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•Spontaneous breaking of scale invariance could be very 
interesting for particle physics phenomenology

•Couplings of Higgs in SM: determined by approximate 
conformal symmetry of SM

•In absence of Higgs mass parameter SM approximately 
conformal until QCD scale, and <H>=v breaks conformality 
spontaneously

•Higgs = dilaton, with f=v, Higgs couplings determined
a la Shifman, Vainshtein, Voloshin, Zakharov ’79-’80

•One possibility: Higgs actually dilaton of a broken conformal 
sector



•Spontaneous breaking of scale invariance could be very 
interesting for particle physics phenomenology

•Cosmological constant problem

•Only known ways of setting Λ to zero: SUSY or conformal 
symmetry

•SUSY broken → Λ ~ (TeV)4  expected

•What is expectation for broken conformal symmetry?



•Aim for this talk

•What does it take to make a dilaton look like the observed 
Higgs?

•How can we make the dilaton naturally light?

•What are the consequences for a light dilaton for the CC?



Dilaton basics  
2 Scaling and Dilaton basics

In this section we summarize the basic properties of scale transformations and dilaton cou-

plings. Scale transformations [28] are given by (for x → x�
= e−αx)

O(x) → O
�
(x) = e

α∆
O(e

α
x) , (2.1)

where ∆ is the matrix of dimensions (including classical and quantum effects) for the oper-

ators O. The action changes under scale transformations as

S =

�

i

�
d
4
x giOi(x) −→ S

�
=

�

i

�
d
4
xe

α(∆i−4)
giOi(x) , (2.2)

which implies the well-known result that all operators must have dimension ∆i = 4 for all

Oi in order for the action to be scale invariant. The linearized transformation of the action

is then

S −→ S +

�

i

�
d
4
xαgi(∆i − 4)Oi(x) . (2.3)

Let us assume that scale invariance is broken spontaneously by the VEV of a dimension-

ful operator �O� = fn
where n is the classical dimension of O. The spontaneous breaking of

scale invariance will imply the existence of a Goldstone boson for scale transformations, the

dilaton, which transforms inhomogeneously under scale transformations:

σ(x) → σ(eαx) + αf . (2.4)

The low-energy effective theory can be obtained by replacing the VEV with the non-linear

realization

f → f χ ≡ f e
σ/f

, (2.5)

and requiring that it is invariant under scale transformations:

Leff =

�

n,m�0

an,m

(4π)2(n−1) f 2(n−2)

∂2nχm

χ2n+m−4
(2.6)

= −a0,0 (4π)
2
f
4χ4

+
f 2

2
(∂µχ)

2
+

a2,4

(4π)2
(∂χ)4

χ4
+ . . . (2.7)

where an,m ∼ O(1), and a1,1 = 1/2 corresponds to canonical normalization, and a2,4 is

determined by the proof of the a-theorem [29]. The complete set of dilaton couplings within

the scale-invariant sector can be obtained by the replacement in (2.5). However, a more

systematic way is to take advantage of the (approximate) scale invariance of the Lagrangian

at high energies, in order to build an effective Lagrangian for energies below Λ ∼ 4πf where

scale invariance is preserved by means of insertions of the dilaton field as defined in Eq. (2.5).

The general assumption we will be making is that there is a conformal sector which is

spontaneously broken, which we will refer to as the “composite sector”, and that there is
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•Scale transformations

•Operators transform

•Δ is full dimension, classical plus quantum corrections

•Change in action:

•Assume spontaneous breaking of scale inv.  (SBSI)
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Dilaton basics  

•Dilaton: Goldstone of SBSI, σ, transforms non-linearly under
scale transf.:

•Restore scale invariance by replacing VEV

•Effective dilaton Lagrangian is then (using NDA for coeffs)
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Dilaton dynamics  
•Main point of dilaton: effective action can have non-derivative 
χ4 term - just the cosmological constant in the composite 
sector

• Generically a≠0. Will make SBSI difficult: 

•Need to add additional almost-marginal operator to generate
dilaton potential

individual production channels,

RGF,(WW,ZZ) �
v2

f 2

1

C2

�
b(3)
eff

b(3)t

�2

, RGF,γγ � v2

f 2

1

C2

�
b(3)
eff

b(EM)
eff

b(3)t b(EM)
t+W

�2

,

RGF,ττ � v2

f 2

1

C2

�
b(3)
eff

(1 + γτ )

b(3)t

�2

, RV BF,γγ � v2

f 2

1

C2

�
b(EM)
eff

b(EM)
t+W

�2

,

RV BF,(WW,ZZ) �
v2

f 2

1

C2
, RV BF,ττ � v2

f 2

1

C2
(1 + γτ )

2 , RV h,bb �
v2

f 2

1

C2
(1 + γb)

2 .

