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The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast 
numerical calculations. 

Theoretical predictions for four-jet production at hadron colliders allow detailed 
tests of QCD. Moreover, at SSC energies, four jets become a serious background 
to many interesting processes which probe new physics, e.g. pair production of 
electroweak bosons [ 1 ]. Hence a detailed knowledge of four-jet event characteristics 
is crucial for good background rejection. Although some individual contributions 
to four-jet production have already been analysed (see e.g. ref. [2]), the two-gluon 
to four-gluon scattering, which is the dominant contribution for a wide range of 
subprocess energies, has remained beyond the scope of previous computational 
techniques. Here we outline our calculation of the cross section for this process, in 
the tree approximation of perturbative QCD. The final cross section is presented in 
a form suitable for fast numerical calculations. 

Our calculation makes use of techniques developed in ref. [3], based on the 
application of extended supersymmetry. We adopt the convention that all particles 
involved in a scattering process are incoming• An outgoing particle of momentum 
p and helicity s will be represented as an incoming antiparticle of momentum - p  
and helicity -s.  Let M(z~ ,  . . . . .  , zs~) denote the amplitude for the process with the 
incoming particles z~ , . . . ,  z n of helicities s , . . . ,  s, and momenta Pl,. • •, P~. The 

• • 7=6 momenta satisfy the conservation equation, ~,= ~ p, = 0. We find that all nonvanishing 
six-gluon helicity amplitudes can be obtained by crossing and/or complex conjuga- 
tion from two amplitudes, M ( g ~_, g 2 , g 3 , g 4,  g S+, g 6+ ) and M ( g~_, g 2 , g 3 , g 4+, g S+, g 6+ ) I 
These amplitudes can be expressed in terms of the.amplitudes for processes involving 
a smaller number of gluons plus spin-one-half massless gluinos A and spin-zero 
massless scalar gluons 4,, using supersymmetry relations (on-shell Ward-Takahashi 
identities). The first of the two relations is very simple: 

[M(g~_, g2_, g3_, g 4_, gS+, g6)l = s5__~6 i M ( g [ ,  g,_, c~2_, ok3_, ~5+, ck6+)[ , 
S23 
410 

(1) 

Parke & Taylor, Nucl. Phys. B269

20th January 2011 University of North Carolina at Chapel Hill The All-Loop S-Matrix ofN = 4 Super Yang-Mills



Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux
Beyond Trees: Recursion Relations for Loop-Amplitudes

Local Loop Integrals for Scattering Amplitudes

MHV Amplitudes in Quantum Chromodynamics: A Parable
The Generalization of Parke-Taylor’s Formula Through 3-Loops

Parke and Taylor’s Heroic Computation
In 1985, Parke and Taylor decided to compute the “leading contribution to”

the amplitude for gg → gggg.

220 Feynman diagrams, thousands of terms

using N = 2 supersymmetry to relate it to

e.g., A6(g+, g+, φ+, φ+, φ−, φ−)

employing the world’s best supercomputers

final formula: 8 pages long

Nuclear Physics B269 (1986) 410-420 
© North-Holland Publishing Company 

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION 
BY GLUON-GLUON FUSION 

Stephen J. PARKE and T.R. TAYLOR 

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA 

Received 13 September 1985 

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast 
numerical calculations. 

Theoretical predictions for four-jet production at hadron colliders allow detailed 
tests of QCD. Moreover, at SSC energies, four jets become a serious background 
to many interesting processes which probe new physics, e.g. pair production of 
electroweak bosons [ 1 ]. Hence a detailed knowledge of four-jet event characteristics 
is crucial for good background rejection. Although some individual contributions 
to four-jet production have already been analysed (see e.g. ref. [2]), the two-gluon 
to four-gluon scattering, which is the dominant contribution for a wide range of 
subprocess energies, has remained beyond the scope of previous computational 
techniques. Here we outline our calculation of the cross section for this process, in 
the tree approximation of perturbative QCD. The final cross section is presented in 
a form suitable for fast numerical calculations. 

Our calculation makes use of techniques developed in ref. [3], based on the 
application of extended supersymmetry. We adopt the convention that all particles 
involved in a scattering process are incoming• An outgoing particle of momentum 
p and helicity s will be represented as an incoming antiparticle of momentum - p  
and helicity -s.  Let M(z~ ,  . . . . .  , zs~) denote the amplitude for the process with the 
incoming particles z~ , . . . ,  z n of helicities s , . . . ,  s, and momenta Pl,. • •, P~. The 

• • 7=6 momenta satisfy the conservation equation, ~,= ~ p, = 0. We find that all nonvanishing 
six-gluon helicity amplitudes can be obtained by crossing and/or complex conjuga- 
tion from two amplitudes, M ( g ~_, g 2 , g 3 , g 4,  g S+, g 6+ ) and M ( g~_, g 2 , g 3 , g 4+, g S+, g 6+ ) I 
These amplitudes can be expressed in terms of the.amplitudes for processes involving 
a smaller number of gluons plus spin-one-half massless gluinos A and spin-zero 
massless scalar gluons 4,, using supersymmetry relations (on-shell Ward-Takahashi 
identities). The first of the two relations is very simple: 

[M(g~_, g2_, g3_, g 4_, gS+, g6)l = s5__~6 i M ( g [ ,  g,_, c~2_, ok3_, ~5+, ck6+)[ , 
S23 
410 

(1) 

Parke & Taylor, Nucl. Phys. B269

20th January 2011 University of North Carolina at Chapel Hill The All-Loop S-Matrix ofN = 4 Super Yang-Mills



Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux
Beyond Trees: Recursion Relations for Loop-Amplitudes

Local Loop Integrals for Scattering Amplitudes

MHV Amplitudes in Quantum Chromodynamics: A Parable
The Generalization of Parke-Taylor’s Formula Through 3-Loops

Parke and Taylor’s Heroic Computation
In 1985, Parke and Taylor decided to compute the “leading contribution to”

the amplitude for gg → gggg.

220 Feynman diagrams, thousands of terms

using N = 2 supersymmetry to relate it to

e.g., A6(g+, g+, φ+, φ+, φ−, φ−)

employing the world’s best supercomputers

final formula: 8 pages long

Nuclear Physics B269 (1986) 410-420 
© North-Holland Publishing Company 

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION 
BY GLUON-GLUON FUSION 

Stephen J. PARKE and T.R. TAYLOR 

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA 

Received 13 September 1985 

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast 
numerical calculations. 

Theoretical predictions for four-jet production at hadron colliders allow detailed 
tests of QCD. Moreover, at SSC energies, four jets become a serious background 
to many interesting processes which probe new physics, e.g. pair production of 
electroweak bosons [ 1 ]. Hence a detailed knowledge of four-jet event characteristics 
is crucial for good background rejection. Although some individual contributions 
to four-jet production have already been analysed (see e.g. ref. [2]), the two-gluon 
to four-gluon scattering, which is the dominant contribution for a wide range of 
subprocess energies, has remained beyond the scope of previous computational 
techniques. Here we outline our calculation of the cross section for this process, in 
the tree approximation of perturbative QCD. The final cross section is presented in 
a form suitable for fast numerical calculations. 

