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MHV Amplitudes in Quantum Chromodynamics: A le
The Generalization of Parke-Taylor’s Formula Thr _00ps

Parke and Taylor’s Heroic Computation

In 1985, Parke and Taylor decided to compute the “leading contribution to”
the amplitude for gg — gggg.
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The cross section for two-gluon to four-gluon scattering 1s given in a form suitable for fast
numerical calculations.
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Details of the calculation, together with a full exposition of our techniques, will
be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic
form for the answer, making our result not only an experimentalist’s, but also a
theorist’s delight.
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MHV Amplitudes in Quantum Chromodynamics: A le
The Generalization of Parke-Taylor’s Formula Thr _00ps

Parke and Taylor’s Heroic Computation: Six Months Later

Six months later, they had come upon a “guess”, not just for not their
amplitude but an infinite number of amplitudes!

of North Caroli pel Hill The All-Loop S-Matri>



MHV Amplitudes in Quantum Chromodynamics: A le
The Generalization of Parke-Taylor’s Formula Thr _00ps

Parke and Taylor’s Heroic Computation: Six Months Later

Six months later, they had come upon a “guess”, not just for not their
amplitude but an infinite number of amplitudes!

In modern notation, they suggested that

of North Caroli pel Hill The All-Loop S-Matri>



MHV Amplitudes in Quantum Chromodynamics: A Parable
The Generalization of Parke-Taylor’s Formula Through 3-Loops
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Parke and Taylor’s Heroic Computation: Six Months Later

Six months later, they had come upon a “guess”, not just for not their
amplitude but an infinite number of amplitudes!
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MHYV Amplitudes in Quantum Chromodynamics: A Parable
The Generalization of Parke-Taylor’s Formula Through 3-Loops

Generalizing Parke-Taylor’s Formula Through 3-Loops:

In recent months, similar simplifications have been ‘guessed’ (and checked):

B L (5 k)
ADoK ) = g Ty
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Generalizing Parke-Taylor’s Formula Through 3-Loops:

In recent months, similar simplifications have been ‘guessed’ (and checked):

B L (5 k)
ADoK ) = g Ty

i<j<k<l<i
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Generalizing Parke-Taylor’s Formula Through 3-Loops:

In recent months, similar simplifications have been ‘guessed’ (and checked):

B L (5 k)
ADoK ) = g Ty

- s
2

i<j<k<l<i

11<i2<j1<
<jo<ki<ko<iy

i1<j1<k1<
<ks<j2<i2<i1
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Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux Colour & Kinema the Vernacular of the S-Matrix
Tree-Level Recursion: Making the Impossible, Possible
Momentum Twistors and Geometry: Trivializing Kinematics

Simple Sources of Simplification

An n-point scattering amplitude is specified by listing each particle’s:
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@ colour

of North Carolina at C Hill The All-Loop S-Matrix of A” = 4 Super Yang-Mills



lar of the S-Matrix
Possible
(inematics

Preliminaries: The (Tree-Level) Analy Redux

Tree-Level Recursion: Making the Impossibl
Momentum Twistors and Geometry: Trivializing

Simple Sources of Simplification: Colour-Ordering

An n-point scattering amplitude is specified by listing each particle’s:

("]

each can be significantly
Y better-organized
@ colour

By shuffling all colour-factors to the outside of every Feynman
diagram, we can write the amplitude™ for any desired colour-

ordering in terms of any other.
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Tree-Level Recursion: Making the Impossible, P
Momentum Twistors and Geometry: Trivializing

Simple Sources of Simplification: Colour—Ordermg

An n-point scattering amplitude is specified by listing each particle’s:
°
°

@ colour

By shuffling all colour-factors to the outside of every Feynman
diagram, we can write the amplitude™ for any desired colour- n
ordering in terms of any other.