(4.19)

All the rates scale as v2/f 2, and the inclusive modes as well, since all coefficients in Eq. (4.1)
for the dilaton are proportional to v/f , and likewise for |Ctot|. Paying attention to the
individual channels one can gain information on the anomalous dimensions. We show in
Fig. 1 the constraints from the present measurements of three different rates: inclusive higgs
production and decay to ZZ or to γγ, Rincl.,ZZ andRincl.,γγ respectively, and associated vector
boson production and decay to bb̄, RV h,bb. From the left panel one can see the preference of the
data for values of v/f very close to one, as was already suggested by EWPT (also shown as a
vertical strip). This is driven by the measurement of RV H,bb, since we assumed no deviations
in the coupling to the bottom except for the v/f factor. The inclusive measurements Rincl.,ZZ

and Rincl.,γγ are instead sensitive to the β-function coefficients. In particular, as shown in

the right panel of Fig. 1, Rincl.,ZZ delimits the preferred values for b(3)
UV

, while the overlap

with Rincl.,γγ does this for b(EM)
UV

. We also show in Fig. 2 the prediction for these three

rates as a function of b(3)
UV

= b(EM)
UV

/2 (this choice correspond to the symmetric scenario

b(1)
UV

= b(2)
UV

= b(3)
UV

), and its overlap with current measurements at 1σ CL. Enhancement of
the ZZ and γγ rates are easily obtained for both v/f = 1 (left panel) and v/f = 0.8 (right

panel). The difference between negative and positive values of b(3)
UV

is due to the difference
in sign of the SM contribution to ĉg and ĉγ. Finally, notice that the bb̄ rate from associated
production is generically suppressed, due to the lack of enhancement in the production cross
section. This conclusion would not be changed by turning on γb �= 0, since the bb̄ channel
already dominates the decay of the higgs for γb = 0.

5 General considerations for the dilaton mass

The main difference between a standard Goldstone boson arising from an internal global
symmetry and the dilaton is that scale invariance allows for a non-derivative quartic self
coupling, which plays a crucial role in the discussion of the SBSI:

S =

�
d4x

f 2

2
(∂χ)2 − af 4χ4 + higher derivatives (5.1)
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•a>0: VEV at f=0, no SBSI

•a<0: runaway vacuum f→∞

•a=0 arbitrary f

dilaton potential

a > 0

a < 0

a = 0

f = 0

f =∞

f =?

σ(x) −→ σ(eαx) + αf

χ(x) = feσ/f −→ eαχ(eαx)

dilaton

V (π) = 0standard Goldstones have no potential

V (χ) = aχ4



Dilaton dynamics  
•Perturbation:

•Dilaton potential:                                       vacuum energy in
units of f 

•To have a VEV: 

•Dilaton mass: 
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Figure 2: Dilaton predictions for the rates Rincl.,ZZ (green line), Rincl.,γγ (orange), and RV H,bb

(blue) as a function of b(3)
UV,CFT

= b(EM)
UV,CFT

/2 for v/f = 1 (left panel) and v/f = 0.8 (right).
Also shown as horizontal bands the current experimental intervals at 1σ CL (same color
code).