Our calculation makes use of techniques developed in ref. [3], based on the 
application of extended supersymmetry. We adopt the convention that all particles 
involved in a scattering process are incoming• An outgoing particle of momentum 
p and helicity s will be represented as an incoming antiparticle of momentum - p  
and helicity -s.  Let M(z~ ,  . . . . .  , zs~) denote the amplitude for the process with the 
incoming particles z~ , . . . ,  z n of helicities s , . . . ,  s, and momenta Pl,. • •, P~. The 

• • 7=6 momenta satisfy the conservation equation, ~,= ~ p, = 0. We find that all nonvanishing 
six-gluon helicity amplitudes can be obtained by crossing and/or complex conjuga- 
tion from two amplitudes, M ( g ~_, g 2 , g 3 , g 4,  g S+, g 6+ ) and M ( g~_, g 2 , g 3 , g 4+, g S+, g 6+ ) I 
These amplitudes can be expressed in terms of the.amplitudes for processes involving 
a smaller number of gluons plus spin-one-half massless gluinos A and spin-zero 
massless scalar gluons 4,, using supersymmetry relations (on-shell Ward-Takahashi 
identities). The first of the two relations is very simple: 

[M(g~_, g2_, g3_, g 4_, gS+, g6)l = s5__~6 i M ( g [ ,  g,_, c~2_, ok3_, ~5+, ck6+)[ , 
S23 
410 

(1) 

Parke & Taylor, Nucl. Phys. B269

20th January 2011 University of North Carolina at Chapel Hill The All-Loop S-Matrix ofN = 4 Super Yang-Mills



Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux
Beyond Trees: Recursion Relations for Loop-Amplitudes

Local Loop Integrals for Scattering Amplitudes

MHV Amplitudes in Quantum Chromodynamics: A Parable
The Generalization of Parke-Taylor’s Formula Through 3-Loops

Parke and Taylor’s Heroic Computation
In 1985, Parke and Taylor decided to compute the “leading contribution to”

the amplitude for gg → gggg.

220 Feynman diagrams, thousands of terms

using N = 2 supersymmetry to relate it to

e.g., A6(g+, g+, φ+, φ+, φ−, φ−)

employing the world’s best supercomputers

final formula: 8 pages long

Nuclear Physics B269 (1986) 410-420 
© North-Holland Publishing Company 

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION 
BY GLUON-GLUON FUSION 

Stephen J. PARKE and T.R. TAYLOR 

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA 

Received 13 September 1985 

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast 
numerical calculations. 

Theoretical predictions for four-jet production at hadron colliders allow detailed 
tests of QCD. Moreover, at SSC energies, four jets become a serious background 
to many interesting processes which probe new physics, e.g. pair production of 
electroweak bosons [ 1 ]. Hence a detailed knowledge of four-jet event characteristics 
is crucial for good background rejection. Although some individual contributions 
to four-jet production have already been analysed (see e.g. ref. [2]), the two-gluon 
to four-gluon scattering, which is the dominant contribution for a wide range of 
subprocess energies, has remained beyond the scope of previous computational 
techniques. Here we outline our calculation of the cross section for this process, in 
the tree approximation of perturbative QCD. The final cross section is presented in 
a form suitable for fast numerical calculations. 

Our calculation makes use of techniques developed in ref. [3], based on the 
application of extended supersymmetry. We adopt the convention that all particles 
involved in a scattering process are incoming• An outgoing particle of momentum 
p and helicity s will be represented as an incoming antiparticle of momentum - p  
and helicity -s.  Let M(z~ ,  . . . . .  , zs~) denote the amplitude for the process with the 
incoming particles z~ , . . . ,  z n of helicities s , . . . ,  s, and momenta Pl,. • •, P~. The 

• • 7=6 momenta satisfy the conservation equation, ~,= ~ p, = 0. We find that all nonvanishing 
six-gluon helicity amplitudes can be obtained by crossing and/or complex conjuga- 
tion from two amplitudes, M ( g ~_, g 2 , g 3 , g 4,  g S+, g 6+ ) and M ( g~_, g 2 , g 3 , g 4+, g S+, g 6+ ) I 
These amplitudes can be expressed in terms of the.amplitudes for processes involving 
a smaller number of gluons plus spin-one-half massless gluinos A and spin-zero 
massless scalar gluons 4,, using supersymmetry relations (on-shell Ward-Takahashi 
identities). The first of the two relations is very simple: 

[M(g~_, g2_, g3_, g 4_, gS+, g6)l = s5__~6 i M ( g [ ,  g,_, c~2_, ok3_, ~5+, ck6+)[ , 
S23 
410 

(1) 

Parke & Taylor, Nucl. Phys. B269

20th January 2011 University of North Carolina at Chapel Hill The All-Loop S-Matrix ofN = 4 Super Yang-Mills



Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux
Beyond Trees: Recursion Relations for Loop-Amplitudes

Local Loop Integrals for Scattering Amplitudes

MHV Amplitudes in Quantum Chromodynamics: A Parable
The Generalization of Parke-Taylor’s Formula Through 3-Loops

Parke and Taylor’s Heroic Computation
In 1985, Parke and Taylor decided to compute the “leading contribution to”

the amplitude for gg → gggg.

220 Feynman diagrams, thousands of terms

using N = 2 supersymmetry to relate it to

e.g., A6(g+, g+, φ+, φ+, φ−, φ−)

employing the world’s best supercomputers

final formula: 8 pages long

Nuclear Physics B269 (1986) 410-420 
© North-Holland Publishing Company 

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION 
BY GLUON-GLUON FUSION 

Stephen J. PARKE and T.R. TAYLOR 

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA 

Received 13 September 1985 

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast 
numerical calculations. 

Theoretical predictions for four-jet production at hadron colliders allow detailed 
tests of QCD. Moreover, at SSC energies, four jets become a serious background 
to many interesting processes which probe new physics, e.g. pair production of 
electroweak bosons [ 1 ]. Hence a detailed knowledge of four-jet event characteristics 
is crucial for good background rejection. Although some individual contributions 
to four-jet production have already been analysed (see e.g. ref. [2]), the two-gluon 
to four-gluon scattering, which is the dominant contribution for a wide range of 
subprocess energies, has remained beyond the scope of previous computational 
techniques. Here we outline our calculation of the cross section for this process, in 
the tree approximation of perturbative QCD. The final cross section is presented in 
a form suitable for fast numerical calculations. 