Colour-ordered partial amplitudes

An({pa}) ZTr - T)An(Pays - - - Pay)

e.g. Ag(17,27,37,47 57,6%7,77,87,97)

The All-Loop S-Matrix of " = 4 Super Yang-Mills
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Preliminaries: The (Tree-Level) / - the Vernacular of the S-Matrix
i 1e Impossible sible
Momentum Twistors and Geometry: Trivializ: inematics

Simple Sources of Simplification: Spinor-Helicity Variables

An n-point scattering amplitude is specified by listing each particle’s:
@ momentum, (which we take to be incoming)
°
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Simple Sources of Simplification: Spinor-Helicity Variables

An n-point scattering amplitude is specified by listing each particle’s:
@ momentum, (which we take to be incoming)
°
°

Scattering amplitudes for massless particles are not directly
functions four-momenta, but functions of spinor variables:
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When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple
to generate theoretical ‘data’ about scattering amplitudes.
o Amplitudes are calculated with maximum efficiency
e but with enormous flexibility

e.g. the alternating 6-point NMHYV amplitude can be written:

( B 2 4 (6/(2+3+4)[3]*
A == ) = (™40 e T 3l B (1176 + 56+ D

but it can also be written:
(46)* 13"

A=) = (™) e e T 3 (G T O e + D
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When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple
to generate theoretical ‘data’ about scattering amplitudes.
o Amplitudes are calculated with maximum efficiency
e but with enormous flexibility

e.g. the alternating 6-point NMHYV amplitude can be written: \
AP (4= ) = (L) O

s561(56)(6 1) [23] [34] (1/(6 + 5)[4](5[(6 + 1)|2]
but it can also be written:

4 4 1 4
AP (4, =+, =+, ) = (1+g7+g*) (46)" [13]

5456 (45)(56) [12] [23] (4](5 + 6)[1](6](5 + 4)[3]

For 8-point N2MHYV, there are 74 linearly-independent 40-term iden-
tities connecting the different BCFW formulae.
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When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple
to generate theoretical ‘data’ about scattering amplitudes.
o Amplitudes are calculated with maximum efficiency
e but with enormous flexibility
e Every term has an interpretation as a leading singularity
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The BCFW tree-level recursion relations made it extremely simple
to generate theoretical ‘data’ about scattering amplitudes.
o Amplitudes are calculated with maximum efficiency
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e Every term has an interpretation as a leading singularity

e.g. the alternating 6-point NMHYV amplitude can be written:
AGD (= = =) = (g 4gY)
4

(6](2+3+4)[3]*
561(56)(6 1) [23] [34] (1](6 + 5)[4](5](6 +

1)2]

pa January ZI Jniversity o orth Carolina at pe 1 ne -1.00] -Matrix of J =4 uper Y
20" January 2011 University of North Caroli 1Hill  The All-Loop S-Matrix of A’ = 4 Super Y



Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux Colour & Kinematics: the Vernac
Tree-Level Recursion: Mal S
Momentum Twistors md(vc‘nm try: Ti inematics
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The BCFW tree-level recursion relations made it extremely simple
to generate theoretical ‘data’ about scattering amplitudes.
o Amplitudes are calculated with maximum efficiency
e but with enormous flexibility
e Every term has an interpretation as a leading singularity
e but with even more flexibility
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The BCFW tree-level recursion relations made it extremely simple
to generate theoretical ‘data’ about scattering amplitudes.
o Amplitudes are calculated with maximum efficiency
e but with enormous flexibility
e Every term has an interpretation as a leading singularity
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When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple
to generate theoretical ‘data’ about scattering amplitudes.
o Amplitudes are calculated with maximum efficiency
e but with enormous flexibility
e Every term has an interpretation as a leading singularity
e but with even more flexibility
o Each term manifests all the symmetries of the theory

e.g. the alternating 6-point NMHYV amplitude can be written:
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When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple
to generate theoretical ‘data’ about scattering amplitudes.

o Amplitudes are calculated with maximum efficiency
e but with enormous flexibility

e Every term has an interpretation as a leading singularity
e but with even more flexibility

o Each term manifests all the symmetries of the theory
o including those only recently discovered

e.g. the alternating 6-point NMHYV amplitude can be written:

6/(24+3+4)|3
AP (4, =+, = +,—) = (144 +g Y- (61( )[3]*
'%
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Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
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Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
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Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
Solution: dual-coordinate x-space.
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Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
Solution: dual-coordinate x-space.