The presence of this term will make it very difficult to achieve the SBSI. When a �= 0 the
theory is either forced to f → ∞ for a < 0 (a runaway direction), or to f = 0 for a > 0.
Thus one needs to tune a = 0 in the effective theory (as explained by Fubini [41]). In order
to achieve SBSI one needs to relax a = 0 to |a| � 1, so that the broken phase �χ� = 1 is only
metastable. Adding an explicit breaking term to the CFT with an almost marginal operator

δS =

�
d4xλ(µ)O (5.2)

gives rise, in general, to an effective potential for the dilaton of the form

V (χ) = f 4F (λ(f)) , (5.3)

where F is a function of λ which parametrizes the explicit breaking of scale invariance as
a non-trivial function of χ. This potential is of the Coleman-Weinberg type when λ is
almost marginal. Then, as explained by Weinberg [42] and also stressed by Rattazzi and
Zaffaroni [27], a natural SBSI along with the generation of a large hierarchy of scales is
possible within naturalness. For this one needs a to be small (as assumed) and O to be a
marginally relevant deformation (as in QCD) while λ remains perturbative over the relevant
range of renormalization group running. In this case F (λ(f)) can have a minimum at a
scale f � Λs, where Λs is the scale where λ would become non-perturbative. Because
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theory is either forced to f → ∞ for a < 0 (a runaway direction), or to f = 0 for a > 0.
Thus one needs to tune a = 0 in the effective theory (as explained by Fubini [41]). In order
to achieve SBSI one needs to relax a = 0 to |a| � 1, so that the broken phase �χ� = 1 is only
metastable. Adding an explicit breaking term to the CFT with an almost marginal operator

δS =

�
d4xλ(µ)O (5.2)

gives rise, in general, to an effective potential for the dilaton of the form

V (χ) = f 4F (λ(f)) , (5.3)

where F is a function of λ which parametrizes the explicit breaking of scale invariance as
a non-trivial function of χ. This potential is of the Coleman-Weinberg type when λ is
almost marginal. Then, as explained by Weinberg [42] and also stressed by Rattazzi and
Zaffaroni [27], a natural SBSI along with the generation of a large hierarchy of scales is
possible within naturalness. For this one needs a to be small (as assumed) and O to be a
marginally relevant deformation (as in QCD) while λ remains perturbative over the relevant
range of renormalization group running. In this case F (λ(f)) can have a minimum at a
scale f � Λs, where Λs is the scale where λ would become non-perturbative. Because
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f � Λs, λ stays perturbative and the dilaton remains light, that is scale invariance can be

spontaneously broken. The stationary condition of V is

V �
= f 3

[4F (λ(f)) + βF �
(λ(f))] = 0 (5.4)

which results in a dilaton mass

m2
dil = f 2β [βF ��

+ 4F �
+ β�F �

] � 4f 2βF �
(λ(f)) = −16f 2F (λ(f)) (5.5)

where β�
= dβ/dλ. In the second equality we have also assumed that β� � 1. An explicit

(supersymmetric) example illustrating how this mechanism can work will be presented in

the next section. The Goldberger-Wise stabilization mechanism for the RSI model is also

an example for this mechanism, as we will discuss in detail in Sec. 7.

The main questions related to the naturalness of this mechanism are then why is F � 1

at the minimum (or, for a perturbative expansion in λ, a � 1) along with β � 1, and why

are we allowing only almost marginal perturbations. Let us start with F � 1. The case

F = 0 corresponds to a situation with no potential for the dilaton, and thus an arbitrary

value of f is allowed. This means that there is a flat direction in the theory. The presence of

flat directions is quite natural in supersymmetric theories, however no non-supersymmetric

example of physically inequivalent flat directions is known.
7
The closest anyone has been able

to get to this situation were the so-called orbifold gauge theories obtained via projecting out

some of the fields and couplings of an N = 4 SUSY gauge theory [43]. In this case the large-

N limit of the β-functions agrees with those of the SUSY theories, however 1/N corrections

lift the flat directions [44].

The other question is why only close-to-marginal perturbations are allowed, as these are

the only ones that would allow for a light dilaton. This part of the naturalness problem is

thus rephrased in terms of what relevant deformations the CFT supports. If it turns out

that only marginal perturbations are possible then a light dilaton is a natural possibility

(once the flat direction is present). Do such theories exist? Again, SUSY theories (SCFT’s),

especially chiral ones, give a handle on this because of the non-renormalization theorem:

the relevant deformations (if there are any) can be made naturally small. For the case of

non-supersymmetric CFT’s one would expect that only chiral gauge theories might have a

chance of giving a naturally light dilaton, but even those face the question of the origin of a

flat direction.

