke, T.R Teglor/ Fower glan pmadcrian
D}\mp@subsup{D}{2}{G}(9)=\frac{4}{\mp@subsup{s}{4}{\prime},\mp@subsup{s}{5}{\prime}\mp@subsup{f}{1,2}{\prime}
```



```
D
    -{(\mp@subsup{p}{1}{}-\mp@subsup{p}{2}{}+\mp@subsup{p}{9}{})(\mp@subsup{p}{4}{}-\mp@subsup{p}{3}{}+\mp@subsup{p}{6}{})]E(\mp@subsup{p}{3}{},\mp@subsup{p}{0}{})+[\mp@subsup{p}{1}{}(\mp@subsup{p}{2}{}-\mp@subsup{p}{4}{})]E(\mp@subsup{p}{3}{}-\mp@subsup{p}{4}{}\mp@subsup{p}{0}{})},
D
D
```



```
D
D
```



```
D
D D(19) = - -2 
D
D
D
```


Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution to" the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- using $\mathcal{N}=2$ supersymmetry to relate it to

$$
\text { e.g., } \quad \mathcal{A}_{6}\left(g^{+}, g^{+}, \phi^{+}, \phi^{+}, \phi^{-}, \phi^{-}\right)
$$

- employing the world's best supercomputers
- final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi Nattonal Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA
Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution to" the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- using $\mathcal{N}=2$ supersymmetry to relate it to

$$
\text { e.g., } \quad \mathcal{A}_{6}\left(g^{+}, g^{+}, \phi^{+}, \phi^{+}, \phi^{-}, \phi^{-}\right)
$$

- employing the world's best supercomputers
- final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi Nattonal Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke \& Taylor, Nucl. Phys. B269

```
418
    D
```



```
    D
    D
    D
```



```
    D
    D
    D
    D}\mp@subsup{D}{0}{\prime}(11)=\frac{1}{2\mp@subsup{s}{4}{\prime}\mp@subsup{s}{3}{}\mp@subsup{s}{3}{*}
```



```
    The diagrams }\mp@subsup{D}{0}{5}\mathrm{ are listed below:
    Dol
    D
    D
    D
    D
    D
```


Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution to" the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- using $\mathcal{N}=2$ supersymmetry to relate it to

$$
\text { e.g., } \quad \mathcal{A}_{6}\left(g^{+}, g^{+}, \phi^{+}, \phi^{+}, \phi^{-}, \phi^{-}\right)
$$

- employing the world's best supercomputers
- final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi Nattonal Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

Parke \& Taylor, Nuce. Phys: B269
$D_{06}^{s}(7)=\frac{1}{s_{33} s_{3} t_{12}}\left[s_{56}-s_{44}+s_{24}\right]\left[s_{12}-s_{15}-s_{23}\right]$.

$D_{6}^{5}(9)=\frac{1}{s_{23} s_{34} t_{13}}\left[s_{14}+s_{54}-s_{13}\right]\left[s_{53}-s_{88}+s_{23}\right]$.
$D_{6}^{5}(10)=\frac{1}{s_{2} s_{6}}\left(p_{2}-p_{y}\right)\left(p_{y}-p_{6}\right)$,
$D_{\sigma}^{z}(11)=\frac{1}{s_{14} f_{36}}\left(p_{1}-p_{4}\right)\left(p_{s}-p_{6}\right)$,
$D_{0}^{5}(12)=\frac{1}{s_{1} 6_{3} s_{3}}\left(p_{6}-p_{1}\right)\left(p_{2}-p_{s}\right)$.
$D_{0}^{8}(13)=\frac{1}{s_{1} s_{54}}\left(p_{s}-p_{1}\right)\left(p_{s}-p_{s}\right)$.
$D_{0}^{8}(14)=\frac{1}{s_{3} s_{4}}\left(p_{2}-p_{3}\right)\left(p_{3}-p_{4}\right)$,
$D_{0}^{8}(15)-\frac{1}{s_{1} s_{2} s_{3} s_{3}}\left\{\left[\left(p_{2}+p_{s}\right)\left(p_{2}-p_{0}\right)\right]\left[\left(p_{1}-p_{4}\right)\left(p_{2}-p_{3}\right)\right]\right.$ $\left.+\left[\left(p_{s}-p_{s}\right)\left(p_{s}-p_{6}\right)\right]\left(p_{1}-p_{c}\right)\left(p_{s}+p_{b}\right)\right]$ $\left.\left.+\left[\left(p_{1}+p_{4}\right)\left(p_{2}-p_{3}\right)\right]\left(p_{1}-p_{4}\right)\left(p_{3}-p_{0}\right)\right]\right]$,
$D_{0}^{z}(16)=\frac{2}{s_{1} s_{3} s_{13} s_{3}}\left\{\left[\left(p_{2}-p_{3}\right)\left(p_{3}+p_{4}\right)\right]\left(p_{1}-p_{0}\right)\left(p_{3}-p_{2}\right)\right]$ $+\left[\left(p_{1}+p_{6}\right)\left(p_{3}-p_{b}\right)\left[\left(p_{1}-p_{6}\right)\left(p_{2}-p_{s}\right)\right]\right.$ $\left.\left.+\left[\left(p_{1}-p_{4}\right)\left(p_{2}+p_{4}\right)\right]\left(p_{3}-p_{4}\right)\left(p_{2}-p_{3}\right)\right]\right\}$

Given the complexity of the final result, it is very important to have some reliable testing procedures available for numerical calculations. Usually in QCD, the multigluon amplitudes are tested by checking the gauge invariance. Due to the specifics

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution to" the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- using $\mathcal{N}=2$ supersymmetry to relate it to

$$
\text { e.g., } \quad \mathcal{A}_{6}\left(g^{+}, g^{+}, \phi^{+}, \phi^{+}, \phi^{-}, \phi^{-}\right)
$$

- employing the world's best supercomputers
- final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Parke \& Taylor, Nucl. Phys. B269

${ }_{420}$
SL Parke T.R Tayia/ Fsour aliwn mativeson
of our calculation, the most powerful test does not rely on the gauge symmetry, but on the appropriate permutation symmetries. The function $A_{0}\left(p_{1}, p_{3}, p_{3}, p_{4}, p_{s}, p_{s}\right)$ must be symmetric under arbitrary permutations of the momenta (p, p_{1}, p_{5}) and separately, (p_{4}, p_{s}, p_{4}), whereas the function $A_{2}\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{3}, p_{6}\right.$ must be sym-
metric under the permutations of ($p_{1}, p_{3}, p_{3}, p_{4}$) and separately, $\left(p_{s, t}, p_{0}\right)$ This test is extremely powerful, because the required petmutation symmetries are hidden in our supersymmetry relations, eqs. (1) and (3), and in the structure of amplitudes involving different species of particles. Another, very important test relies on the absence of the double poles of the form $\left(s_{q}\right)^{-2}$ in the cross section, as required by general arguments based on the helicity conservation. Further, in the leading (s_{s}) pole approximation, the answer should reduce to the two goes to three cross section 3,4], convoluted with the appropriate Altarelli-Parisi probabilities [5]. Our resul Details of the calculation, together with a full exs.
be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic form for the answer, making our result not only an experimentalist's, but also a theorist's delight.
We thank Keith Ellis, Chris Quige and especially, Estia Eichten for many useful discussions and encouragement during the course of this work. We acknowiedge he bospitality of Aspen Center for Physies, where this work was being completed in a pleasant, strung-out atmosphere.

References

(1) E Eichten, L Heavite, K Lane mad C. Quiss, Rev. Mod. Piys 56 (1984) 579 (1) 2 Kunses, Nual. Phyz 1247 (10884) 339 3) 5J. Parke eed TR. Trylot, Phys. Lell. 1578 (1995s) 81

Stephen J. PARKE and T.R. TAYLOR
Fermi Nattonal Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution to" the amplitude for $g g \rightarrow g g g g$.

Parke \& Taylor, Nucl. Phys. B269

- 220 Feynman diagrams, thousands of terms
- using $\mathcal{N}=2$ supersymmetry to relate it to

$$
\text { e.g., } \mathcal{A}_{6}\left(g^{+}, g^{+}, \phi^{+}, \phi^{+}, \phi^{-}, \phi^{-}\right)
$$

- employing the world's best supercomputers
- final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

420
S. Purke T.R Tayinu / Four alicon maticson
of our calculation, the most powerful test does not rely on the gauge symmetry, but on the appropriate permutation symmetries. The function $A_{0}\left(p_{1}, p_{s}, p_{3}, p_{4}, p_{s}, p_{s}\right)$ must be symmetric under arbitrary permutations of the thomenta (p, p, p, p) and
 extremely powerful, because the required permutation symmetries are hidden in our supersymmetry relations, eqs. (1) and (3), and in the structure of amplitudes involving different species of particles. Another, very important test relies on the absence of the double poles of the form $\left(s_{q}\right)^{-2}$ in the cross section, as requirod by
general arguments based on the helicity conservation. Further, in the leading $\left(s_{q}\right)^{-1}$ general arguments based on the helicity conservation. Further, in the leading $\left(s_{y}\right)^{-1}$
pole approximation, the answer shoald reduce to the two goes to three cross section
 [3,4], convolune passed both these numberical checks. Details of the calculation, together with a full exposition of our techniques, will be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic
form for the answer, making our result not only an experimeatalist's, but also a theorist's delight.

We thank Kell
discussions and encouragement during the conellise of thiswant wher many useful discussions and encouragement during the course of this work. We acknowledge
the hospitality of Aspen Center for Physics, where this work was being comp)eted in a pleasant, strung-out atmosphere.