® Do = Ta+1 — ZLa
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Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
Solution: dual-coordinate x-space.
@ Dy = Tgi1 — Tq
@ scattering amplitudes turn out to be superconformal invariant
with respect to these dual-coordinates!
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Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
Solution: dual-coordinate x-space.
@ Dy = Tgi1 — Tq
@ scattering amplitudes turn out to be superconformal invariant
with respect to these dual-coordinates!
@ combined with the ordinary-space superconformal invariance,

scattering amplitudes are invariant under an infinite-dimensional
Yangian symmetry.
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Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
Solution: dual-coordinate x-space.
@ Andrew Hodges: to make superconformal invariance manifest,
use the twistor space associated with dual coordinates:
momentum twistor space.
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Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
Solution: dual-coordinate x-space.
@ Andrew Hodges: to make superconformal invariance manifest,
use the twistor space associated with dual coordinates:
momentum twistor space.
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Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
Solution: dual-coordinate x-space.
@ Andrew Hodges: to make superconformal invariance manifest,
use the twistor space associated with dual coordinates:
momentum twistor space.
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Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
Solution: dual-coordinate x-space.
@ Andrew Hodges: to make superconformal invariance manifest,
use the twistor space associated with dual coordinates:
momentum twistor space.
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Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
Solution: dual-coordinate x-space.

@ Andrew Hodges: to make superconformal invariance manifest,
use the twistor space associated with dual coordinates:
momentum twistor space.

o (abced) =det(Zy Zy Z. Zg) = 0 <> the twistors
Loy Ly, ZLe, Zq are linearly dependent.
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Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
Solution: dual-coordinate x-space.

@ Andrew Hodges: to make superconformal invariance manifest,
use the twistor space associated with dual coordinates:
momentum twistor space.

o (abced) =det(Zy Zy Z. Zg) = 0 <> the twistors
Loy Ly, ZLe, Zq are linearly dependent.

@ S0, (pa+ ... +pp)? =0<= (a—1abb+l) = 0.

X6 Z5 Zs

Ps Ds
X5 X
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Tree-Level BCEFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic,
the ‘naieve’ analytic continuation works: Z,, — Z,, + 2Z,_1.
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Because in momentum-twistor variables momentum conservation is automatic,
the ‘naieve’ analytic continuation works: Z,, — Z,, + 2Z,_1.

e Contributions arise from factorization channels: (n 17 j+1) =0
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Tree-Level BCEFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic,
the ‘naieve’ analytic continuation works: Z,, — Z,, + 2Z,_1.

e Contributions arise from factorization channels: (n 17 j+1) =0
AT =37 AP, ) Q) AT, 41, = 1, R)

partitions BCFW
of n,m
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Tree-Level BCEFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic,
the ‘naieve’ analytic continuation works: Z,, — Z,, + 2Z,_1.

e Contributions arise from factorization channels: (n 17 j+1) =0
A= ST AT, 5, 0) Q) AT (T + 1, n— 1R)

partitions BCFW

ofmm  T=(jj+)N(n—=1n1) and A= (nn=1)(jj+l1)
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o j+1
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e Contributions arise from factorization channels: (n 17 j+1) =0
A= ST AT, 5, 0) Q) AT (T + 1, n— 1R)

partitions N BCFW
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Tree-Level BCEFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic,
the ‘naieve’ analytic continuation works: Z,, — Z,, + 2Z,_1.