Let’s try to estimate how much fine tuning is hidden in these assumptions. The mini-

mization condition (5.4) says that for β � 1 the quartic F must almost vanish. In turn this

ensures that the dilaton mass (5.5) can be made parametrically smaller than f . In other

words, if we start with an almost flat direction, F � 1, then we can easily stabilize it by a

small breaking controlled by β. However, the starting assumption of almost flatness is itself

plagued by fine-tuning unless a symmetry reason can be invoked. In fact, the NDA for the

7The only other known way of generating flat directions is via the Goldstone theorem, but that will not
generate physically inequivalent vacua as is required for the case with an arbitrary scale f .
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dilaton potential

f

LCFT + λO

V = χ4F (λ(χ))

af4 → f4F (λ(f))

β =
dλ

d logµ



What would it take for the 126 GeV Higgs to 
be a dilatom

•A new particle at ~ 126 GeV that behaves very similarly to SM 
Higgs
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Figure 3: The diphoton invariant mass distribution with each event weighted by the S/(S+ B)
value of its category. The lines represent the fitted background and signal, and the coloured

bands represent the ±1 and ±2 standard deviation uncertainties on the background estimate.

The inset shows the central part of the unweighted invariant mass distribution.
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Figure 7: Combined search results: (a) The observed (solid) 95% CL
limits on the signal strength as a function of mH and the expec-
tation (dashed) under the background-only hypothesis. The dark
and light shaded bands show the ±1σ and ±2σ uncertainties on the
background-only expectation. (b) The observed (solid) local p0 as a
function of mH and the expectation (dashed) for a SM Higgs boson
signal hypothesis (µ = 1) at the given mass. (c) The best-fit signal
strength µ̂ as a function of mH . The band indicates the approximate
68% CL interval around the fitted value.

are excluded at 99% CL, 113–114, 117–121 and 132–
527GeV, while the expected exclusion range at 99%CL
is 113–532GeV.

9.2. Observation of an excess of events

An excess of events is observed nearmH=126GeV in
the H→ ZZ(∗)→ 4" and H→ γγ channels, both of which
provide fully reconstructed candidates with high reso-
lution in invariant mass, as shown in Figures 8(a) and
8(b). These excesses are confirmed by the highly sen-
sitive but low-resolution H→WW (∗)→ "ν"ν channel, as
shown in Fig. 8(c).
The observed local p0 values from the combination

of channels, using the asymptotic approximation, are
shown as a function of mH in Fig. 7(b) for the full mass
range and in Fig. 9 for the low mass range.
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Figure 8: The observed local p0 as a function of the hypothesised
Higgs boson mass for the (a) H→ZZ(∗)→ 4", (b) H→ γγ and (c)
H→WW(∗)→ "ν"ν channels. The dashed curves show the expected
local p0 under the hypothesis of a SMHiggs boson signal at that mass.
Results are shown separately for the

√
s = 7TeV data (dark, blue), the√

s = 8TeV data (light, red), and their combination (black).

The largest local significance for the combination of
the 7 and 8 TeV data is found for a SM Higgs boson
mass hypothesis of mH=126.5GeV, where it reaches
6.0σ, with an expected value in the presence of a SM
Higgs boson signal at that mass of 4.9σ (see also Ta-
ble 7). For the 2012 data alone, the maximum lo-
cal significance for the H→ ZZ(∗)→ 4", H→ γγ and
H→WW (∗)→ eνµν channels combined is 4.9σ, and oc-
curs at mH = 126.5GeV (3.8σ expected).
The significance of the excess is mildly sensitive to

uncertainties in the energy resolutions and energy scale
systematic uncertainties for photons and electrons; the
effect of the muon energy scale systematic uncertain-
ties is negligible. The presence of these uncertainties,
evaluated as described in Ref. [138], reduces the local
significance to 5.9σ.
The global significance of a local 5.9σ excess any-

where in the mass range 110–600GeV is estimated to
be approximately 5.1σ, increasing to 5.3σ in the range
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mdil ∼ Λ

Dilaton dynamics  
•We need 

•With 

•So 

•But dilaton mass: 

•Naive expectation: one loop vacuum energy 

f � Λs, λ stays perturbative and the dilaton remains light, that is scale invariance can be

spontaneously broken. The stationary condition of V is

V �
= f 3

[4F (λ(f)) + βF �
(λ(f))] = 0 (5.4)

which results in a dilaton mass

m2
dil = f 2β [βF ��

+ 4F �
+ β�F �

] � 4f 2βF �
(λ(f)) = −16f 2F (λ(f)) (5.5)

where β�
= dβ/dλ. In the second equality we have also assumed that β� � 1. An explicit

(supersymmetric) example illustrating how this mechanism can work will be presented in

the next section. The Goldberger-Wise stabilization mechanism for the RSI model is also

an example for this mechanism, as we will discuss in detail in Sec. 7.