References

(1] E. Elicton, L Huconist, K. Lame mad C. Quiss. Rev. Mod. Phys 56 (1584) 579
(23) SK. Parace ead T.R. Tyylot, Phys. Letl. 1578 (1985) \&t

Stephen J. PARKE and T.R. TAYLOR
Fermi Natoonal Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution to"
the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- using $\mathcal{N}=2$ supersymmetry to relate it to

$$
\text { e.g., } \quad \mathcal{A}_{6}\left(g^{+}, g^{+}, \phi^{+}, \phi^{+}, \phi^{-}, \phi^{-}\right)
$$

- employing the world's best supercomputers
- final formula: 8 pages long

Parke \& Taylor, Nucl. Phys. B269

420

of our calculation, the most powerful test does not rely on the gauge symmetry, but on the appropriate permutation symmetries. The function $A_{0}\left(p_{1}, p_{3}, p_{3}, p_{4}, p_{3}, p_{0}\right)$ must be symmetric under arbitrary permutations of the thomenta (p, p, p, p) and separately, $\left(P_{4}, P_{4}, p_{3}\right)$ whereas the function $A_{2}\left(P_{1}, p_{2}, p_{3}, p_{4}, p_{3}, P_{4}\right.$ must be sym-
metric under the permutations of ($\left.p_{1}, p_{3}, p_{3}, p_{4}\right)$ and separately, $\left(p_{s}, P_{6}\right)$. This test is extremely powerful, because the required permulation symmetries are hidden in our supersymmetry relations, eq3. (1) and (3), and in the structure of amplitudes involving different species of particles. Another, very important test relies on the absence of the double poles of the form $\left(s_{q}\right)^{-2}$ in the cross section, as requirod by
general arguments based on the helicity conservation. Further, in the leading $\left(s_{q}\right)^{-1}$ general arguments based on the helicity conservation. Further, in the leading $\left(s_{q}\right)^{-1}$
pole approximation, the answer should reduce to the two goes to three cross section pole approximation, the answer shoald reduce to the two goes to three cross section
$[3,4]$, convolumentintile [3,4], convolunn passed both these numerical checks. Details of the calculation, together with a full exposition of our tectrniques, will be given in a forthcoming article. Furthermore, we hope to obbain a simple analytic
form for the answer, making our result not only an experimeatalist's, but also a theorist's delight.

We thank Kell
discussions and encouragement during thenecillu, onvisemonerlor many useful discussions and encouragement during the course of this work. We acknowiedge
the bospitality of Aspen Center for Physics, where this work was being completed in a pleasant, strung-out atmosphere.

References

 [2] Z Kunse, Nuct. Phys iz4t (17984) 339

Details of the calculation, together with a full exposition of our techniques, will be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic form for the answer, making our result not only an experimentalist's, but also a theorist's delight.

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not just for not their amplitude but an infinite number of amplitudes!

In modern notation, they suggested that

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not just for not their amplitude but an infinite number of amplitudes!

In modern notation, they suggested that

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not just for not their amplitude but an infinite number of amplitudes!

In modern notation, they suggested that

$$
\mathcal{A}_{n}^{(2)}\left(\ldots, j^{-}, \ldots, k^{-}, \ldots\right)
$$

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not just for not their amplitude but an infinite number of amplitudes!

In modern notation, they suggested that

$$
\mathcal{A}_{n}^{(2)}\left(\ldots, j^{-}, \ldots, k^{-}, \ldots\right)=\frac{\langle j k\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}
$$

Generalizing Parke-Taylor's Formula Through 3-Loops:

In recent months, similar simplifications have been 'guessed' (and checked):

$$
\mathcal{A}_{n}^{(2)}\left(\ldots, j^{-}, \ldots, k^{-}, \ldots\right)=\frac{\langle j k\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}
$$

Generalizing Parke-Taylor's Formula Through 3-Loops:

In recent months, similar simplifications have been 'guessed' (and checked):

$$
\mathcal{A}_{n}^{(2)}\left(\ldots, j^{-}, \ldots, k^{-}, \ldots\right)=\frac{\langle j k\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}
$$

$\times\{1$

Generalizing Parke-Taylor's Formula Through 3-Loops:

In recent months, similar simplifications have been 'guessed' (and checked):

$$
\mathcal{A}_{n}^{(2)}\left(\ldots, j^{-}, \ldots, k^{-}, \ldots\right)=\frac{\langle j k\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}
$$

$$
\times\left\{1+\sum_{i<j<i}\right.
$$

Generalizing Parke-Taylor's Formula Through 3-Loops:

In recent months, similar simplifications have been 'guessed' (and checked):

$$
\mathcal{A}_{n}^{(2)}\left(\ldots, j^{-}, \ldots, k^{-}, \ldots\right)=\frac{\langle j k\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}
$$

$$
\times \begin{cases}1 & + \\ \end{cases}
$$

Generalizing Parke-Taylor's Formula Through 3-Loops:

In recent months, similar simplifications have been 'guessed' (and checked):

$$
\mathcal{A}_{n}^{(2)}\left(\ldots, j^{-}, \ldots, k^{-}, \ldots\right)=\frac{\langle j k\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}
$$

Simple Sources of Simplification

An n-point scattering amplitude is specified by listing each particle's:

Simple Sources of Simplification

An n-point scattering amplitude is specified by listing each particle's:

- momentum, (which we take to be incoming)

- colour

Simple Sources of Simplification

An n-point scattering amplitude is specified by listing each particle's:

- momentum, (which we take to be incoming)
- helicity
- colour

Simple Sources of Simplification

An n-point scattering amplitude is specified by listing each particle's:

- momentum, (which we take to be incoming)
- helicity

Simple Sources of Simplification

An n-point scattering amplitude is specified by listing each particle's:

- momentum, (which we take to be incoming)
- helicity
- colour

Simple Sources of Simplification

An n-point scattering amplitude is specified by listing each particle's:

- momentum, (which we take to be incoming)
- helicity
- colour
each can be significantly better-organized

Simple Sources of Simplification: Colour-Ordering

An n-point scattering amplitude is specified by listing each particle's:

- momentum, (which we take to be incoming)
- helicity
- colour
each can be significantly better-organized

By shuffling all colour-factors to the outside of every Feynman diagram, we can write the amplitude* for any desired colourordering in terms of any other.

Simple Sources of Simplification: Colour-Ordering

An n-point scattering amplitude is specified by listing each particle's:

- momentum, (which we take to be incoming)
- helicity
- colour

By shuffling all colour-factors to the outside of every Feynman diagram, we can write the amplitude* for any desired colourordering in terms of any other.

Colour-ordered partial amplitudes

$A_{n}\left(\left\{p_{a}\right\}\right)=\sum \operatorname{Tr}\left(T^{a_{1}} \cdots T^{a_{n}}\right) \mathcal{A}_{n}\left(p_{a_{1}}, \ldots, p_{a_{n}}\right)$

Simple Sources of Simplification: Colour-Ordering

An n-point scattering amplitude is specified by listing each particle's:

- momentum, (which we take to be incoming)
- helicity
- colour

By shuffling all colour-factors to the outside of every Feynman diagram, we can write the amplitude* for any desired colourordering in terms of any other.

Colour-ordered partial amplitudes

$A_{n}\left(\left\{p_{a}\right\}\right)=\sum \operatorname{Tr}\left(T^{a_{1}} \cdots T^{a_{n}}\right) \mathcal{A}_{n}\left(p_{a_{1}}, \ldots, p_{a_{n}}\right)$

$$
\text { e.g. } \mathcal{A}_{9}\left(1^{+}, 2^{+}, 3^{-}, 4^{+}, 5^{-}, 6^{+}, 7^{-}, 8^{+}, 9^{-}\right)
$$

Simple Sources of Simplification: Spinor-Helicity Variables

An n-point scattering amplitude is specified by listing each particle's:

- momentum, (which we take to be incoming)
- helicity
- colour

Simple Sources of Simplification: Spinor-Helicity Variables

An n-point scattering amplitude is specified by listing each particle's:

- momentum, (which we take to be incoming)
- helicity
- colour

Scattering amplitudes for massless particles are not directly functions four-momenta, but functions of spinor variables:

Simple Sources of Simplification: Spinor-Helicity Variables

An n-point scattering amplitude is specified by listing each particle's:

- momentum, (which we take to be incoming)
- helicity
- colour

Scattering amplitudes for massless particles are not directly functions four-momenta, but functions of spinor variables:

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right)
$$

Simple Sources of Simplification: Spinor-Helicity Variables

An n-point scattering amplitude is specified by listing each particle's:

- momentum, (which we take to be incoming)
- helicity
- colour

Scattering amplitudes for massless particles are not directly functions four-momenta, but functions of spinor variables:

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right)
$$

Notice that $p^{\mu} p_{\mu}=\operatorname{det}\left(p^{\alpha \dot{\alpha}}\right)$.

Simple Sources of Simplification: Spinor-Helicity Variables

An n-point scattering amplitude is specified by listing each particle's:

- momentum, (which we take to be incoming)
- helicity
- colour

Scattering amplitudes for massless particles are not directly functions four-momenta, but functions of spinor variables:

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right)
$$

Notice that $p^{\mu} p_{\mu}=\operatorname{det}\left(p^{\alpha \dot{\alpha}}\right)$. For massless particles, $\operatorname{det}\left(p^{\alpha \dot{\alpha}}\right)=0$.

Simple Sources of Simplification: Spinor-Helicity Variables

An n-point scattering amplitude is specified by listing each particle's:

- momentum, (which we take to be incoming)
- helicity
- colour

Scattering amplitudes for massless particles are not directly functions four-momenta, but functions of spinor variables:

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}
$$

Notice that $p^{\mu} p_{\mu}=\operatorname{det}\left(p^{\alpha \dot{\alpha}}\right)$. For massless particles, $\operatorname{det}\left(p^{\alpha \dot{\alpha}}\right)=0$.