e Contributions arise from factorization channels: (n 17 j+1) =0
A= ST AT, 5, 0) Q) AT (T + 1, n— 1R)

partitions N BCFW
ofmm  T=(jj+1)N(n=1nl) and A= (nn=1)(jj+l1)

of North Caroli pel Hill The All-Loop S-Matrix of A" = 4 Super Y:



: The (Tree-Level) Analytic X, Redux 3 {inema / lar of the S-Matrix
@ g the Impossible, Possible
Momentum Twistors and Geometry: Trivializing Kinematics

Tree-Level BCEFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic,
the ‘naieve’ analytic continuation works: Z,, — Z,, + 2Z,_1.

e Contributions arise from factorization channels: (n 15 j+1) =0
A= ST AT, 5, 0) Q) AT (T + 1, n— 1R)

partitions BCFW

ofmm  T=(jj+1)N(n=1nl) and A= (nn=1)(jj+l1)
The Most Useful Identity in Projective Geometry:
Zo(bcde) + Zy(cdea) + Z.(deab) + Zileabc) + Ze(abed) = 0.

_1.
I
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Tree-Level BCEFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic,
the ‘naieve’ analytic continuation works: Z,, — Z,, + 2Z,_1.

e Contributions arise from factorization channels: (n 15 j+1) =0
A= ST AT, 5, 0) Q) AT (T + 1, n— 1R)

partitions N BCFW
ofmm  T=(jj+1)N(n=1nl) and A= (nn=1)(jj+l1)

The Most Useful Identity in Projective Geometry:
—Zg(bede) = Zy(cdea) + Z(deab) + Zgleabe) + Z.(abced)
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Tree-Level BCEFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic,
the ‘naieve’ analytic continuation works: Z,, — Z,, + 2Z,_1.

e Contributions arise from factorization channels: (n 15 j+1) =0
A= ST AT, 5, 0) Q) AT (T + 1, n— 1R)

partitions N BCFW
ofmm  T=(jj+1)N(n=1nl) and A= (nn=1)(jj+l1)

The Most Useful Identity in Projective Geometry:
—Zg(bede) — Zy(cdea) = Z(deab) + Zgleabe) + Z.(abced)
— 1o

20" January 2011 Jnive of North Caroli el Hi The All-Loop S-Matrix of A” = 4 Super Yang-Mills



Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux Colour & Kinematics: the Vernacular of the S-Matrix
Tree-Level Recu Making the Impossible, Possible
Momentum Twistors and Geometry: Trivializing Kinematics

Tree-Level BCEFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic,
the ‘naieve’ analytic continuation works: Z,, — Z,, + 2Z,_1.

e Contributions arise from factorization channels: (n 15 j+1) =0
A= ST AT, 5, 0) Q) AT (T + 1, n— 1R)

partitions N BCFW
ofmm  T=(jj+1)N(n=1nl) and A= (nn=1)(jj+l1)

The Most Useful Identity in Projective Geometry:
J=(jj+1)N(n-1n1) = Z;(j+ln-1n1) + Zj (n-1n13)
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Tree-Level BCEFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic,
the ‘naieve’ analytic continuation works: Z,, — Z,, + 2Z,_1.

e Contributions arise from factorization channels: (n 15 j+1) =0
A= ST AT, 5, 0) Q) AT (T + 1, n— 1R)

partitions N BCFW
ofmm  T=(jj+1)N(n=1nl) and A= (nn=1)(jj+l1)

The Most Useful Identity in Projective Geometry:
n=(nn-1)(Gj+11) = Z,(n-1jj+11) + Z,_1(j j+1 1 n)

_1.
I

20t January 2011 University of North Carolina 1 Hill The All-Loop S-Matrix of A” = 4 Super Yang-Mills



The Loop Integrand in Momentum-Twistor Space
Beyond Trees: Recursion Relations for Loop-Amplitudes Pushing BCFW Forward to All-Loop Orders
The Geometry of Forward Limits

The Meaning of The Loop Integrand

In a general theory, there is no naturally well-defined way to combine disparate
Feynman loop integrals:

d4€1 (p1 + p2)?(p2 + p3)?
03(01 — p1)?(0y — p1 — p2)%(€1 + pa)?