The main questions related to the naturalness of this mechanism are then why is F � 1

at the minimum (or, for a perturbative expansion in λ, a � 1) along with β � 1, and why

are we allowing only almost marginal perturbations. Let us start with F � 1. The case

F = 0 corresponds to a situation with no potential for the dilaton, and thus an arbitrary

value of f is allowed. This means that there is a flat direction in the theory. The presence of

flat directions is quite natural in supersymmetric theories, however no non-supersymmetric

example of physically inequivalent flat directions is known.
7
The closest anyone has been able

to get to this situation were the so-called orbifold gauge theories obtained via projecting out

some of the fields and couplings of an N = 4 SUSY gauge theory [43]. In this case the large-

N limit of the β-functions agrees with those of the SUSY theories, however 1/N corrections

lift the flat directions [44].

The other question is why only close-to-marginal perturbations are allowed, as these are

the only ones that would allow for a light dilaton. This part of the naturalness problem is

thus rephrased in terms of what relevant deformations the CFT supports. If it turns out

that only marginal perturbations are possible then a light dilaton is a natural possibility

(once the flat direction is present). Do such theories exist? Again, SUSY theories (SCFT’s),

especially chiral ones, give a handle on this because of the non-renormalization theorem:

the relevant deformations (if there are any) can be made naturally small. For the case of

non-supersymmetric CFT’s one would expect that only chiral gauge theories might have a

chance of giving a naturally light dilaton, but even those face the question of the origin of a

flat direction.

Let’s try to estimate how much fine tuning is hidden in these assumptions. The mini-

mization condition (5.4) says that for β � 1 the quartic F must almost vanish. In turn this

ensures that the dilaton mass (5.5) can be made parametrically smaller than f . In other

words, if we start with an almost flat direction, F � 1, then we can easily stabilize it by a

small breaking controlled by β. However, the starting assumption of almost flatness is itself

plagued by fine-tuning unless a symmetry reason can be invoked. In fact, the NDA for the

7The only other known way of generating flat directions is via the Goldstone theorem, but that will not
generate physically inequivalent vacua as is required for the case with an arbitrary scale f .
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mdil ∼ 125 GeV

f ∼ v = 246 GeV,Λ = 4πf ∼ 3 TeV

mdil ∼ f/2 � Λ

quartic is

FNDA ∼ Λ4

16π2f 4
∼ 16π2

(5.6)

making the minimization condition (5.4) behind the flatness of the potential and the lightness

of the dilaton very unlikely to be realized in a generic theory. With such a large quartic the

dilaton mass would be at the cutoff m2
dil ∼ Λ2

, and the explicit breaking of scale invariance

necessarily large,

β ∼ 4FNDA

F �
NDA

∼ 4π. (5.7)

As we explain in more detail below, this is the situation realized in QCD-like or technicolor

theories, where the gauge coupling g2, to be identified with λ, becomes non-perturbative.

No light scalar degree of freedom with the properties of the dilaton is expected to be present

in the spectrum.

The above naive estimates can be refined for theories where the explicit breaking of

scale invariance comes from a coupling external to the strong conformal sector. In general

its β-function will be given by

β(λ) =
dλ

d lnµ
= �λ+

b1

4π
λ2

+O(λ3
) (5.8)

which is under control (i.e. small) as long as λ remains perturbative, λ � 4π, for bn ∼ O(1),

(� = b0). Here � is identified as the deviation from marginality of the perturbing operator,

|�| < 1, which is set by the strongly coupled CFT. The perturbativity of λ is a necessary

condition to obtain a parametrically light dilaton, unless one is willing to accept that even in

the non-perturbative regime, the β-function remains small but non-zero over a large range

of values of the coupling constant, which is a very special dynamical assumption, and we

know of no examples of such theories.