Our calculation makes use of techniques developed in ref. [3], based on the 
application of extended supersymmetry. We adopt the convention that all particles 
involved in a scattering process are incoming• An outgoing particle of momentum 
p and helicity s will be represented as an incoming antiparticle of momentum - p  
and helicity -s.  Let M(z~ ,  . . . . .  , zs~) denote the amplitude for the process with the 
incoming particles z~ , . . . ,  z n of helicities s , . . . ,  s, and momenta Pl,. • •, P~. The 

• • 7=6 momenta satisfy the conservation equation, ~,= ~ p, = 0. We find that all nonvanishing 
six-gluon helicity amplitudes can be obtained by crossing and/or complex conjuga- 
tion from two amplitudes, M ( g ~_, g 2 , g 3 , g 4,  g S+, g 6+ ) and M ( g~_, g 2 , g 3 , g 4+, g S+, g 6+ ) I 
These amplitudes can be expressed in terms of the.amplitudes for processes involving 
a smaller number of gluons plus spin-one-half massless gluinos A and spin-zero 
massless scalar gluons 4,, using supersymmetry relations (on-shell Ward-Takahashi 
identities). The first of the two relations is very simple: 

[M(g~_, g2_, g3_, g 4_, gS+, g6)l = s5__~6 i M ( g [ ,  g,_, c~2_, ok3_, ~5+, ck6+)[ , 
S23 
410 

(1) 

Parke & Taylor, Nucl. Phys. B269

20th January 2011 University of North Carolina at Chapel Hill The All-Loop S-Matrix ofN = 4 Super Yang-Mills



Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux
Beyond Trees: Recursion Relations for Loop-Amplitudes

Local Loop Integrals for Scattering Amplitudes

MHV Amplitudes in Quantum Chromodynamics: A Parable
The Generalization of Parke-Taylor’s Formula Through 3-Loops

Parke and Taylor’s Heroic Computation
In 1985, Parke and Taylor decided to compute the “leading contribution to”

the amplitude for gg → gggg.

220 Feynman diagrams, thousands of terms

using N = 2 supersymmetry to relate it to

e.g., A6(g+, g+, φ+, φ+, φ−, φ−)

employing the world’s best supercomputers

final formula: 8 pages long
Nuclear Physics B269 (1986) 410-420 
© North-Holland Publishing Company 

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION 
BY GLUON-GLUON FUSION 

Stephen J. PARKE and T.R. TAYLOR 

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA 

Received 13 September 1985 

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast 
numerical calculations. 

Theoretical predictions for four-jet production at hadron colliders allow detailed 
tests of QCD. Moreover, at SSC energies, four jets become a serious background 
to many interesting processes which probe new physics, e.g. pair production of 
electroweak bosons [ 1 ]. Hence a detailed knowledge of four-jet event characteristics 
is crucial for good background rejection. Although some individual contributions 
to four-jet production have already been analysed (see e.g. ref. [2]), the two-gluon 
to four-gluon scattering, which is the dominant contribution for a wide range of 
subprocess energies, has remained beyond the scope of previous computational 
techniques. Here we outline our calculation of the cross section for this process, in 
the tree approximation of perturbative QCD. The final cross section is presented in 
a form suitable for fast numerical calculations. 

Our calculation makes use of techniques developed in ref. [3], based on the 
application of extended supersymmetry. We adopt the convention that all particles 
involved in a scattering process are incoming• An outgoing particle of momentum 
p and helicity s will be represented as an incoming antiparticle of momentum - p  
and helicity -s.  Let M(z~ ,  . . . . .  , zs~) denote the amplitude for the process with the 
incoming particles z~ , . . . ,  z n of helicities s , . . . ,  s, and momenta Pl,. • •, P~. The 

• • 7=6 momenta satisfy the conservation equation, ~,= ~ p, = 0. We find that all nonvanishing 
six-gluon helicity amplitudes can be obtained by crossing and/or complex conjuga- 
tion from two amplitudes, M ( g ~_, g 2 , g 3 , g 4,  g S+, g 6+ ) and M ( g~_, g 2 , g 3 , g 4+, g S+, g 6+ ) I 
These amplitudes can be expressed in terms of the.amplitudes for processes involving 
a smaller number of gluons plus spin-one-half massless gluinos A and spin-zero 
massless scalar gluons 4,, using supersymmetry relations (on-shell Ward-Takahashi 
identities). The first of the two relations is very simple: 

[M(g~_, g2_, g3_, g 4_, gS+, g6)l = s5__~6 i M ( g [ ,  g,_, c~2_, ok3_, ~5+, ck6+)[ , 
S23 
410 

(1) 

Parke & Taylor, Nucl. Phys. B269

20th January 2011 University of North Carolina at Chapel Hill The All-Loop S-Matrix ofN = 4 Super Yang-Mills



Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux
Beyond Trees: Recursion Relations for Loop-Amplitudes

Local Loop Integrals for Scattering Amplitudes

MHV Amplitudes in Quantum Chromodynamics: A Parable
The Generalization of Parke-Taylor’s Formula Through 3-Loops

Parke and Taylor’s Heroic Computation
In 1985, Parke and Taylor decided to compute the “leading contribution to”

the amplitude for gg → gggg.

220 Feynman diagrams, thousands of terms

using N = 2 supersymmetry to relate it to

e.g., A6(g+, g+, φ+, φ+, φ−, φ−)

employing the world’s best supercomputers

final formula: 8 pages long
Nuclear Physics B269 (1986) 410-420 
© North-Holland Publishing Company 

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION 
BY GLUON-GLUON FUSION 

Stephen J. PARKE and T.R. TAYLOR 

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA 

Received 13 September 1985 

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast 
numerical calculations. 

Theoretical predictions for four-jet production at hadron colliders allow detailed 
tests of QCD. Moreover, at SSC energies, four jets become a serious background 
to many interesting processes which probe new physics, e.g. pair production of 
electroweak bosons [ 1 ]. Hence a detailed knowledge of four-jet event characteristics 
is crucial for good background rejection. Although some individual contributions 
to four-jet production have already been analysed (see e.g. ref. [2]), the two-gluon 
to four-gluon scattering, which is the dominant contribution for a wide range of 
subprocess energies, has remained beyond the scope of previous computational 
techniques. Here we outline our calculation of the cross section for this process, in 
the tree approximation of perturbative QCD. The final cross section is presented in 
a form suitable for fast numerical calculations. 

Our calculation makes use of techniques developed in ref. [3], based on the 
application of extended supersymmetry. We adopt the convention that all particles 
involved in a scattering process are incoming• An outgoing particle of momentum 
p and helicity s will be represented as an incoming antiparticle of momentum - p  
and helicity -s.  Let M(z~ ,  . . . . .  , zs~) denote the amplitude for the process with the 
incoming particles z~ , . . . ,  z n of helicities s , . . . ,  s, and momenta Pl,. • •, P~. The 

• • 7=6 momenta satisfy the conservation equation, ~,= ~ p, = 0. We find that all nonvanishing 
six-gluon helicity amplitudes can be obtained by crossing and/or complex conjuga- 
tion from two amplitudes, M ( g ~_, g 2 , g 3 , g 4,  g S+, g 6+ ) and M ( g~_, g 2 , g 3 , g 4+, g S+, g 6+ ) I 
These amplitudes can be expressed in terms of the.amplitudes for processes involving 
a smaller number of gluons plus spin-one-half massless gluinos A and spin-zero 
massless scalar gluons 4,, using supersymmetry relations (on-shell Ward-Takahashi 
identities). The first of the two relations is very simple: 

[M(g~_, g2_, g3_, g 4_, gS+, g6)l = s5__~6 i M ( g [ ,  g,_, c~2_, ok3_, ~5+, ck6+)[ , 
S23 
410 

(1) 

Parke & Taylor, Nucl. Phys. B269

412 S.J. Parke, T.R. Taylor / Four gluon production 

gluons. The cross section for the scattering of two gluons with momenta p~, P2 into 
four gluons with momenta P3, P4, P5, P6 is obtained from eq. (5) by setting I = 2 and 
replacing the momenta P3, P4, P5, P6 by -P3, -p4, -P5, -P6. 