Simple Sources of Simplification: Spinor-Helicity Variables

An n-point scattering amplitude is specified by listing each particle's:

- momentum, (which we take to be incoming)
- helicity
- colour

Scattering amplitudes for massless particles are not directly functions four-momenta, but functions of spinor variables:

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}
$$

Useful Lorentz-invariant scalars:

$$
\langle a b\rangle \equiv\left|\begin{array}{cc}
\lambda_{a}^{1} & \lambda_{b}^{1} \\
\lambda_{a}^{2} & \lambda_{b}^{2}
\end{array}\right|, \quad[a b] \equiv \left\lvert\, \begin{array}{cc}
\widetilde{\lambda}_{a}^{i} & \widetilde{\lambda}_{b}^{i} \\
\widetilde{\lambda}_{a}^{2} & \widetilde{\lambda}_{b}^{2}
\end{array}\right.
$$

$$
\left.\left.\left(p_{a}+p_{b}\right)^{2}=\langle a b\rangle[b a] \equiv s_{a b}, \quad\langle a|(b+\ldots+c) \mid d\right] \equiv\langle a|(b\rangle[b+\ldots+c\rangle[c) \mid d\right] .
$$

Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux Local Loop Integrals for Scattering Amplitudes

Simple Sources of Simplification: $\mathcal{N}=4$ Supersymmetry

An n-point scattering amplitude is specified by listing each particle's:

- momentum, (which we take to be incoming)
- helicity
- colour

In $\mathcal{N}=4$, all external states are related by supersymmetry.

- at tree-level, pure-glue amplitudes are the same in $\mathcal{N}=4$ and $\mathcal{N}=0$ - all amplitudes with $m^{\text {' }}-$ ' helicity particles are related

Simple Sources of Simplification: $\mathcal{N}=4$ Supersymmetry

An n-point scattering amplitude is specified by listing each particle's:

- momentum, (which we take to be incoming)
- helicity
- colour

In $\mathcal{N}=4$, all external states are related by supersymmetry.

- at tree-level, pure-glue amplitudes are the same in $\mathcal{N}=4$ and $\mathcal{N}=0$
- all amplitudes with m '-' helicity particles are related

Simple Sources of Simplification: $\mathcal{N}=4$ Supersymmetry

An n-point scattering amplitude is specified by listing each particle's:

- momentum, (which we take to be incoming)
- helicity
- colour

In $\mathcal{N}=4$, all external states are related by supersymmetry.

- at tree-level, pure-glue amplitudes are the same in $\mathcal{N}=4$ and $\mathcal{N}=0$
- all amplitudes with $m^{\text {' }}$-' helicity particles are related

Simple Sources of Simplification: $\mathcal{N}=4$ Supersymmetry

An n-point scattering amplitude is specified by listing each particle's:

- momentum, (which we take to be incoming)
- helicity
- colour

In $\mathcal{N}=4$, all external states are related by supersymmetry.

- at tree-level, pure-glue amplitudes are the same in $\mathcal{N}=4$ and $\mathcal{N}=0$
- all amplitudes with m '-' helicity particles are related
N^{k} MHV Classification of Amplitudes
- $\mathcal{A}_{n}^{(m=0)}(+, \ldots,+)=0$

Simple Sources of Simplification: $\mathcal{N}=4$ Supersymmetry

An n-point scattering amplitude is specified by listing each particle's:

- momentum, (which we take to be incoming)
- helicity
- colour

In $\mathcal{N}=4$, all external states are related by supersymmetry.

- at tree-level, pure-glue amplitudes are the same in $\mathcal{N}=4$ and $\mathcal{N}=0$
- all amplitudes with $m^{\text {' }}$-' helicity particles are related
N^{k} MHV Classification of Amplitudes
- $\mathcal{A}_{n}^{(m=0)}(+, \ldots,+)=0$

Simple Sources of Simplification: $\mathcal{N}=4$ Supersymmetry

An n-point scattering amplitude is specified by listing each particle's:

- momentum, (which we take to be incoming)
- helicity
- colour

In $\mathcal{N}=4$, all external states are related by supersymmetry.

- at tree-level, pure-glue amplitudes are the same in $\mathcal{N}=4$ and $\mathcal{N}=0$
- all amplitudes with $m^{\text {' }}$-' helicity particles are related
N^{k} MHV Classification of Amplitudes
- $\mathcal{A}_{n}^{(m=0)}(+, \ldots,+)=0$
- $\mathcal{A}_{n}^{(1)}(+, \ldots,-, \ldots,+)=0 \quad(n>3)$

Simple Sources of Simplification: $\mathcal{N}=4$ Supersymmetry

An n-point scattering amplitude is specified by listing each particle's:

- momentum, (which we take to be incoming)
- helicity
- colour

In $\mathcal{N}=4$, all external states are related by supersymmetry.

- at tree-level, pure-glue amplitudes are the same in $\mathcal{N}=4$ and $\mathcal{N}=0$
- all amplitudes with $m^{\text {' }}$-' helicity particles are related
N^{k} MHV Classification of Amplitudes
- $\mathcal{A}_{n}^{(m=0)}(+, \ldots,+)=0$
- $\mathcal{A}_{n}^{(1)}(+, \ldots,-, \ldots,+)=0 \quad(n>3)$

Simple Sources of Simplification: $\mathcal{N}=4$ Supersymmetry

An n-point scattering amplitude is specified by listing each particle's:

- momentum, (which we take to be incoming)
- helicity
- colour

In $\mathcal{N}=4$, all external states are related by supersymmetry.

- at tree-level, pure-glue amplitudes are the same in $\mathcal{N}=4$ and $\mathcal{N}=0$
- all amplitudes with $m^{\text {' }}-$ ' helicity
- $\mathcal{A}_{n}^{(m=0)}(+, \ldots,+)=0$
- $\mathcal{A}_{n}^{(1)}(+, \ldots,-, \ldots,+)=0 \quad(n>3)$
- $\mathcal{A}_{n}^{(2)}\left(j^{-}, \ldots, k^{-}\right)=\frac{\langle j k\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude:

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude:

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n}
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widehat{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widehat{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(z=0)
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widehat{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(z=0)=\oint_{z=0} d z \frac{\widehat{\mathcal{A}}_{n}(z)}{z}
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widetilde{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(z=0)=\oint_{z=0} d z \frac{\widehat{\mathcal{A}}_{n}(z)}{z}
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widetilde{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(z=0)=\oint_{z=0} d z \frac{\widehat{\mathcal{A}}_{n}(z)}{z}
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widetilde{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(z=0)=\oint_{z=0} d z \frac{\widehat{\mathcal{A}}_{n}(z)}{z}
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widetilde{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(z=0)=\oint_{z=0} d z \frac{\widehat{\mathcal{A}}_{n}(z)}{z}
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widetilde{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(z=0)=\oint_{z=0} d z \frac{\widehat{\mathcal{A}}_{n}(z)}{z}
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widetilde{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(z=0)=\oint_{z=0} d z \frac{\widehat{\mathcal{A}}_{n}(z)}{z}
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widetilde{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(z=0)=\oint_{z=0} d z \frac{\widehat{\mathcal{A}}_{n}(z)}{z}
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widetilde{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(z=0)=\oint_{z=0} d z \frac{\widehat{\mathcal{A}}_{n}(z)}{z}
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widetilde{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(z=0)=\oint_{z=0} d z \frac{\widehat{\mathcal{A}}_{n}(z)}{z}
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widetilde{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(z=0)=\oint_{z=0} d z \frac{\widehat{\mathcal{A}}_{n}(z)}{z}
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widetilde{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(z=0)=\oint_{z=0} d z \frac{\widehat{\mathcal{A}}_{n}(z)}{z}
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widetilde{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(z=0)=\oint_{z=0} d z \frac{\widehat{\mathcal{A}}_{n}(z)}{z}
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widehat{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(z=0)=\oint_{z=0} d z \frac{\widehat{\mathcal{A}}_{n}(z)}{z}
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widehat{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(z=0)=\oint_{z=0} d z \frac{\widehat{\mathcal{A}}_{n}(z)}{z}
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widehat{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widehat{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widetilde{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(z=0)=\oint_{z=0} d z \frac{\widehat{\mathcal{A}}_{n}(z)}{z}
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widetilde{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(z=0)=\oint_{z=0} d z \frac{\widehat{\mathcal{A}}_{n}(z)}{z}
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widehat{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(z=0)=-\oint_{z \neq 0} d z \frac{\widehat{\mathcal{A}}_{n}(z)}{z}
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widehat{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(z=0)=-\oint_{z \neq 0} d z \frac{\widehat{\mathcal{A}}_{n}(z)}{z}
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widehat{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(z=0)=-\oint_{z \neq 0} d z \frac{\widehat{\mathcal{A}}_{n}(z)}{z}
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widehat{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(z=0)=-\oint_{z \neq 0} d z \frac{\widehat{\mathcal{A}}_{n}(z)}{z}
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widehat{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(z=0)=-\oint_{z \neq 0} d z \frac{\widehat{\mathcal{A}}_{n}(z)}{z}
$$

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_{n} \mapsto \widehat{\mathcal{A}}_{n}(z)$ (consistent with momentum conservation)

$$
\lambda_{1} \mapsto \widehat{\lambda}_{1} \equiv \lambda_{1}+z \lambda_{n} \quad \widetilde{\lambda}_{n} \mapsto \widehat{\widetilde{\lambda}}_{n} \equiv \widetilde{\lambda}_{n}-z \widetilde{\lambda}_{1}
$$

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(z=0)=-\oint_{z \neq 0} d z \frac{\widehat{\mathcal{A}}_{n}(z)}{z}
$$

Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux

When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple to generate theoretical 'data' about scattering amplitudes.

- Amplitudes are calculated with maximum efficiency
- Every term has an interpretation as a leading singularity
- Each term manifests all the symmetries of the theory

When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple to generate theoretical 'data' about scattering amplitudes. - Amplitudes are calculated with maximum efficiency

- Every term has an interpretation as a leading singularity
- Each term manifests all the symmetries of the theory

When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple to generate theoretical 'data' about scattering amplitudes.