The consistency of a perturbative expansion in λ with the requirement of SBSI and the

generation of a large hierarchy is determined by the minimization condition (5.4), and can

only be achieved by reducing the intrinsic dilaton quartic a to values comparable with the

symmetry breaking contributions

F (λ) = (4π)2
�
c0 +

�

n

cn

�
λ

4π

�n
�
, c0 � cn ∼ 1 , a = (4π)2c0 . (5.9)

Then the minimization condition (5.4), expanded in powers of λ and �, yields λ(f) �
4πc0/c1 � 4π/∆, where ∆ is the amount of fine tuning. The coupling λ is allowed to

remain perturbative at the minimum. From the dilaton mass formula (5.5)

m2
dil

Λ2
∼ β

π
� �

λ

π
(5.10)
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Dilaton dynamics  
•Generically  DO NOT expect a light dilaton, need the dilaton
quartic to be suppressed vs. NDA size

•If quartic not suppressed, need large β to stabilize, large 
explicit breaking a la QCD and TC, no light dilaton

•Need to start with an almost flat direction

•Dynamics should not generate a large contribution to the 
vacuum energy...

•Natural in SUSY theories - have flat or almost flat directions

•Not natural in non-SUSY theories



Dilaton dynamics  
To find a (non-SUSY) solution we need 

•Small vacuum energy (tuning), a<<16π2

•δF dynamically cancels vs. a

•Perturbation should be close to marginal

m2
dil

Λ2
∼ β

π
� �

λ

π

A light dilaton needs ∆ =
16π2

δF
∼ 4π/λ ∼ 4�

Λ2

m2
dil

� 2Λ/mdil ~few%

� � λ

4π
β = �λ + b1

λ2

4π
+ . . .� 13)O close to marginal at the scale f

LCFT + λO V = χ4F (λ(χ)) F (λ) = a + δF (λ)

sym sym breaking

light dilaton?

16π20

F

aδF
1) small vacuum energy

by tuninga = O(δF )

dynamically cancels vs aδF2) a + δF � a



Dilaton dynamics  
•Detailed examination of the dynamics

•Assume small deviation ε from marginality, and coupling λ:

•Assume λ perturbative λ<4π, and dilaton quartic very small

•Coleman-Weinberg type potential for dilaton

quartic is

FNDA ∼ Λ4
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∼ 16π2

(5.6)
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Dilaton dynamics  
•For perturbative λ can introduce large hierarchies 

if ε small and negative f<<M (if positive more tuning)

•The dilaton mass:

•Could make it very small by taking ε→0?

then we understand that the fine tuning is tied to the dilaton mass, and further that it is
moderated by the marginality of the symmetry breaking coupling

∆ =
4π

λ
∼ 4�

Λ2

m2
dil

. (5.11)

From this formula it appears that the fine-tuning can be reduced arbitrarily by taking � → 0,
however one should not forget that once � is very small the next-to-leading term in (5.8) will
become the dominant source of the dilaton mass, replacing (5.10) with

m2
dil

Λ2
∼ β

π
∼ λ2

4π2
(5.12)

so that ∆ scales, at best, linearly8 with Λ/mdil

∆ � 2Λ/mdil � 50

�
f

246GeV

��
125GeV

mdil

�
. (5.13)

From this discussion, in particular Eq. (5.12), one can again see that in technicolor theories,
where � = 0 and λ = g2 is required to become non-perturbative to generate a condensate,
mdil ∼ Λ.

Finally notice that if we define the perturbative coupling λ at some scale M where the
strongly coupled theory is conformal then a large hierarchy of scales f � M is generated
because of the assumption that O is almost marginal

f � M

�
−4πc0
λ(M)c1

�1/�

. (5.14)

In the next section we present a natural supersymmetric implementation of the mech-
anism outlined above for a naturally light dilaton. We will see that SUSY will ensure the
presence of a flat direction, which will be slightly broken by a non-perturbative effect, giving
rise to a runaway direction a < 0, |a| � 1, which will then be stabilized by a small, tech-
nically natural almost-marginal deformation at f � Λs. SUSY plays a crucial role in all
aspects of the naturalness of the light dilaton in this model.