As the result of the computation of two hundred and forty Feynman diagrams, 
we obtain 

A(o)(p~, P2, P3, P., Ps, P6) 

(9 ' ,  * * t Ko 
= 9 ~ , 9 ~ , 9 , ) ( o ) .  K~ 

K. K~ Ko 9 ,  (o) 

(6) 

where ~, ~p, ~ and ~ ,  are ll-component complex vector functions of the momenta 
P~, P:, P3, P4, P5 and P6, and K, K o , /~  and K, are constant 11 x 11 symmetric matrices. 
The vectors ~o, $¢ and ~ ,  are obtained from the vector 9 by the permutations 
(P2 ~-* P3), (P5 *'* P6) and (P2 ~'* P3, P5 *-" P6), respectively, of the momentum variables 
in 9. The individual components of the vector 9 represent the sums of all contribu- 
tions proportional to the appropriately chosen eleven basis color factors. The 
matrices K, which are the suitable sums over the color indices of products of the 
color bases, contain two independent structures, proportional to N 4 ( N  2 - 1 )  and 
N 2 ( N  2 - 1 ) ,  respectively (N is the number of colors, N = 3 for QCD): 

K = -~gSN4 ( N 2  - 1 ) K  (4) +!g S N 2 ( N 2  - 1 ) K  (2) . (7) 

Here g denotes the gauge coupling constant. The matrices K (4) and K (2) a re  given 
in table 1. The vector 9 is related to the thirty-three diagrams DG(I = 1-33) for 
two-gluon to four-scalar scattering, eleven diagrams DF(I = 1 - 11) for two-fermion 
to four-scalar scattering and sixteen diagrams DS(I= 1-16) for two-scalar to 
four-scalar scattering, in the following way: 

2Sl4 
9 0  = X/],.g15S45SI6S461S23S56 {/223cG " DGo - 4s14t123E(p5 +P6,  P6)C F" D~ 

- 2s14G(p5 +P6, P5 +P6)C s" DoS}, 

92 = s56 c ~" D ~ ,  (S) 
$23 

where the constant matrices C ° 0 1  x33), CF(ll  x 11) and CS(ll x 16) are given in 
table 2. The Lorentz invariants s~ and t,jk are defined as s , j=(pi+pj)  2, tUk = 
(p, +pj +pk) 2 and the complex functions E and G are given by 

E (p,, pj ) = ! { (p~ p,) (p, pj ) - (p~ p, ) (pjp 4) - (p, pj )(p,p4) + "ze~,~pA p ~" p, ~ p j p p ,A }/(p~ P4) , 

G ( p .  pj) = E(p, ,  p s ) E ( p .  P6), (9) 
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The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast 
numerical calculations. 

Theoretical predictions for four-jet production at hadron colliders allow detailed 
tests of QCD. Moreover, at SSC energies, four jets become a serious background 
to many interesting processes which probe new physics, e.g. pair production of 
electroweak bosons [ 1 ]. Hence a detailed knowledge of four-jet event characteristics 
is crucial for good background rejection. Although some individual contributions 
to four-jet production have already been analysed (see e.g. ref. [2]), the two-gluon 
to four-gluon scattering, which is the dominant contribution for a wide range of 
subprocess energies, has remained beyond the scope of previous computational 
techniques. Here we outline our calculation of the cross section for this process, in 
the tree approximation of perturbative QCD. The final cross section is presented in 
a form suitable for fast numerical calculations. 

Our calculation makes use of techniques developed in ref. [3], based on the 
application of extended supersymmetry. We adopt the convention that all particles 
involved in a scattering process are incoming• An outgoing particle of momentum 
p and helicity s will be represented as an incoming antiparticle of momentum - p  
and helicity -s.  Let M(z~ ,  . . . . .  , zs~) denote the amplitude for the process with the 
incoming particles z~ , . . . ,  z n of helicities s , . . . ,  s, and momenta Pl,. • •, P~. The 

• • 7=6 momenta satisfy the conservation equation, ~,= ~ p, = 0. We find that all nonvanishing 
six-gluon helicity amplitudes can be obtained by crossing and/or complex conjuga- 
tion from two amplitudes, M ( g ~_, g 2 , g 3 , g 4,  g S+, g 6+ ) and M ( g~_, g 2 , g 3 , g 4+, g S+, g 6+ ) I 
These amplitudes can be expressed in terms of the.amplitudes for processes involving 
a smaller number of gluons plus spin-one-half massless gluinos A and spin-zero 
massless scalar gluons 4,, using supersymmetry relations (on-shell Ward-Takahashi 
identities). The first of the two relations is very simple: 

[M(g~_, g2_, g3_, g 4_, gS+, g6)l = s5__~6 i M ( g [ ,  g,_, c~2_, ok3_, ~5+, ck6+)[ , 
S23 
410 

(1) 

Parke & Taylor, Nucl. Phys. B269

S.J. Parke, ‘I: R. Taylor / Four &on productron 

TABLE 1 

413 

Matrices K(I, J)[I = l-11, J= l-111. 

Matrix K@) Matrix KC*) 

8 4 -2 2 -1 2 0 1 0 0 -1 0 0 0 0 0 0 0 0 3 3-3 
4 8-l l-1 0 2 1 0 1-l 00000000330 

-2-1844112212 00000000000 
2 1 4 8 2 -1 -1 4 1 1 1 ooboooooooo 

-1 -1 4 2 8 1 2 4 -2 -1 4 00000000000 
2 0 l-l 1 8 4-l 0 1 0 00000000330 
0 2 l-l 2 4 8-2 0 0 0 00000000330 
1 1 2 4 4 -1 -2 8 -1 -1 2 00000000000 
0 0 2 l-2 0 O-l 8 4-2 33000330000 
0 1 1 l-l 1 0 -1 4 8 -1 33000330000 

-1 -1 2 1 4 0 0 2-2-l 8 -3 0 0 0 0 0 0 0 0 0 0 

Matrix KY) Matrix Kr’ 

0000110110-1 33030003000 
0000201 12 l-2 33000000000 
00000111011 00300300330 
00001002010 30000300000 
1 2 0 10122002 00000000330 
10 10 14 2 0 0 o-1 00330000330 
0 1 10 2 2 4 0 0 o-2 00000000030 
1 1122004000 30000000300 
1200000002-1 00303303000 
01110000240 00303330000 

-1 -2 1 0 2 -1 -2 0 -1 0 4 00000000000 

Matrix Kr’ Matnx K$?’ 