- Amplitudes are calculated with maximum efficiency
- Every term has an interpretation as a leading singularity
- Each term manifests all the symmetries of the theory
e.g. the alternating 6-point NMHV amplitude can be written:

$$
\mathcal{A}_{6}^{(3)}(+,-,+,-,+,-)=\left(1+g^{2}+g^{4}\right) \frac{\langle 6|(2+3+4) \mid 3]^{4}}{\left.\left.s_{561}\langle 56\rangle\langle 61\rangle[23][34]\langle 1|(6+5) \mid 4\right]\langle 5|(6+1) \mid 2\right]}
$$

When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple to generate theoretical 'data' about scattering amplitudes. - Amplitudes are calculated with maximum efficiency

- but with enormous flexibility
- Every term has an interpretation as a leading singularity
- Each term manifests all the symmetries of the theory
e.g. the alternating 6-point NMHV amplitude can be written:

$$
\mathcal{A}_{6}^{(3)}(+,-,+,-,+,-)=\left(1+g^{2}+g^{4}\right) \frac{\langle 6|(2+3+4) \mid 3]^{4}}{\left.\left.s_{561}\langle 56\rangle\langle 61\rangle[23][34]\langle 1|(6+5) \mid 4\right]\langle 5|(6+1) \mid 2\right]}
$$

When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple to generate theoretical 'data' about scattering amplitudes.

- Amplitudes are calculated with maximum efficiency
- but with enormous flexibility
- Every term has an interpretation as a leading singularity
- Each term manifests all the symmetries of the theory
e.g. the alternating 6-point NMHV amplitude can be written:

$$
\mathcal{A}_{6}^{(3)}(+,-,+,-,+,-)=\left(1+g^{2}+g^{4}\right) \frac{\langle 6|(2+3+4) \mid 3]^{4}}{\left.\left.s_{561}\langle 56\rangle\langle 61\rangle[23][34]\langle 1|(6+5) \mid 4\right]\langle 5|(6+1) \mid 2\right]}
$$

but it can also be written:

$$
\mathcal{A}_{6}^{(3)}(+,-,+,-,+,-)=\left(1+g^{2}+g^{4}\right) \frac{\langle 46\rangle^{4}[13]^{4}}{\left.\left.s_{456}\langle 45\rangle\langle 56\rangle[12][23]\langle 4|(5+6) \mid 1\right]\langle 6|(5+4) \mid 3\right]}
$$

When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple to generate theoretical 'data' about scattering amplitudes.

- Amplitudes are calculated with maximum efficiency
- but with enormous flexibility
- Every term has an interpretation as a leading singularity
- Each term manifests all the symmetries of the theory
e.g. the alternating 6-point NMHV amplitude can be written:

$$
\mathcal{A}_{6}^{(3)}(+,-,+,-,+,-)=\left(1+g^{2}+g^{4}\right) \frac{\langle 6|(2+3+4) \mid 3]^{4}}{\left.\left.\left.s_{561}\langle 5\rangle\right\rangle\langle 61\rangle[23][34]\langle 1|(6+5) \mid 4\right]\langle 5|(6+1) \mid 2\right]}
$$

but it can also be written:

$$
\mathcal{A}_{6}^{(3)}(+,-,+,-,+,-)=\left(1+g^{2}+g^{4}\right) \frac{\langle 46\rangle^{4}[13]^{4}}{\left.\left.s_{456}\langle 45\rangle\langle 56\rangle[12][23]\langle 4|(5+6) \mid 1\right]\langle 6|(5+4) \mid 3\right]}
$$

For 8-point $\mathrm{N}^{2} \mathrm{MHV}$, there are 74 linearly-independent 40 -term identities connecting the different BCFW formulae.

When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple to generate theoretical 'data' about scattering amplitudes.

- Amplitudes are calculated with maximum efficiency
- but with enormous flexibility
- Every term has an interpretation as a leading singularity
- Each term manifests all the symmetries of the theory
e.g. the alternating 6-point NMHV amplitude can be written:

$$
\mathcal{A}_{6}^{(3)}(+,-,+,-,+,-)=\left(1+g^{2}+g^{4}\right) \frac{\langle 6|(2+3+4) \mid 3]^{4}}{\left.\left.s_{561}\langle 56\rangle\langle 61\rangle[23][34]\langle 1|(6+5) \mid 4\right]\langle 5|(6+1) \mid 2\right]}
$$

When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple to generate theoretical 'data' about scattering amplitudes.

- Amplitudes are calculated with maximum efficiency
- but with enormous flexibility
- Every term has an interpretation as a leading singularity
- Each term manifests all the symmetries of the theory
e.g. the alternating 6-point NMHV amplitude can be written:

$$
\mathcal{A}_{6}^{(3)}(+,-,+,-,+,-)=\left(1+g^{2}+g^{4}\right) \frac{\langle 6|(2+3+4) \mid 3]^{4}}{\left.\left.s_{561}\langle 56\rangle\langle 61\rangle\left[{ }_{3}^{3} 3\right][34]\langle 1|(6+5) \mid 4\right]\langle 5|(6+1) \mid 2\right]}
$$

When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple to generate theoretical 'data' about scattering amplitudes.

- Amplitudes are calculated with maximum efficiency
- but with enormous flexibility
- Every term has an interpretation as a leading singularity
- but with even more flexibility
- Each term manifests all the symmetries of the theory
e.g. the alternating 6-point NMHV amplitude can be written:

$$
\mathcal{A}_{6}^{(3)}(+,-,+,-,+,-)=\left(1+g^{2}+g^{4}\right) \frac{\langle 6|(2+3+4) \mid 3]^{4}}{\left.\left.s_{561}\langle 56\rangle\langle 61\rangle\left[{ }_{3}^{3} 3\right][34]\langle 1|(6+5) \mid 4\right]\langle 5|(6+1) \mid 2\right]}
$$

When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple to generate theoretical 'data' about scattering amplitudes.

- Amplitudes are calculated with maximum efficiency
- but with enormous flexibility
- Every term has an interpretation as a leading singularity
- but with even more flexibility
- Each term manifests all the symmetries of the theory
e.g. the alternating 6-point NMHV amplitude can be written:

$$
\mathcal{A}_{6}^{(3)}(+,-,+,-,+,-)=\left(1+g^{2}+g^{4}\right) \frac{\langle 6|(2+3+4) \mid 3]^{4}}{\left.\left.\left.s_{561}\langle 5\rangle\right\rangle\langle 61\rangle[23][34]\langle 1|(6+5) \mid 4\right]\langle 5|(6+1) \mid 2\right]}
$$

When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple to generate theoretical 'data' about scattering amplitudes.

- Amplitudes are calculated with maximum efficiency
- but with enormous flexibility
- Every term has an interpretation as a leading singularity
- but with even more flexibility
- Each term manifests all the symmetries of the theory
e.g. the alternating 6-point NMHV amplitude can be written:

$$
\mathcal{A}_{6}^{(3)}(+,-,+,-,+,-)=\left(1+g^{2}+g^{4}\right) \frac{\langle 6|(2+3+4) \mid 3]^{4}}{\left.\left.s_{561}\langle 56\rangle\langle 61\rangle[23][34]\langle 1|(6+5) \mid 4\right]\langle 5|(6+1) \mid 2\right]}
$$

When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple to generate theoretical 'data' about scattering amplitudes.

- Amplitudes are calculated with maximum efficiency
- but with enormous flexibility
- Every term has an interpretation as a leading singularity
- but with even more flexibility
- Each term manifests all the symmetries of the theory
- including those only recently discovered
e.g. the alternating 6-point NMHV amplitude can be written:

$$
\mathcal{A}_{6}^{(3)}(+,-,+,-,+,-)=\left(1+g^{2}+g^{4}\right) \frac{\langle 6|(2+3+4) \mid 3]^{4}}{\left.\left.\left.s_{561}\langle 5\rangle\right\rangle\langle 61\rangle[23][34]\langle 1|(6+5) \mid 4\right]\langle 5|(6+1) \mid 2\right]}
$$

Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux

Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition, momentum conservation remains a non-trivial constraint.

Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition, momentum conservation remains a non-trivial constraint.

Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition, momentum conservation remains a non-trivial constraint. Solution: dual-coordinate x-space.

- scattering amplitudes turn out to be superconformal invariant with respect to these dual-coordinates!
- combined with the ordinary-space superconformal invariance, scattering amplitudes are invariant under an infinite-dimensional Yangian symmetry

Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition, momentum conservation remains a non-trivial constraint.
Solution: dual-coordinate x-space.

- $p_{a} \equiv x_{a+1}-x_{a}$
- scattering amplitudes turn out to be superconformal invariant with respect to these dual-coordinates!
- combined with the ordinary-space superconformal invariance, scattering amplitudes are invariant under an infinite-dimensional
Yangian symmetry

Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition, momentum conservation remains a non-trivial constraint.
Solution: dual-coordinate x-space.

- $p_{a} \equiv x_{a+1}-x_{a}$
- scattering amplitudes turn out to be superconformal invariant with respect to these dual-coordinates!
- combined with the ordinary-space superconformal invariance, scattering amplitudes are invariant under an infinite-dimensional Yangian symmetry.

Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition, momentum conservation remains a non-trivial constraint.
Solution: dual-coordinate x-space.

- $p_{a} \equiv x_{a+1}-x_{a}$
- scattering amplitudes turn out to be superconformal invariant with respect to these dual-coordinates!
- combined with the ordinary-space superconformal invariance, scattering amplitudes are invariant under an infinite-dimensional Yangian symmetry.

Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition, momentum conservation remains a non-trivial constraint.
Solution: dual-coordinate x-space.

- $p_{a} \equiv x_{a+1}-x_{a}$
- scattering amplitudes turn out to be superconformal invariant with respect to these dual-coordinates!
- combined with the ordinary-space superconformal invariance, scattering amplitudes are invariant under an infinite-dimensional Yangian symmetry.

Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition, momentum conservation remains a non-trivial constraint.
Solution: dual-coordinate x-space.

- Andrew Hodges: to make superconformal invariance manifest, use the twistor space associated with dual coordinates: momentum twistor space.

Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition, momentum conservation remains a non-trivial constraint.
Solution: dual-coordinate x-space.

- Andrew Hodges: to make superconformal invariance manifest, use the twistor space associated with dual coordinates: momentum twistor space.

Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition, momentum conservation remains a non-trivial constraint.
Solution: dual-coordinate x-space.

- Andrew Hodges: to make superconformal invariance manifest, use the twistor space associated with dual coordinates: momentum twistor space.

Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition, momentum conservation remains a non-trivial constraint.
Solution: dual-coordinate x-space.

- Andrew Hodges: to make superconformal invariance manifest, use the twistor space associated with dual coordinates: momentum twistor space.

Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition, momentum conservation remains a non-trivial constraint.
Solution: dual-coordinate x-space.

- Andrew Hodges: to make superconformal invariance manifest, use the twistor space associated with dual coordinates: momentum twistor space.
- $\langle a b c d\rangle \equiv \operatorname{det}\left(Z_{a} Z_{b} Z_{c} Z_{d}\right)=0 \Longleftrightarrow$ the twistors $Z_{a}, Z_{b}, Z_{c}, Z_{d}$ are linearly dependent.

Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition, momentum conservation remains a non-trivial constraint.
Solution: dual-coordinate x-space.

- Andrew Hodges: to make superconformal invariance manifest, use the twistor space associated with dual coordinates: momentum twistor space.
- $\langle a b c d\rangle \equiv \operatorname{det}\left(Z_{a} Z_{b} Z_{c} Z_{d}\right)=0 \Longleftrightarrow$ the twistors $Z_{a}, Z_{b}, Z_{c}, Z_{d}$ are linearly dependent.
- So, $\left(p_{a}+\ldots+p_{b}\right)^{2}=0 \Longleftrightarrow\langle a-1 a b b+1\rangle=0$.

Tree-Level BCFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic, the 'naïeve' analytic continuation works: $Z_{n} \mapsto Z_{n}+z Z_{n-1}$.

Tree-Level BCFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic, the 'naïeve' analytic continuation works: $Z_{n} \mapsto Z_{n}+z Z_{n-1}$.

- Contributions arise from factorization channels: $\langle\hat{n} 1 j j+1\rangle=0$

Tree-Level BCFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic, the 'naïeve' analytic continuation works: $Z_{n} \mapsto Z_{n}+z Z_{n-1}$.

- Contributions arise from factorization channels: $\langle\hat{n} 1 j j+1\rangle=0$

$$
\mathcal{A}_{n}^{(m)}=\sum_{\substack{\text { partitions } \\ \text { of } n, m}} \mathcal{A}_{n}^{\left(m_{L}\right)}(1, \ldots, j, \widehat{J}) \bigotimes_{\text {BCFW }} \mathcal{A}_{n_{R}}^{\left(m_{R}\right)}(\widehat{J}, j+1, \ldots, n-1, \widehat{n})
$$

Tree-Level BCFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic, the 'naïeve' analytic continuation works: $Z_{n} \mapsto Z_{n}+z Z_{n-1}$.

- Contributions arise from factorization channels: $\langle\hat{n} 1 j j+1\rangle=0$

$$
\begin{aligned}
\mathcal{A}_{n}^{(m)}= & \sum_{\substack{\text { partitions } \\
\text { of } n, m}} \mathcal{A}_{n}^{\left(m_{L}\right)}(1, \ldots, j, \widehat{J}) \bigotimes_{\substack{\text { BCFW }}} \mathcal{A}_{n_{R}}^{\left(m_{R}\right)}(\widehat{J}, j+1, \ldots, n-1, \widehat{n}) \\
& (j j+1) \bigcap(n-1 n 1) \quad \text { and } \quad \widehat{n} \equiv(n n-1) \bigcap(j j+11)
\end{aligned}
$$

Tree-Level BCFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic, the 'naïeve' analytic continuation works: $Z_{n} \mapsto Z_{n}+z Z_{n-1}$.

- Contributions arise from factorization channels: $\langle\widehat{n} 1 j j+1\rangle=0$

$$
\begin{aligned}
& \mathcal{A}_{n}^{(m)}=\sum_{\substack{\text { partitions } \\
\text { of } n, m}} \mathcal{A}_{n_{L}}^{\left(m_{L}\right)}(1, \ldots, j, \widehat{J}) \bigotimes_{\text {BCFW }} \mathcal{A}_{n_{R}}^{\left(m_{R}\right)}(\widehat{J}, j+1, \ldots, n-1, \widehat{n}) \\
& \text { of } n, m \quad \widehat{J} \equiv(j j+1) \bigcap(n-1 n 1) \quad \text { and } \quad \widehat{n} \equiv(n n-1) \bigcap(j j+11)
\end{aligned}
$$

- $n \quad j+1$

Tree-Level BCFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic, the 'naïeve' analytic continuation works: $Z_{n} \mapsto Z_{n}+z Z_{n-1}$.

- Contributions arise from factorization channels: $\langle\widehat{n} 1 j j+1\rangle=0$

$$
\begin{aligned}
& \mathcal{A}_{n}^{(m)}=\sum_{\substack{\text { partitions } \\
\text { of } n, m}} \mathcal{A}_{n_{L}}^{\left(m_{L}\right)}(1, \ldots, j, \widehat{J}) \bigotimes_{\substack{\text { BCFW }}} \mathcal{A}_{n_{R}}^{\left(m_{R}\right)}(\widehat{J}, j+1, \ldots, n-1, \widehat{n}) \\
& \text { (jj+1) }(n-1 n 1) \quad \text { and } \quad \widehat{n} \equiv(n n-1) \bigcap(j j+11)
\end{aligned}
$$

$n-1$.

Tree-Level BCFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic, the 'naïeve' analytic continuation works: $Z_{n} \mapsto Z_{n}+z Z_{n-1}$.

- Contributions arise from factorization channels: $\langle\hat{n} 1 j j+1\rangle=0$

$$
\begin{aligned}
& \mathcal{A}_{n}^{(m)}=\sum_{\substack{\text { partitions } \\
\text { of } n, m}} \mathcal{A}_{n_{L}}^{\left(m_{L}\right)}(1, \ldots, j, \widehat{J}) \bigotimes_{\substack{\text { BCFW }}} \mathcal{A}_{n_{R}}^{\left(m_{R}\right)}(\widehat{J}, j+1, \ldots, n-1, \widehat{n}) \\
& \text { jj+1) }(n-1 n 1) \quad \text { and } \quad \widehat{n} \equiv(n n-1) \cap(j j+11)
\end{aligned}
$$

Tree-Level BCFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic, the 'naïeve' analytic continuation works: $Z_{n} \mapsto Z_{n}+z Z_{n-1}$.

- Contributions arise from factorization channels: $\langle\hat{n} 1 j j+1\rangle=0$

$$
\begin{aligned}
\mathcal{A}_{n}^{(m)} & =\sum_{\substack{\text { partitions } \\
\text { of } n, m}} \mathcal{A}_{n}^{\left(m_{L}\right)}(1, \ldots, j, \widehat{J}) \bigotimes_{\substack{\text { BCFW }}} \mathcal{A}_{n_{R}}^{\left(m_{R}\right)}(\widehat{J}, j+1, \ldots, n-1, \widehat{n}) \\
& (j j+1) \bigcap(n-1 n 1) \quad \text { and } \quad \widehat{n} \equiv(n n-1) \bigcap(j j+11)
\end{aligned}
$$

Tree-Level BCFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic, the 'naïeve' analytic continuation works: $Z_{n} \mapsto Z_{n}+z Z_{n-1}$.

- Contributions arise from factorization channels: $\langle\hat{n} 1 j j+1\rangle=0$

$$
\begin{aligned}
& \mathcal{A}_{n}^{(m)}=\sum_{\substack{\text { partitions } \\
\text { of } n, m}} \mathcal{A}_{n}^{\left(m_{L}\right)}(1, \ldots, j, \widehat{J}) \bigotimes_{\substack{\text { BCFW }}} \mathcal{A}_{n_{R}}^{\left(m_{R}\right)}(\widehat{J}, j+1, \ldots, n-1, \widehat{n}) \\
& \equiv(j+1) \bigcap(n-1 n 1) \quad \text { and } \quad \widehat{n} \equiv(n n-1) \bigcap(j j+11)
\end{aligned}
$$

Tree-Level BCFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic, the 'naïeve' analytic continuation works: $Z_{n} \mapsto Z_{n}+z Z_{n-1}$.

- Contributions arise from factorization channels: $\langle\hat{n} 1 j j+1\rangle=0$

$$
\begin{aligned}
& \mathcal{A}_{n}^{(m)}=\sum_{\substack{\text { partitions } \\
\text { of } n, m}} \mathcal{A}_{n_{L}}^{\left(m_{L}\right)}(1, \ldots, j, \widehat{J}) \bigotimes_{\substack{\text { BCFW }}} \mathcal{A}_{n_{R}}^{\left(m_{R}\right)}(\widehat{J}, j+1, \ldots, n-1, \widehat{n}) \\
& \text { and } \quad \widehat{n} \equiv(n n-1) \cap(j j+11) \cap(n-1 n 1) \quad \text { and }
\end{aligned}
$$

Tree-Level BCFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic, the 'naïeve' analytic continuation works: $Z_{n} \mapsto Z_{n}+z Z_{n-1}$.

- Contributions arise from factorization channels: $\langle\widehat{n} 1 j j+1\rangle=0$

$$
\begin{aligned}
& \mathcal{A}_{n}^{(m)}=\sum_{\substack{\text { partitions } \\
\text { of } n, m}} \mathcal{A}_{n_{L}}^{\left(m_{L}\right)}(1, \ldots, j, \widehat{J}) \bigotimes_{\substack{\text { BCFW }}} \mathcal{A}_{n_{R}}^{\left(m_{R}\right)}(\widehat{J}, j+1, \ldots, n-1, \widehat{n}) \\
& \text { (jj+1) }(n-1 n 1) \quad \text { and } \quad \widehat{n} \equiv(n n-1) \bigcap(j j+11)
\end{aligned}
$$

The Most Useful Identity in Projective Geometry:

$$
Z_{a}\langle b c d e\rangle+Z_{b}\langle c d e a\rangle+Z_{c}\langle d e a b\rangle+Z_{d}\langle e a b c\rangle+Z_{e}\langle a b c d\rangle=0
$$

Tree-Level BCFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic, the 'naïeve' analytic continuation works: $Z_{n} \mapsto Z_{n}+z Z_{n-1}$.