6 The 3-2 model: an illustrative SUSY example

A simple model that illustrates the general discussion related to the magnitude of the dilaton
mass is the well-known 3-2 model of dynamical supersymmetry breaking [45]. The model
is given by the following chiral superfield matter content under an SU(3) × SU(2) N = 1
supersymmetric gauge theory:

8We assumed that the leading symmetry breaking term c1 is not suppressed. In case instead c2 term
dominates over c1 the fine tuning scales as ∆ = (4π/λ)2 � (2Λ/mdil)4/3.
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λ(f) ∼ 4πc0/c1 ≡ 4π/∆

Dilaton dynamics  

•When ε very small, λ2 term in β-function dominates

•Shows need perturbative coupling for light dilaton

•QCD and (walking)-TC will not have a light dilaton, since 
there λ=g~4π

•Fine-tuning in weakly coupled models: min. condition gives
                                          where Δ is FT
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From this discussion, in particular Eq. (5.12), one can again see that in technicolor theories,
where � = 0 and λ = g2 is required to become non-perturbative to generate a condensate,
mdil ∼ Λ.

Finally notice that if we define the perturbative coupling λ at some scale M where the
strongly coupled theory is conformal then a large hierarchy of scales f � M is generated
because of the assumption that O is almost marginal
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A SUSY example for a light dilaton 
• Look at 3-2 model

•Classical flat directions

•Lifted by superpotential 

•Dynamical ADS superpotential 

•Will push fields to large VEVs >>Λ3 as long as λ<<1 

•Spontaneous conformality breaking, expect light dilaton
                                             

SU(3) SU(2) U(1) U(1)R

Q 1/3 1

L 1 −1 −3

U 1 −4/3 −8

D 1 2/3 4

. (6.1)

together with a tree-level superpotential

W = λQD̄L , (6.2)

This theory is an ideal toy example because in the λ → 0 limit the theory has classical

flat directions that are parametrized by the invariants QD̄L, QŪL and det(Q̄Q), where

Q̄ = (Ū , D̄). All of these flat directions are lifted by the addition of the superpotential.

However in the limit when λ � 1 this potential will be very shallow. In the limit when the

SU(3) group is much stronger than the SU(2) group, Λ3 � Λ2, the largest dynamical effect
will be the presence of SU(3) instantons generating a dynamical Affleck-Dine-Seiberg (ADS)

superpotential of the form

Wdyn =
Λ7

3

det(QQ)
, (6.3)

This superpotential will force the fields to large expectation values, and without the stabiliz-

ing tree-level superpotential term in (6.2) one would have a runaway direction. For λ � 1 the

stabilized field values will be � Λ3, and the gauge group will be completely broken. Thus for

sufficiently small λ the gauge symmetry will be broken dynamically via the instanton effects
before the gauge group becomes strongly coupled. The theory is approximately conformal,

only broken by the weak gauge couplings and the very weak λ. This implies that there is

also a dynamical spontaneous breaking of the approximate conformal symmetry, and that

one expects a light dilaton field as long as the field VEVs satisfy f = �Φ� � Λ3.

Since the theory is calculable for λ � 1 one can explicitly verify this. The crude estimate

for the dilaton mass assumes that all field values are roughly of the same order �φ� ∼ f with

f � Λ3 for λ � 1. In this case the potential is of the order

V ≈ Λ14
3

f 10
+ λ

Λ7
3

f 3
+ λ2f 4 , (6.4)

Minimizing this potential one obtains the scaling of the VEV and of the vacuum energy:

f ≈ Λ3

λ1/7
, V ≈ λ10/7Λ4

3. (6.5)

Thus using the usual parametrization φ = feσ/f we find that the dilaton mass is of order

mdil ≈ λf ≈ λ
6
7Λ3 . (6.6)
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A SUSY example for a light dilaton 

• The potential

•VEVs: 

•Dilaton mass: 

•Of course here SUSY is playing the essential role of keeping 
the dilaton light, unlike in the non-SUSY examples we are 
interested in                                              
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Q̄ = (Ū , D̄). All of these flat directions are lifted by the addition of the superpotential.