4202010 
2401001 
0042211 
2120121 
0021000 
1012000 
0 1 1 1 0 0 0 
1 1 1 0 0 0 0 
0021412 
0110224 
0000200 

1 0 0 0 
1 0 1 0 
1 2 1 0 
0 1 0 0 
0 4 2 2 
0 1 2 0 
0 2 4 0 
0 2 0 1 
2 0 o-4 
0 0 o-2 
1 -4 -2 4 

0000000 
0000300 
0000003 
0000000 
0300003 
0000033 
0030333 
0300000 
3000000 
0000000 

-3 0 0 0 0 -3 0 

0 3 o-3 
3 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 o-3 
0 0 0 0 
3 0 0 0 
0 0 0 0 
0 0 3 0 
0 0 0 0 

Matrix KY) Matrix KF’ 

0 1 -1 -1 1 101200 33000330000 
1 o-2-1 2 0 1 I 4 2 0 33000330000 

-1-2 0 0 0 1 1 l-l 10 00333003000 
-1-l 0 1 0 2 1 0 1-l 0 00333003003 
1 2 0 0 l-l -1 0 -2 2 1 00333003000 
10 12-1 0 l-2 2 4-l 3 3 0 0 0 3 3 0 0 o-3 
0 1 1 l-l 1 0 -1 4 8 -1 33000330000 
1 1 1 0 0 -2 -1 0 2 -2 0 00333003000 
2 4-l l-2 2 4 2 1 0 -2 00000000330 
0 2 l-l 2 4 8-2 0 0 0 00000000330 
0 0 0 0 1-l -1 0 -2 0 2 0 0 0 3 o-3 0 0 0 0 0 
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to four-gluon scattering, which is the dominant contribution for a wide range of 
subprocess energies, has remained beyond the scope of previous computational 
techniques. Here we outline our calculation of the cross section for this process, in 
the tree approximation of perturbative QCD. The final cross section is presented in 
a form suitable for fast numerical calculations. 

Our calculation makes use of techniques developed in ref. [3], based on the 
application of extended supersymmetry. We adopt the convention that all particles 
involved in a scattering process are incoming• An outgoing particle of momentum 
p and helicity s will be represented as an incoming antiparticle of momentum - p  
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• • 7=6 momenta satisfy the conservation equation, ~,= ~ p, = 0. We find that all nonvanishing 
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These amplitudes can be expressed in terms of the.amplitudes for processes involving 
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involved in a scattering process are incoming• An outgoing particle of momentum 
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These amplitudes can be expressed in terms of the.amplitudes for processes involving 
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S23 
410 

(1) 

Parke & Taylor, Nucl. Phys. B269

S.J. Parke, T.R. Taylor/Four gluon production 415 

where e is the totally ant isymmetr ic  tensor, exyz, = 1. For  the future use, we define 
one more  funct ion,  

F(p,, pj)= {(p, p4)(p, pj)+(plp,)(p.,p4)-(plp:)(p, p4)}/(plP4) . (10) 

Note  that  when  evaluating Ao and A2 at crossed configurations o f  the momenta ,  
care must  be taken with the implicit dependence  o f  the functions E, F and G on 
the m o m e n t a  pa, P4, Ps, P6. 

The diagrams D2 ~ are listed below: 

D~(1) 82 
S14S25S36 - -{[ (p2-ps) (pa-P6)][(p , -p4)(p3+P6)]-[ (p2-ps) (p3+P6)]  

x [(Pl - P4)(P3 - P6)] + [(P2 + Ps)(P3 - P6)][(P~ - P4)(P2 - Ps)]}, 

1 
D2C(2) = {2E (p2 - P s ,  P3 -P6)  - 2E(p3 -P6 ,  P2 - P s )  + 82[(P2 -Ps)(P3 - P6 ) ]} ,  

$25536 

4 
D ~ ( 3 ) = - -  

S25 $36 t125 {[(P,+p2-ps)(Pg+p3-P6)]E(p2, pa) 

- [ (p ,  +p2  - p~)(p.  - p ~  + p~)]E(p2,  p~) 

- [(pl  - p 2  + P s ) ( P 4 + P a - P 6 ) ] E ( p s ,  P3) 

& [ (Pl - P2 d- P5 ) (P4 - P3 + P6)] E (Ps. P6) 

-- [P~ (P2 - p s ) ] E ( p 3  - P6, P3 + P6) - [P4(P3 - p6)]E(p2 + Ps, P2 - Ps) 

+ 62[p~ (P2 - Ps)][P4(P3 - P6)]},  

- 2  
D~(4)  = 

$36t125 

- 2  D~(5) = 
S25[125 

DO(6) = 62 
[125 

4 D:~(7) = - -  
S12S36[125 

{ E (P3 - P6, P3 + P6) - 62[p4(p3 - P6)]}, 

{E(p2 '~-P5, P2 - P 5 )  - ~2[Pl (P2 - P s ) ] }  , 

{[(P,+P2-P5)(P4+P3-P6)]E(p2, P3) 

D ~ ( 8 ) = - -  

-[(pl@P2-P5)(p4-P3@P6)]E(p2,P6)-[p4(P3-P6)]E(p2,P2-Ps)}, 

$34S25 [125 
{[(Pl+P2-P5)(P4+p,-p~)]E(pz, p,) 

- [ ( p l  - p2 + p5)(p4 + p.  - p 6 ) ] E  (ps. p . )  - [p. (p= - p s ) ] E ( p .  - p ~ .  , 3 ) } .  

20th January 2011 University of North Carolina at Chapel Hill The All-Loop S-Matrix ofN = 4 Super Yang-Mills



Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux
Beyond Trees: Recursion Relations for Loop-Amplitudes

Local Loop Integrals for Scattering Amplitudes

MHV Amplitudes in Quantum Chromodynamics: A Parable
The Generalization of Parke-Taylor’s Formula Through 3-Loops

Parke and Taylor’s Heroic Computation
In 1985, Parke and Taylor decided to compute the “leading contribution to”

the amplitude for gg → gggg.

220 Feynman diagrams, thousands of terms

using N = 2 supersymmetry to relate it to

e.g., A6(g+, g+, φ+, φ+, φ−, φ−)

employing the world’s best supercomputers

final formula: 8 pages long
Nuclear Physics B269 (1986) 410-420 
© North-Holland Publishing Company 

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION 
BY GLUON-GLUON FUSION 

Stephen J. PARKE and T.R. TAYLOR 

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA 

Received 13 September 1985 

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast 
numerical calculations. 

Theoretical predictions for four-jet production at hadron colliders allow detailed 
tests of QCD. Moreover, at SSC energies, four jets become a serious background 
to many interesting processes which probe new physics, e.g. pair production of 
electroweak bosons [ 1 ]. Hence a detailed knowledge of four-jet event characteristics 
is crucial for good background rejection. Although some individual contributions 
to four-jet production have already been analysed (see e.g. ref. [2]), the two-gluon 
to four-gluon scattering, which is the dominant contribution for a wide range of 
subprocess energies, has remained beyond the scope of previous computational 
techniques. Here we outline our calculation of the cross section for this process, in 
the tree approximation of perturbative QCD. The final cross section is presented in 
a form suitable for fast numerical calculations. 