- Contributions arise from factorization channels: $\langle\widehat{n} 1 j j+1\rangle=0$

$$
\begin{aligned}
& \mathcal{A}_{n}^{(m)}=\sum_{\substack{\text { partitions } \\
\text { of } n, m}} \mathcal{A}_{n_{L}}^{\left(m_{L}\right)}(1, \ldots, j, \widehat{J}) \bigotimes_{\substack{\text { BCFW }}} \mathcal{A}_{n_{R}}^{\left(m_{R}\right)}(\widehat{J}, j+1, \ldots, n-1, \widehat{n}) \\
& \equiv(j+1) \bigcap(n-1 n 1) \quad \text { and } \quad \widehat{n} \equiv(n n-1) \bigcap(j j+11)
\end{aligned}
$$

The Most Useful Identity in Projective Geometry:
$-Z_{a}\langle b c d e\rangle=Z_{b}\langle c d e a\rangle+Z_{c}\langle d e a b\rangle+Z_{d}\langle e a b c\rangle+Z_{e}\langle a b c d\rangle$

Tree-Level BCFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic, the 'naïeve' analytic continuation works: $Z_{n} \mapsto Z_{n}+z Z_{n-1}$.

- Contributions arise from factorization channels: $\langle\widehat{n} 1 j j+1\rangle=0$

$$
\begin{aligned}
\mathcal{A}_{n}^{(m)}=\sum_{\substack{\text { partitions } \\
\text { of } n, m}} \mathcal{A}_{n_{L}}^{\left(m_{L}\right)}(1, \ldots, j, \widehat{J}) \bigotimes_{\text {BCFW }} \mathcal{A}_{n_{R}}^{\left(m_{R}\right)}(\widehat{J}, j+1, \ldots, n-1, \widehat{n}) \\
\widehat{J} \equiv(j+1) \bigcap(n-1 n 1) \quad \text { and } \quad \widehat{n} \equiv(n n-1) \bigcap(j j+11)
\end{aligned}
$$

The Most Useful Identity in Projective Geometry:
$-Z_{a}\langle b c d e\rangle-Z_{b}\langle c d e a\rangle=Z_{c}\langle d e a b\rangle+Z_{d}\langle e a b c\rangle+Z_{e}\langle a b c d\rangle$

Tree-Level BCFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic, the 'naïeve' analytic continuation works: $Z_{n} \mapsto Z_{n}+z Z_{n-1}$.

- Contributions arise from factorization channels: $\langle\widehat{n} 1 j j+1\rangle=0$

$$
\begin{aligned}
& \mathcal{A}_{n}^{(m)}=\sum_{\substack{\text { partitions } \\
\text { of } n, m}} \mathcal{A}_{n_{L}}^{\left(m_{L}\right)}(1, \ldots, j, \widehat{J}) \bigotimes_{\text {BCFW }} \mathcal{A}_{n_{R}}^{\left(m_{R}\right)}(\widehat{J}, j+1, \ldots, n-1, \widehat{n}) \\
& \text { of } n, m \quad \widehat{J} \equiv(j j+1) \bigcap(n-1 n 1) \quad \text { and } \quad \widehat{n} \equiv(n n-1) \bigcap(j j+11)
\end{aligned}
$$

The Most Useful Identity in Projective Geometry:

$$
\widehat{J} \equiv(j j+1) \bigcap(n-1 n 1)=Z_{j}\langle j+1 n-1 n 1\rangle+Z_{j+1}\langle n-1 n 1 j\rangle
$$

Tree-Level BCFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic, the 'naïeve' analytic continuation works: $Z_{n} \mapsto Z_{n}+z Z_{n-1}$.

- Contributions arise from factorization channels: $\langle\widehat{n} 1 j j+1\rangle=0$

$$
\begin{aligned}
& \mathcal{A}_{n}^{(m)}=\sum_{\substack{\text { partitions } \\
\text { of } n, m}} \mathcal{A}_{n_{L}}^{\left(m_{L}\right)}(1, \ldots, j, \widehat{J}) \bigotimes_{\text {BCFW }} \mathcal{A}_{n_{R}}^{\left(m_{R}\right)}(\widehat{J}, j+1, \ldots, n-1, \widehat{n}) \\
& \text { of } n, m \quad \widehat{J} \equiv(j j+1) \bigcap(n-1 n 1) \quad \text { and } \quad \widehat{n} \equiv(n n-1) \bigcap(j j+11)
\end{aligned}
$$

The Most Useful Identity in Projective Geometry:

$$
\widehat{n} \equiv(n n-1) \bigcap(j j+11)=Z_{n}\langle n-1 j j+11\rangle+Z_{n-1}\langle j j+11 n\rangle
$$

The Meaning of The Loop Integrand

In a general theory, there is no naturally well-defined way to combine disparate
Feynman loop integrals:

The Meaning of The Loop Integrand

In a general theory, there is no naturally well-defined way to combine disparate
Feynman loop integrals:
At least for planar theories, the loop-integrand is unambiguous.

$$
=\left\{\begin{array}{l}
\int d^{4} \ell_{1} \frac{\left(p_{1}+p_{2}\right)^{2}\left(p_{2}+p_{3}\right)^{2}}{\ell_{1}^{2}\left(\ell_{1}-p_{1}\right)^{2}\left(\ell_{1}-p_{1}-p_{2}\right)^{2}\left(\ell_{1}+p_{4}\right)^{2}} \\
\int d^{4} \ell_{2} \frac{\left(p_{1}+p_{2}\right)^{2}\left(p_{2}+p_{3}\right)^{2}}{\ell_{2}^{2}\left(\ell_{2}-p_{2}\right)^{2}\left(\ell_{2}-p_{1}-p_{2}\right)^{2}\left(\ell_{2}+p_{4}\right)^{2}}
\end{array}\right.
$$

The Meaning of The Loop Integrand

In a general theory, there is no naturally well-defined way to combine disparate
Feynman loop integrals:
At least for planar theories, the loop-integrand is unambiguous.

$$
=\int d^{4} L \frac{\left(p_{1}+p_{2}\right)^{2}\left(p_{2}+p_{3}\right)^{2}}{L^{2}\left(L-p_{1}\right)^{2}\left(L-p_{1}-p_{2}\right)^{2}\left(L+p_{4}\right)^{2}}
$$

The Meaning of The Loop Integrand

In a general theory, there is no naturally well-defined way to combine disparate
Feynman loop integrals:
At least for planar theories, the loop-integrand is unambiguous.

$$
=\int d^{4} L \frac{\left(p_{1}+p_{2}\right)^{2}\left(p_{2}+p_{3}\right)^{2}}{L^{2}\left(L-p_{1}\right)^{2}\left(L-p_{1}-p_{2}\right)^{2}\left(L+p_{4}\right)^{2}}
$$

In dual coordinates, we find

Integrals over Lines in Momentum-Twistor Space

Integration over all x corresponds to the integration over all lines $\left(Z_{A} Z_{B}\right)$ in momentum-twistor space.

$$
\int d^{4} x \Longleftrightarrow \int \frac{d^{4} Z_{A} d^{4} Z_{B}}{\operatorname{vol}\left(G L_{2}\right) \times\left\langle\lambda_{A} \lambda_{B}\right\rangle^{4}} \equiv \int_{A B}
$$

The propagators are

$$
\left(x-x_{1}\right)^{2} \Longleftrightarrow\langle A B 12\rangle \quad\left(x-x_{2}\right)^{2} \Longleftrightarrow\langle A B 23\rangle \quad \text { etc. }
$$

and the integral becomes

$$
\int_{A B} \frac{\langle 1234\rangle^{2}}{\langle A B 12\rangle\langle A B 23\rangle\langle A B 34\rangle\langle A B 41\rangle}
$$

The Origin of Loop Amplitudes: Forward Limits

Let us reconsider the BCFW deformation for momentum-twistors:
$Z_{n} \mapsto Z_{n}+z Z_{n-1}$.

- The ordinary terms come from factorizations: $\langle\widehat{n} 1 j j+1\rangle=0$.
- The new terms come from cutting a propagator: $\langle A B \widehat{n} 1\rangle=0$.

The Origin of Loop Amplitudes: Forward Limits

Let us reconsider the BCFW deformation for momentum-twistors:
$Z_{n} \mapsto Z_{n}+z Z_{n-1}$.

- The ordinary terms come from factorizations: $\langle\widehat{n} 1 j j+1\rangle=0$.
- The new terms come from cutting a propagator: $\langle A B \widehat{n} 1\rangle=0$.

The Origin of Loop Amplitudes: Forward Limits

Let us reconsider the BCFW deformation for momentum-twistors:
$Z_{n} \mapsto Z_{n}+z Z_{n-1}$.

- The ordinary terms come from factorizations: $\langle\widehat{n} 1 j j+1\rangle=0$.
- The new terms come from cutting a propagator: $\langle A B \widehat{n} 1\rangle=0$.

$$
\begin{gathered}
\mathcal{A}_{n, \ell}^{(m)}=\sum_{\substack{\text { partitions } \\
\text { of } n, m, \ell}} \mathcal{A}_{n_{L}, \ell_{L}}^{\left(m_{L}\right)}(1, \ldots, j, \widehat{J}) \bigotimes_{\text {BCFW }} \mathcal{A}_{n_{R}, \ell_{R}}^{\left(m_{R}\right)}(\widehat{J}, j+1, \ldots, n-1, \widehat{n}) \\
\widehat{J} \equiv(j j+1) \bigcap(n-1 n 1) \\
\widehat{n} \equiv(n n-1) \bigcap(j j+11)
\end{gathered}
$$

The Origin of Loop Amplitudes: Forward Limits

Let us reconsider the BCFW deformation for momentum-twistors:

$$
Z_{n} \mapsto Z_{n}+z Z_{n-1}
$$

- The ordinary terms come from factorizations: $\langle\widehat{n} 1 j j+1\rangle=0$.