>:< N /d4£2 (p1+p2)*(p2 + p3)?
03(la — p2)*(la — p1 — p2)% (L2 + pa)?
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2
In dual coordinates, we find

)2 (@ = m2)?(x — w3)*(x — 4)?

y /d4:c (1 — x3)* (w2 — 24)*
(x — 21
2
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Integrals over Lines in Momentum-Twistor Space

Integration over all x corresponds to the integration over
all lines (Z 4 Zp) in momentum-twistor space.

d*Zad*Zp
d* =
/ “:’/vol(GLg X Darg)t /
AB

The propagators are

(x —x1)% <= (AB12) (x —29)? <= (AB23) etc.

and the integral becomes

(12 34)2
/ (AB12)(AB 23)(AB 34)(AB 41)
AB
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The Origin of Loop Amplitudes: Forward Limits

Let us reconsider the BCFW deformation for momentum-twistors:
Lp V= Lop + 225 1.
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The Origin of Loop Amplitudes: Forward Limits

Let us reconsider the BCFW deformation for momentum-twistors:
Lp V= Lop + 225 1.

A =57 A (L) @ AT (T4, n— 1,7)
partitions . BCFW
ot J=(jj+) N (n=1n1)
A= mn=1)N(jj+l1)

BCFW
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The Origin of Loop Amplitudes: Forward Limits

Let us reconsider the BCFW deformation for momentum-twistors:
Lp V= Lop + 225 1.

® The ordinary terms come from factorizations: (n1j j+1) = 0.

AT = SN Al (1,5 0) @ AT (T 41, - 1)

nr.{R
partitions . BCFW
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Let us reconsider the BCFW deformation for momentum-twistors:
Lp V= Lop + 225 1.

® The ordinary terms come from factorizations: (n1j j+1) = 0.

® The new terms come from cutting a propagator: (ABn 1) = 0.
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® The new terms come from cutting a propagator: (ABn 1) = 0.
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The Geometry of Forward Limits

@ In N = 4 these forward limits are always well-defined and finite

X5 Zs Zs
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@ In N = 4 these forward limits are always well-defined and finite

o the same has been proven for up to two-loops in any
supersymmetric theory
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The Geometry of Forward Limits

@ In N = 4 these forward limits are always well-defined and finite
o the same has been proven for up to two-loops in any
supersymmetric theory
o There is evidence that there exists a ‘smart forward limit’ that is
always finite and well-defined in any planar theory, extending the
all-loop recursion to even pure-glue (in the planar limit).
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Exempli Gratia: BCFW Form of MHV Loop Amplitudes

Taking the forward limit of an (n + 2)-point NMHYV tree amplitude
we find the following expression for the one-loop MHV amplitude:

Z<]

Z / (AB (1idi+1) () (1] j+1))
AB1i)(ABii+1)(ABi+11)(AB1j)(ABjj+1)(ABj+11)

1<
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Local Loop Integrals for Scattering Amplitudes Pushing the Analytic S-Matrix Forward

Sewing Together Tree Amplitudes in N = 4

Two-Mass-Easy Schubert Problem
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Sewing Together Tree Amplitudes in N = 4

Two-Mass-Easy Schubert Problem

3
2 : (1235)(2345) (a5
1 = A/ (AB12)(AB 23)(AB 45)(AB 56) ’ a D
B
6 5
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Finite Integrals in Momentum Twistor Space

(AB(j=1jj+1) (k=1 k k+1))(12j k)

. A/ (AB12)(AB j—1j)(AB j j+1)(AB k-1 k)(AB k k+1)
B
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Finite Integrals in Momentum Tw1st0r Space
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B

= Lig(l — ul)
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