Our calculation makes use of techniques developed in ref. [3], based on the 
application of extended supersymmetry. We adopt the convention that all particles 
involved in a scattering process are incoming• An outgoing particle of momentum 
p and helicity s will be represented as an incoming antiparticle of momentum - p  
and helicity -s.  Let M(z~ ,  . . . . .  , zs~) denote the amplitude for the process with the 
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S23 
410 

(1) 

Parke & Taylor, Nucl. Phys. B269
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D ~ ( 9 )  = - -  
S15S36/125 

{[(Pl - P2 + Ps)(P4 + P3 --  P6)] E (Ps, P3) 

-- [(Pl - -P2+P5)(P4- -P3  +P6)]E(p5, P6) + [P4(P3 -P6)]E(p5, P2 - P 5 ) } ,  

D ~ ( 1 0 )  = - -  
$25S46/125 

{[(P~ + P2 - Ps) ( P 4 -  P3 + p6)]E (P2, P6) 

- [(P~ - P2 + Ps)(P, -  P3 + P6) ]E (P5, P6) + [P~ (P2 - Ps) ] E  (P3 - P6, P6)}, 

D ~ ( l l )  = ~2 [S35 __ $56..~. $36] ' 
S361124 

D2G(12) = '732" [$23 -- S26-- $36] ,  
$36f145 

~2 
D ~ ( 1 3 )  = - - .  [$12 -- $24][S35 -- S56 --[.- $36], 

S14.$36 fi24 

D ~ ( 1 4 )  - 82 
S14536t145 
- -  [ S 1 5 - - S 4 5 ] [ S 2 3 - - $ 2 6 - - S 3 6 ]  ~ 

82 
O2°(15) = " (Pl -Pa)(P3-P6) ,  

S14S36 

- 4  
D ~ ( 1 6 )  = ~ [s35 - s56 + s36]E(p2, P2) ,  

$12S36/124 

4 
D ~ ( 1 7 )  = . [s23-s26-s36]E(ps, ps) ,  

S36S45 I145 

- 4  
S12S36S45 

[2(pl  + P2) (P3 - P6) - $36] E (P2, P 5 ) ,  

- 2  
D2°(19) = E(p2 ,p3-P6) ,  

$12S36 

2 
D2G(20) = E(p3-p6 ,  P5), 

$36S45 

- 4  
D2°(21) = [ s 2 6 -  s56+ s25]E(p3, P3), 

$25$34ti34 

4 
D ~ ( 2 2 )  = ~ [s23-s35-s25]E(p6,P6), 

$16525[146 

D ~ ( 2 3 )  = 4 
S16S25534 

[2(p]  + P6)(P2 -Ps)  + SE5]E(p6, P3) ,  
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S23 
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(1) 
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S.J. Parke, TIC Taylor / Four gluon production 

- 2  
D2°(24) = E(p2-P5,Pa), 

S25S34 

2 
D2G(25) = E(p6, P2-Ps) ,  

S16S25 

- 2  
D2G(26) = E(p2, P2-Ps ) ,  

$12/125 

2 
D2°(27) -- E (P3 - P6, P6), 

s46/125 

2 
D2G(28) = E(ps,  p : - p s ) ,  

SI5t125 

- 2  
D2G(29) - E(p3 -P6,  P3), 

s34t125 

4 
D2~(30) = . [(p~+p2-Ps)(p4+Pa-P6)-t,25]E(pE, Pa), 

$12$34/125 

4 
D~(31) = . [(p]+p2-ps)(p4-P3+P6)+fi25]E(p2,P6), 

$12S46t125 

4 
D2°(32) - . [(p,-p2+ps)(p,+p3-P6)+h25]E(ps, P3), 

SI5S34[125 

4 
D2C(33) = [(p~-p~+ps)(p~-pa+p~)- q25]E(ps, P6), 

S15S46t125 

417 

(11) 

where 82 = l. 
The diagrams D~ are obtained from D~ by replacing 82 by 80 = 0 and the functions 

E(p,,pj) by G(p,,pj). 
The diagrams D~ are listed below: 

D ~ ( 1 ) = - -  

D ~ ( 2 ) = - -  

S15S34t125 
{F(ps, p6)E(p3, Ps) - F(ps, p3)E(p6, Ps) 

+ [F(p6,  P3) + s34]E(Ps, Ps)} ,  

- 4  

S16S25S34 
{ IF(P6,  P2) +½s,6]E(p3, Ps) 

+ [F(p2,  P3) + ½s34]E(p6, Ps) - F(p6, P3) E (P2, Ps)} ,  

Do~(3) 4 
Si5S36~125 
- -  {F (ps ,  p6)E(p3, Ps) - F(ps, p3)E(p6, P5) 

-[F(pa, P6)-½s36 ~ - ~sa4 + ~s~] E (ps, ps)}, 
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The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast 
numerical calculations. 

Theoretical predictions for four-jet production at hadron colliders allow detailed 
tests of QCD. Moreover, at SSC energies, four jets become a serious background 
to many interesting processes which probe new physics, e.g. pair production of 
electroweak bosons [ 1 ]. Hence a detailed knowledge of four-jet event characteristics 
is crucial for good background rejection. Although some individual contributions 
to four-jet production have already been analysed (see e.g. ref. [2]), the two-gluon 
to four-gluon scattering, which is the dominant contribution for a wide range of 
subprocess energies, has remained beyond the scope of previous computational 
techniques. Here we outline our calculation of the cross section for this process, in 
the tree approximation of perturbative QCD. The final cross section is presented in 
a form suitable for fast numerical calculations. 

Our calculation makes use of techniques developed in ref. [3], based on the 
application of extended supersymmetry. We adopt the convention that all particles 
involved in a scattering process are incoming• An outgoing particle of momentum 
p and helicity s will be represented as an incoming antiparticle of momentum - p  
and helicity -s.  Let M(z~ ,  . . . . .  , zs~) denote the amplitude for the process with the 
incoming particles z~ , . . . ,  z n of helicities s , . . . ,  s, and momenta Pl,. • •, P~. The 

• • 7=6 momenta satisfy the conservation equation, ~,= ~ p, = 0. We find that all nonvanishing 
six-gluon helicity amplitudes can be obtained by crossing and/or complex conjuga- 
tion from two amplitudes, M ( g ~_, g 2 , g 3 , g 4,  g S+, g 6+ ) and M ( g~_, g 2 , g 3 , g 4+, g S+, g 6+ ) I 
These amplitudes can be expressed in terms of the.amplitudes for processes involving 
a smaller number of gluons plus spin-one-half massless gluinos A and spin-zero 
massless scalar gluons 4,, using supersymmetry relations (on-shell Ward-Takahashi 
identities). The first of the two relations is very simple: 

[M(g~_, g2_, g3_, g 4_, gS+, g6)l = s5__~6 i M ( g [ ,  g,_, c~2_, ok3_, ~5+, ck6+)[ , 
S23 
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4 
DoF(4) = {F(pz ,  p3) E (ps, P5) - F(ps, p~) E (p2, Ps) 

525534 1,25 

+ [ F ( p 5 ,  , 1 l P2) - ~ s 2 s -  ~s ,2+~s ,s ]E(p3 ,  P5)}, 

DoF(5) = 2 [S35 -- S23 "Jr" 525]E (P6, Ps) 
s16525 f146 

DoF(6) = 2 [556 - s26 - 525]E(p3, Ps) ,  
S25534[134 

4 
Do~(7) = _ _  

$25536t125 
{[F(ps ,  ' t l P2) -Is25-Is12+~sls]E(P3, Ps) 