- The new terms come from cutting a propagator: $\langle A B \widehat{n} 1\rangle=0$.

$$
\begin{aligned}
& \mathcal{A}_{n, \ell}^{(m)}=\sum_{\substack{\text { partitions } \\
\text { of } n, m, \ell}} \mathcal{A}_{n_{L}, \ell_{L}}^{\left(m_{L}\right)}(1, \ldots, j, \widehat{J}) \bigotimes_{\text {BCFW }} \mathcal{A}_{n_{R}, \ell_{R}}^{\left(m_{R}\right)}(\widehat{J}, j+1, \ldots, n-1, \widehat{n}) \\
& \equiv(j j+1) \bigcap(n-1 n 1) \\
& \widehat{n} \equiv(n n-1) \bigcap(j j+11)
\end{aligned}
$$

The Origin of Loop Amplitudes: Forward Limits

Let us reconsider the BCFW deformation for momentum-twistors:

$$
Z_{n} \mapsto Z_{n}+z Z_{n-1}
$$

- The ordinary terms come from factorizations: $\langle\widehat{n} 1 j j+1\rangle=0$.
- The new terms come from cutting a propagator: $\langle A B \widehat{n} 1\rangle=0$.

$$
\begin{aligned}
& \mathcal{A}_{n, \ell}^{(m)}=\sum_{\substack{\text { partitions } \\
\text { of } n, m, \ell}} \mathcal{A}_{n_{L}, \ell_{L}}^{\left(m_{L}\right)}(1, \ldots, j, \widehat{J}) \bigotimes_{\text {BCFW }} \mathcal{A}_{n_{R}, \ell_{R}}^{\left(m_{R}\right)}(\widehat{J}, j+1, \ldots, n-1, \widehat{n}) \\
& \equiv(j j+1) \bigcap(n-1 n 1) \\
& \widehat{n} \equiv(n n-1) \bigcap(j j+11)
\end{aligned}
$$

The Origin of Loop Amplitudes: Forward Limits

Let us reconsider the BCFW deformation for momentum-twistors:

$$
Z_{n} \mapsto Z_{n}+z Z_{n-1}
$$

- The ordinary terms come from factorizations: $\langle\widehat{n} 1 j j+1\rangle=0$.
- The new terms come from cutting a propagator: $\langle A B \widehat{n} 1\rangle=0$.

$$
\left.\begin{array}{rl}
\mathcal{A}_{n, \ell}^{(m)}=\sum_{\substack{\text { partitions } \\
\text { of } n, m, \ell}} \mathcal{A}_{n_{L}, \ell_{L}}^{\left(m_{L}\right)}(1, \ldots, j, \widehat{J}) \bigotimes_{\text {BCFW }} \mathcal{A}_{n_{R}, \ell_{R}}^{\left(m_{R}\right)}(\widehat{J}, j+1, \ldots, n-1, \widehat{n}) \\
& \equiv(j j+1) \bigcap(n-1 n 1) \\
\widehat{n} \equiv(n n-1) \bigcap(j j+11)
\end{array}+\oint_{A \rightarrow B \rightarrow}\left(\mathcal{A}_{n+2, \ell-1}^{(m+1)}(1, \ldots, n, A, B)\right)\right)
$$

$$
(A B) \bigcap_{(n-1 n 1)}^{A \rightarrow B A}
$$

The Geometry of Forward Limits

- In $\mathcal{N}=4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a 'smart forward limit' that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

The Geometry of Forward Limits

- In $\mathcal{N}=4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a 'smart forward limit' that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

The Geometry of Forward Limits

- In $\mathcal{N}=4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a 'smart forward limit' that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

The Geometry of Forward Limits

- In $\mathcal{N}=4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a 'smart forward limit' that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

The Geometry of Forward Limits

- In $\mathcal{N}=4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a 'smart forward limit' that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

The Geometry of Forward Limits

- In $\mathcal{N}=4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a 'smart forward limit' that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

The Geometry of Forward Limits

- In $\mathcal{N}=4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a 'smart forward limit' that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

The Geometry of Forward Limits

- In $\mathcal{N}=4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a 'smart forward limit' that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

The Geometry of Forward Limits

- In $\mathcal{N}=4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a 'smart forward limit' that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

The Geometry of Forward Limits

- In $\mathcal{N}=4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a 'smart forward limit' that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

The Geometry of Forward Limits

- In $\mathcal{N}=4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a 'smart forward limit' that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

The Geometry of Forward Limits

- In $\mathcal{N}=4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a 'smart forward limit' that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

The Geometry of Forward Limits

- In $\mathcal{N}=4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a 'smart forward limit' that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

The Geometry of Forward Limits

- In $\mathcal{N}=4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a 'smart forward limit' that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

The Geometry of Forward Limits

- In $\mathcal{N}=4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a 'smart forward limit' that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

The Geometry of Forward Limits

- In $\mathcal{N}=4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a 'smart forward limit' that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

The Geometry of Forward Limits

- In $\mathcal{N}=4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a 'smart forward limit' that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

The Geometry of Forward Limits

- In $\mathcal{N}=4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a 'smart forward limit' that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

The Geometry of Forward Limits

- In $\mathcal{N}=4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a 'smart forward limit' that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

The Geometry of Forward Limits

- In $\mathcal{N}=4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a 'smart forward limit' that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

The Geometry of Forward Limits

- In $\mathcal{N}=4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a 'smart forward limit' that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

The Geometry of Forward Limits

- In $\mathcal{N}=4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a 'smart forward limit' that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

The Geometry of Forward Limits

- In $\mathcal{N}=4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a 'smart forward limit' that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

The Geometry of Forward Limits

- In $\mathcal{N}=4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a 'smart forward limit' that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

The Geometry of Forward Limits

- In $\mathcal{N}=4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a 'smart forward limit' that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

Exempli Gratia: BCFW Form of MHV Loop Amplitudes

Taking the forward limit of an $(n+2)$-point NMHV tree amplitude we find the following expression for the one-loop MHV amplitude:

$$
\int_{A B} \frac{\langle A B(1 i i+1) \bigcap(1 j j+1)\rangle}{\langle A B 1 i\rangle\langle A B i i+1\rangle\langle A B i+11\rangle\langle A B 1 j\rangle\langle A B j j+1\rangle\langle A B j+11\rangle}
$$ Local Loop Integrals for Scattering Amplitudes

Sewing Together Tree Amplitudes in $\mathcal{N}=4$

Sewing Together Tree Amplitudes in $\mathcal{N}=4$

Two-Mass-Easy Schubert Problem

Sewing Together Tree Amplitudes in $\mathcal{N}=4$

Two-Mass-Easy Schubert Problem

Sewing Together Tree Amplitudes in $\mathcal{N}=4$

Two-Mass-Easy Schubert Problem

Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux

Finite Integrals in Momentum Twistor Space

Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux

Finite Integrals in Momentum Twistor Space

Finite Integrals in Momentum Twistor Space

$$
\begin{aligned}
& \text { 准 } \frac{\langle A B(j-1 j j+1) \bigcap(k-1 k k+1)\rangle\langle 12 j k\rangle}{\langle A B 12\rangle\langle A B j-1 j\rangle\langle A B j j+1\rangle\langle A B k-1 k\rangle\langle A B k k+1\rangle} \\
& =\operatorname{Li}_{2}\left(1-u_{1}\right)+\operatorname{Li}_{2}\left(1-u_{2}\right) \\
& u_{2} \equiv \frac{\langle j j+1 k k+1\rangle\langle 12 j-1 j\rangle}{\langle j j+112\rangle\langle k k+1 j-1 j\rangle}
\end{aligned}
$$

Finite Integrals in Momentum Twistor Space

$$
u_{3} \equiv \frac{\langle k k+112\rangle\langle j j+1 k-1 k\rangle}{\langle k k+1 j j+1\rangle\langle 12 k-1 k\rangle}
$$

Finite Integrals in Momentum Twistor Space

$$
\int_{A B} \frac{\langle A B(j-1 j j+1) \bigcap(k-1 k k+1)\rangle\langle 12 j k\rangle}{\langle A B 12\rangle\langle A B j-1 j\rangle\langle A B j j+1\rangle\langle A B k-1 k\rangle\langle A B k k+1\rangle}
$$

$$
=\operatorname{Li}_{2}\left(1-u_{1}\right)+\operatorname{Li}_{2}\left(1-u_{2}\right)-\operatorname{Li}_{2}\left(1-u_{3}\right)
$$

$$
-\mathrm{Li}_{2}\left(1-u_{4}\right)
$$

$$
u_{1} \equiv \frac{\langle k k+112\rangle\langle j-1 j k-1 k\rangle}{\langle k k+1 j-1 j\rangle\langle 12 k-1 k\rangle}
$$

$$
u_{2} \equiv \frac{\langle j j+1 k k+1\rangle\langle 12 j-1 j\rangle}{\langle j j+112\rangle\langle k k+1 j-1 j\rangle}
$$

$$
u_{3} \equiv \frac{\langle k k+112\rangle\langle j j+1 k-1 k\rangle}{\langle k k+1 j j+1\rangle\langle 12 k-1 k\rangle}
$$

$$
u_{4} \equiv \frac{\langle j j+1 k-1 k\rangle\langle 12 j-1 j\rangle}{\langle j j+112\rangle\langle k-1 k j-1 j\rangle}
$$

Finite Integrals in Momentum Twistor Space

$$
\begin{aligned}
& \int_{A B} \frac{\langle A B(j-1 j j+1) \bigcap(k-1 k k+1)\rangle\langle 12 j k\rangle}{\langle A B 12\rangle\langle A B j-1 j\rangle\langle A B j j+1\rangle\langle A B k-1 k\rangle\langle A B k k+1\rangle} \\