+ [F(p2, P3) +-~t,25]E (ps, P5) - [F(ps, P3) +!t,25]E(p2, P5)}, 

1 D~(8)= 
S14S36 

E ( P 3  - -  P6, PS),  

O ~ ( 9 ) =  2 
S,4S36ti24 
- -  [$35-s56-t-s36]E(p2, Ps) ,  

Do~(10) = - -  
S14S361145 

[S23--S26--S36]E(ps, Ps) ,  

1 
D~01) = 

2St4S25536 
{[s23+s35-s26-s56]E(p2-P5,P5) 

- [ s23 + s26 - s35 - s56] E (P3 - P 6 ,  Ps) - [ s23 + s56 - s35 - s26] E (P2 + P5, Ps)}.  
(12) 

The  d i a g r a m s  Do s are  l isted be low:  

1 
DoS(l) = . [ s 3 4 -  s ~+  s36][s,2- s , 5 -  s2s],  

$25S361125 

1 
D ~ ( 2 ) =  ~ [su-s24-s ,4][s35-Ss6+S36],  

$14S361124 

1 
O~(3)  . [s,s-s45+s,4][s23-s26-s36],  

S,4S36[,45 

1 O~(4) 
SlsS36t,25 
- - [SI5"3t -S25--S12][S34--S46Jt 'S36] ,  

DOS(5) 1 
S,5S34t156 

1 
SI5s34t125 

DS(6)  - -  [s46- Sa4- s36][s,z- s25- s i s ] ,  
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DOS(7) = ~ [ s 3 , -  s ~  + s3,][ s12-  s , 5  - s2~], 
S25S34t125 

1 
D°~(8) = s,6s25tl~ [s2~ + s3~ - s ~ ] [ s ~ , -  s ~  + s16] , 

1 
DS(9) = s25s~t134 [sl4 + s34- sl~][s26- s56 + s2s], 

1 
DOS(10) = ( P 2 -  Ps)(P3 - P6) , 

s25s36 

1 
DoS(11) = (P, - P,)(P3 - P6) , 

$14S36 

DS(12) = 1 ( P , - P , ) ( P 2 - P s ) ,  
S16S25 

Do~(13)= ! ( p s - p , ) ( ~ 3 - ~ , ) ,  
SI5S34 

1 
DOS(14) = (P2 - Ps)(P3 - P 4 ) ,  

S25S34 

1 
DOS(15) = - -  { [ ( P 2 ~ - P s ) ( P 3 - P 6 ) ] [ ( p i - P 4 ) ( P 2 - p 5 ) ]  

SI4S25S36 

-[" [(P2 -- P5) (P3 -- P6)][(Pl -- P4)(P3 "t- P6)] 

+ [(p, +p~)(p~ - p~)]E(p, -p~)(p~ - p6)]} ,  

2 
DS(1 6) = - -  {[ (P2 - Ps) (P3 + P4)][ (el -- P6) (P3 -- P4)] 

SI6S34S25 

+ [" (Pl @ P6) (P3 -- P4)] [ (Pl -- P6) (P2 -- P5) 

+ [(P~ - P6)(P2 + Ps)][(P3 - P 4 )  (P2 - P 5 ) ] }  • (13) 

The preceding list completes the result. Let us recapitulate now the numerical 
procedure of  calculating the full cross section. First the diagrams D are calculated 
by using eqs. (11)-(13). The result is substituted to eq. (8) to obtain the vectors ~o 
and ~2. After generating the vectors ~op, @o~, ~o~, ~2~, ~2¢ and ~2~ by the appropriate 
permutations of momenta, eq. (6) is used to obtain the functions Ao and A 2. Finally, 
the total cross section is calculated by using eq. (5). The FORTRAN 5 program 
based on such a scheme generates ten Monte Carlo points in less than a second on 
the heterotic CDC CYBER 175/875. 

Given the complexity of  the final result, it is very important to have some reliable 
testing procedures available for numerical calculations. Usually in QCD, the multi- 
gluon amplitudes are tested by checking the gauge invariance. Due to the specifics 
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Our calculation makes use of techniques developed in ref. [3], based on the 
application of extended supersymmetry. We adopt the convention that all particles 
involved in a scattering process are incoming• An outgoing particle of momentum 
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• • 7=6 momenta satisfy the conservation equation, ~,= ~ p, = 0. We find that all nonvanishing 
six-gluon helicity amplitudes can be obtained by crossing and/or complex conjuga- 
tion from two amplitudes, M ( g ~_, g 2 , g 3 , g 4,  g S+, g 6+ ) and M ( g~_, g 2 , g 3 , g 4+, g S+, g 6+ ) I 
These amplitudes can be expressed in terms of the.amplitudes for processes involving 
a smaller number of gluons plus spin-one-half massless gluinos A and spin-zero 
massless scalar gluons 4,, using supersymmetry relations (on-shell Ward-Takahashi 
identities). The first of the two relations is very simple: 
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of our calculation, the most powerful test does not rely on the gauge symmetry, but 
on the appropriate permutation symmetries. The function Ao(pl, P2, P3,P4, Ps, P6) 
must be symmetric under arbitrary permutations of the momenta (pl, Pc, P3) and 
separately, (P4, Ps, P6), whereas the function A2(pb P2, P3, P4, Ps, P6) must be sym- 
metric under the permutations of (p~, P2, P3, P4) and separately, (Ps, P6). This test is 
extremely powerful, because the required permutation symmetries are hidden in 
our supersymmetry relations, eqs. (1) and (3), and in the structure of amplitudes 
involving different species of particles. Another, very important test relies on the 
absence of the double poles of the form (s,j) -2 in the cross section, as required by 
general arguments based on the helicity conservation. Further, in the leading (so) -~ 
pole approximation, the answer should reduce to the two goes to three cross section 
[3, 4], convoluted with the appropriate Altarelli-Parisi probabilities [5]. Our result 
has succesfully passed both these numerical checks. 

Details of the calculation, together with a full exposition of our techniques, will 
be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic 
form for the answer, making our result not only an experimentalist's, but also a 
theorist's delight. 

We thank Keith Ellis, Chris Quigg and especially, Estia Eichten for many useful 
discussions and encouragement during the course of this work. We acknowledge 
the hospitality of Aspen Center for Physics, where this work was being completed 
in a pleasant, strung-out atmosphere. 
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Simple Sources of Simplification
An n-point scattering amplitude is specified by listing each particle’s:

momentum, (which we take to be incoming)
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By shuffling all colour-factors to the outside of every Feynman
diagram, we can write the amplitude∗ for any desired colour-
ordering in terms of any other.

Colour-ordered partial amplitudes

An({pa}) =
∑

Tr(T a1 · · ·T an)An(pa1 , . . . , pan)

e.g. A9(1+, 2+, 3−, 4+, 5−, 6+, 7−, 8+, 9−)
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Notice that pµpµ = det(pαα̇). For massless particles, det(pαα̇) = 0.
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Simple Sources of Simplification: N = 4 Supersymmetry
An n-point scattering amplitude is specified by listing each particle’s:

momentum, (which we take to be incoming)

helicity

colour

In N = 4, all external states are related by supersymmetry.
at tree-level, pure-glue amplitudes are the same in N = 4 and N = 0
all amplitudes with m ‘−’ helicity particles are related

NkMHV Classification of Amplitudes

A(m=0)
n (+, . . . ,+) = 0

A(1)
n (+, . . . ,−, . . . ,+) = 0 (n > 3)

A(2)
n (j−, . . . , k−) =

〈j k〉4

〈1 2〉〈2 3〉 · · · 〈n 1〉
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Ân(z)
z

n(z)

=

n

1
(p1+. . .+pj)2

j j + 1

j

z

 

20th January 2011 University of North Carolina at Chapel Hill The All-Loop S-Matrix ofN = 4 Super Yang-Mills



Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux
Beyond Trees: Recursion Relations for Loop-Amplitudes

Local Loop Integrals for Scattering Amplitudes

Colour & Kinematics: the Vernacular of the S-Matrix
Tree-Level Recursion: Making the Impossible, Possible
Momentum Twistors and Geometry: Trivializing Kinematics

Analytic S-Matrix Redux: Tree-Level Recursion Relations
Tree amplitudes are entirely fixed by analyticity.

Consider the simplest deformation of any amplitude: An 7→ Ân(z)
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An = Ân(z = 0) =
∮
z=0

dz
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When the Impossible Becomes Possible
The BCFW tree-level recursion relations made it extremely simple

to generate theoretical ‘data’ about scattering amplitudes.
Amplitudes are calculated with maximum efficiency

but with enormous flexibility

Every term has an interpretation as a leading singularity

but with even more flexibility

Each term manifests all the symmetries of the theory

including those only recently discovered
but it can also be written:

A(3)
6 (+,−, +,−, +,−) = (1+g2+g4)

〈4 6〉4 [1 3]4

s456〈4 5〉〈5 6〉 [1 2] [2 3] 〈4|(5 + 6)|1]〈6|(5 + 4)|3]
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For 8-point N2MHV, there are 74 linearly-independent 40-term iden-
tities connecting the different BCFW formulae.
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Dual-Coordinate Space and Momentum Twistor Geometry
Although spinor-helicity variables trivialize the on-shell condition,

momentum conservation remains a non-trivial constraint.

Solution: dual-coordinate x-space.
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pa ≡ xa+1 − xa
scattering amplitudes turn out to be superconformal invariant
with respect to these dual-coordinates!
combined with the ordinary-space superconformal invariance,
scattering amplitudes are invariant under an infinite-dimensional
Yangian symmetry.
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Andrew Hodges: to make superconformal invariance manifest,
use the twistor space associated with dual coordinates:
momentum twistor space.
〈a b c d〉 ≡ det (Za Zb Zc Zd) = 0⇐⇒ the twistors
Za, Zb, Zc, Zd are linearly dependent.
So, (pa + . . .+ pb)2 = 0⇐⇒ 〈a 1 a b b+1〉 = 0.
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Tree-Level BCFW in Momentum-Twistor Variables
Because in momentum-twistor variables momentum conservation is automatic,

the ‘naı̈eve’ analytic continuation works: Zn 7→ Zn + zZn−1.

Contributions arise from factorization channels: 〈n̂ 1 j j+1〉 = 0
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Ĵ ≡ (j j+1)
⋂

(n 1n 1) = Zj〈j+1n 1n 1〉+ Zj+1〈n 1n 1 j〉

1

j

j � 1
n � 1

n

n� J
�

20th January 2011 University of North Carolina at Chapel Hill The All-Loop S-Matrix ofN = 4 Super Yang-Mills



Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux
Beyond Trees: Recursion Relations for Loop-Amplitudes

Local Loop Integrals for Scattering Amplitudes

Colour & Kinematics: the Vernacular of the S-Matrix
Tree-Level Recursion: Making the Impossible, Possible
Momentum Twistors and Geometry: Trivializing Kinematics

Tree-Level BCFW in Momentum-Twistor Variables
Because in momentum-twistor variables momentum conservation is automatic,
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The Meaning of The Loop Integrand
In a general theory, there is no naturally well-defined way to combine disparate

Feynman loop integrals:

At least for planar theories, the loop-integrand is unambiguous.
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Integrals over Lines in Momentum-Twistor Space
Integration over all x corresponds to the integration over

all lines (ZAZB) in momentum-twistor space.∫
d4x⇐⇒

∫
d4ZAd

4ZB
vol (GL2)× 〈λAλB〉4

≡
∫
AB

The propagators are

(x− x1)2 ⇐⇒ 〈AB 12〉 (x− x2)2 ⇐⇒ 〈AB 23〉 etc.

and the integral becomes∫
AB

〈12 34〉2
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The Origin of Loop Amplitudes: Forward Limits
Let us reconsider the BCFW deformation for momentum-twistors:
Zn 7→ Zn + zZn−1.

The ordinary terms come from factorizations: 〈n̂ 1 j j+1〉 = 0.

The new terms come from cutting a propagator: 〈AB n̂ 1〉 = 0.
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The Geometry of Forward Limits

In N = 4 these forward limits are always well-defined and finite
the same has been proven for up to two-loops in any
supersymmetric theory

»
Caron− Huot

arXiv :1007.3224

–
There is evidence that there exists a ‘smart forward limit’ that is
always finite and well-defined in any planar theory, extending the
all-loop recursion to even pure-glue (in the planar limit).
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Exempli Gratia: BCFW Form of MHV Loop Amplitudes
Taking the forward limit of an (n+ 2)-point NMHV tree amplitude

we find the following expression for the one-loop MHV amplitude:

=
∫
AB

〈AB (1 i i+1)
⋂

(1 j j+1)〉
〈AB 1 i〉〈AB i i+1〉〈AB i+1 1〉〈AB 1 j〉〈AB j j+1〉〈AB j+1 1〉
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j � 1

j

j � 1 k � 1

k

k � 1

∫
AB

〈AB(j 1 j j+1)
⋂

(k 1 k k+1)〉〈1 2 j k〉
〈AB 12〉〈AB j 1 j〉〈AB j j+1〉〈AB k 1 k〉〈AB k k+1〉

= Li2(1− u1)

+ Li2(1− u2)− Li2(1− u3)
− Li2(1− u4) + Li2(1− u5) + log(u1) log(u2)
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Local Loop Integrals for Scattering Amplitudes

Leading Singularities and Schubert Calculus
Manifestly-Finite Momentum-Twistor Integrals
Pushing the Analytic S-Matrix Forward

Forward Looking Comments

Do there exist alternative, e.g. purely geometric ways of
characterizing the full S-Matrix?
How can we systematically regulate and compute
momentum-twistor loop integrals?

Can we perform these integrals analytically at the outset?
Deeper connections to the leading-singularity programme?
connections to ‘symbols’ & mixed Tate motives?
How should the integrals coming from recursions be done
directly?

How easy is it to extend these results to other theories?
non-supersymmetric (planar) Yang-Mills?
non-planar theories?
massive theories?

. . .
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