& =\operatorname{Li}_{2}\left(1-u_{1}\right)+\operatorname{Li}_{2}\left(1-u_{2}\right)-\operatorname{Li}_{2}\left(1-u_{3}\right) \\
& -\operatorname{Li}_{2}\left(1-u_{4}\right)+\operatorname{Li}_{2}\left(1-u_{5}\right) \\
& u_{1} \equiv \frac{\langle k k+112\rangle\langle j-1 j k-1 k\rangle}{\langle k k+1 j-1 j\rangle\langle 12 k-1 k\rangle} \quad u_{2} \equiv \frac{\langle j j+1 k k+1\rangle\langle 12 j-1 j\rangle}{\langle j j+112\rangle\langle k k+1 j-1 j\rangle} \\
& u_{5} \equiv \frac{\langle j j+1 k-1 k\rangle\langle k k+1 j-1 j\rangle}{\langle j j+1 k k+1\rangle\langle k-1 k j-1 j\rangle} \\
& u_{3} \equiv \frac{\langle k k+112\rangle\langle j j+1 k-1 k\rangle}{\langle k k+1 j j+1\rangle\langle 12 k-1 k\rangle} \\
& u_{4} \equiv \frac{\langle j j+1 k-1 k\rangle\langle 12 j-1 j\rangle}{\langle j j+112\rangle\langle k-1 k j-1 j\rangle}
\end{aligned}
$$

Finite Integrals in Momentum Twistor Space

$$
\begin{aligned}
& \int_{A B} \frac{\langle A B(j-1 j j+1) \bigcap(k-1 k k+1)\rangle\langle 12 j k\rangle}{\langle A B 12\rangle\langle A B j-1 j\rangle\langle A B j j+1\rangle\langle A B k-1 k\rangle\langle A B k k+1\rangle} \\
& =\operatorname{Li}_{2}\left(1-u_{1}\right)+\operatorname{Li}_{2}\left(1-u_{2}\right)-\operatorname{Li}_{2}\left(1-u_{3}\right) \\
& -\operatorname{Li}_{2}\left(1-u_{4}\right)+\operatorname{Li}_{2}\left(1-u_{5}\right)+\log \left(u_{1}\right) \log \left(u_{2}\right) \\
& u_{1} \equiv \frac{\langle k k+112\rangle\langle j-1 j k-1 k\rangle}{\langle k k+1 j-1 j\rangle\langle 12 k-1 k\rangle} \quad u_{2} \equiv \frac{\langle j j+1 k k+1\rangle\langle 12 j-1 j\rangle}{\langle j j+112\rangle\langle k k+1 j-1 j\rangle} \\
& u_{5} \equiv \frac{\langle j j+1 k-1 k\rangle\langle k k+1 j-1 j\rangle}{\langle j j+1 k k+1\rangle\langle k-1 k j-1 j\rangle} \\
& u_{3} \equiv \frac{\langle k k+112\rangle\langle j j+1 k-1 k\rangle}{\langle k k+1 j j+1\rangle\langle 12 k-1 k\rangle} \\
& u_{4} \equiv \frac{\langle j j+1 k-1 k\rangle\langle 12 j-1 j\rangle}{\langle j j+112\rangle\langle k-1 k j-1 j\rangle}
\end{aligned}
$$

Finite Integrals in Momentum Twistor Space

Finite Integrals in Momentum Twistor Space

$u_{3} \equiv \frac{\langle k k+112\rangle\langle j j+1 k-1 k\rangle}{\langle k k+1 j j+1\rangle\langle 12 k-1 k\rangle}$

$$
u_{4} \equiv \frac{\langle j j+1 k-1 k\rangle\langle 12 j-1 j\rangle}{\langle j j+112\rangle\langle k-1 k j-1 j\rangle}
$$

Finite Integrals in Momentum Twistor Space

Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux

The Continuation of this Logic Through 3-Loops:

In recent months, similar simplifications have been 'guessed' (and checked):

$$
\mathcal{A}_{n}^{(2)}\left(\ldots, j^{-}, \ldots, k^{-}, \ldots\right)=\frac{\langle j k\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}
$$

Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux

The Continuation of this Logic Through 3-Loops:

In recent months, similar simplifications have been 'guessed' (and checked):

$$
\mathcal{A}_{n}^{(2)}\left(\ldots, j^{-}, \ldots, k^{-}, \ldots\right)=\frac{\langle j k\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}
$$

$$
\times\{1
$$

Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux

The Continuation of this Logic Through 3-Loops:

In recent months, similar simplifications have been 'guessed' (and checked):

$$
\mathcal{A}_{n}^{(2)}\left(\ldots, j^{-}, \ldots, k^{-}, \ldots\right)=\frac{\langle j k\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}
$$

$$
\times\left\{1+\sum_{i<j<i}\right.
$$

The Continuation of this Logic Through 3-Loops:

In recent months, similar simplifications have been 'guessed' (and checked):

$$
\mathcal{A}_{n}^{(2)}\left(\ldots, j^{-}, \ldots, k^{-}, \ldots\right)=\frac{\langle j k\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}
$$

$$
\times \begin{cases}1 & + \\ \end{cases}
$$

The Continuation of this Logic Through 3-Loops:

In recent months, similar simplifications have been 'guessed' (and checked): $\mathcal{A}_{n}^{(2)}\left(\ldots, j^{-}, \ldots, k^{-}, \ldots\right)=\frac{\langle j k\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}$

Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux

Forward Looking Comments

- Do there exist alternative, e.g. purely geometric ways of characterizing the full S-Matrix?
- How can we systematically regulate and compute momentum-twistor loop integrals?
- How easy is it to extend these results to other theories?

Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux
Beyond Trees: Recursion Relations for Loop-Amplitudes Local Loop Integrals for Scattering Amplitudes

Forward Looking Comments

- Do there exist alternative, e.g. purely geometric ways of characterizing the full S-Matrix?
- How can we systematically regulate and compute momentum-twistor loop integrals?
- Can we perform these integrals analytically at the outset?
- Deeper connections to the leading-singularity programme? connections to 'symbols' \& mixed Tate motives?
- How should the integrals coming from recursions be done directly?
- How easy is it to extend these results to other theories?

Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux
Beyond Trees: Recursion Relations for Loop-Amplitudes Local Loop Integrals for Scattering Amplitudes

Forward Looking Comments

- Do there exist alternative, e.g. purely geometric ways of characterizing the full S-Matrix?
- How can we systematically regulate and compute momentum-twistor loop integrals?
- Can we perform these integrals analytically at the outset?
- Deeper connections to the leading-singularity programme? connections to 'symbols' \& mixed Tate motives?
- How should the integrals coming from recursions be done directly?
- How easy is it to extend these results to other theories?

Forward Looking Comments

- Do there exist alternative, e.g. purely geometric ways of characterizing the full S-Matrix?
- How can we systematically regulate and compute momentum-twistor loop integrals?
- Can we perform these integrals analytically at the outset?
- Deeper connections to the leading-singularity programme? connections to 'symbols' \& mixed Tate motives?
- How should the integrals coming from recursions be done directly?
- How easy is it to extend these results to other theories?

Forward Looking Comments

- Do there exist alternative, e.g. purely geometric ways of characterizing the full S-Matrix?
- How can we systematically regulate and compute momentum-twistor loop integrals?
- Can we perform these integrals analytically at the outset?
- Deeper connections to the leading-singularity programme? connections to 'symbols' \& mixed Tate motives?
- How should the integrals coming from recursions be done directly?
- How easy is it to extend these results to other theories?

Forward Looking Comments

- Do there exist alternative, e.g. purely geometric ways of characterizing the full S-Matrix?
- How can we systematically regulate and compute momentum-twistor loop integrals?
- Can we perform these integrals analytically at the outset?
- Deeper connections to the leading-singularity programme? connections to 'symbols' \& mixed Tate motives?
- How should the integrals coming from recursions be done directly?
- How easy is it to extend these results to other theories?
- non-supersymmetric (planar) Yang-Mills?
- non-planar theories?
- massive theories?

Forward Looking Comments

- Do there exist alternative, e.g. purely geometric ways of characterizing the full S-Matrix?
- How can we systematically regulate and compute momentum-twistor loop integrals?
- Can we perform these integrals analytically at the outset?
- Deeper connections to the leading-singularity programme? connections to 'symbols' \& mixed Tate motives?
- How should the integrals coming from recursions be done directly?
- How easy is it to extend these results to other theories?
- non-supersymmetric (planar) Yang-Mills?
- non-planar theories?
- massive theories?

Forward Looking Comments

- Do there exist alternative, e.g. purely geometric ways of characterizing the full S-Matrix?
- How can we systematically regulate and compute momentum-twistor loop integrals?
- Can we perform these integrals analytically at the outset?
- Deeper connections to the leading-singularity programme? connections to 'symbols' \& mixed Tate motives?
- How should the integrals coming from recursions be done directly?
- How easy is it to extend these results to other theories?
- non-supersymmetric (planar) Yang-Mills?
- non-planar theories?
- massive theories?

Forward Looking Comments

- Do there exist alternative, e.g. purely geometric ways of characterizing the full S-Matrix?
- How can we systematically regulate and compute momentum-twistor loop integrals?
- Can we perform these integrals analytically at the outset?
- Deeper connections to the leading-singularity programme? connections to 'symbols' \& mixed Tate motives?
- How should the integrals coming from recursions be done directly?
- How easy is it to extend these results to other theories?
- non-supersymmetric (planar) Yang-Mills?
- non-planar theories?
- massive theories?

Forward Looking Comments

- Do there exist alternative, e.g. purely geometric ways of characterizing the full S-Matrix?
- How can we systematically regulate and compute momentum-twistor loop integrals?
- Can we perform these integrals analytically at the outset?
- Deeper connections to the leading-singularity programme? connections to 'symbols' \& mixed Tate motives?
- How should the integrals coming from recursions be done directly?
- How easy is it to extend these results to other theories?
- non-supersymmetric (planar) Yang-Mills?
- non-planar theories?
- massive theories?
- ...