However in the limit when λ � 1 this potential will be very shallow. In the limit when the

SU(3) group is much stronger than the SU(2) group, Λ3 � Λ2, the largest dynamical effect
will be the presence of SU(3) instantons generating a dynamical Affleck-Dine-Seiberg (ADS)

superpotential of the form

Wdyn =
Λ7

3

det(QQ)
, (6.3)

This superpotential will force the fields to large expectation values, and without the stabiliz-

ing tree-level superpotential term in (6.2) one would have a runaway direction. For λ � 1 the

stabilized field values will be � Λ3, and the gauge group will be completely broken. Thus for

sufficiently small λ the gauge symmetry will be broken dynamically via the instanton effects
before the gauge group becomes strongly coupled. The theory is approximately conformal,

only broken by the weak gauge couplings and the very weak λ. This implies that there is

also a dynamical spontaneous breaking of the approximate conformal symmetry, and that

one expects a light dilaton field as long as the field VEVs satisfy f = �Φ� � Λ3.

Since the theory is calculable for λ � 1 one can explicitly verify this. The crude estimate

for the dilaton mass assumes that all field values are roughly of the same order �φ� ∼ f with

f � Λ3 for λ � 1. In this case the potential is of the order

V ≈ Λ14
3

f 10
+ λ

Λ7
3

f 3
+ λ2f 4 , (6.4)

Minimizing this potential one obtains the scaling of the VEV and of the vacuum energy:

f ≈ Λ3

λ1/7
, V ≈ λ10/7Λ4

3. (6.5)

Thus using the usual parametrization φ = feσ/f we find that the dilaton mass is of order

mdil ≈ λf ≈ λ
6
7Λ3 . (6.6)

21

SU(3) SU(2) U(1) U(1)R

Q 1/3 1

L 1 −1 −3

U 1 −4/3 −8

D 1 2/3 4

. (6.1)

together with a tree-level superpotential

W = λQD̄L , (6.2)

This theory is an ideal toy example because in the λ → 0 limit the theory has classical

flat directions that are parametrized by the invariants QD̄L, QŪL and det(Q̄Q), where
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}
∼ 16π2

The radion in RS/GW
• The effective potential w/o stabilization  
                                        

•With f=1/R’ get a characteristic SBSI potential with quartic

•Natural size of quartic: NDA in 5D
like in 4D EFT

Thus we obtain a naturally light dilaton, below the scale of conformality breaking f as long
as λ � 1 (and also below the dynamical scale Λ3). This is because the theory is weakly
coupled in that regime, and one has a predominantly spontaneous breaking of the conformal
symmetry. The main source of the dilaton mass here is the instanton effect itself, which is
not scale invariant. One can easily check that loop corrections due to the running of λ and
the gauge coupling g3 result in subdominant corrections.

Once λ ∼ O(1) the theory enters the strong coupling regime before conformality is
broken. In this case there is a large explicit breaking of scale invariance both due to the
running of the coupling and the instantons in the strongly coupled group. The dilaton mass
is no longer expected to be suppressed compared to Λ3 as suggested by (6.6), even though the
actual expression for the dilaton mass is no longer calculable. While the superpotential is still
exact, the Kähler potential will get large corrections and even the right degrees of freedom
may change. Nevertheless one does not expect these effects to provide any suppression of
the dilaton mass. In particular (6.6) suggests that for λ ∼ 4π we get mdil ∼ 4πf around the
cutoff scale of the effective theory.

The main lesson from this example is that having a light dynamical dilaton is possible,
however it seems crucial to have a weakly coupled flat direction available in the theory. It is
hard to imagine such flat directions without the presence of supersymmetry.

7 The Goldberger-Wise stabilized Randall-Sundrum
model: a non-SUSY example

The most often discussed non-SUSY example for a model with SBSI is the RSI model [26]
with the GW stabilization mechanism [25]. Here a warped extra dimension with an AdS5

background and curvature radius R is cut off via a UV brane with tension V0 and an IR brane
with tension V1. The location of the IR brane R� (usually referred to as the radion [11,25,48–
50]) provides the dilaton, with the identification 1/R� = f . The GW stabilization [25] adds
a bulk scalar with a very small bulk mass m, such that � ∼ m2R2/4 � 1. The standard lore
is that this model is a non-SUSY example with a naturally light dilaton. We are interested
in the question whether the appearance of the light dilaton is indeed natural. For this we
need to identify the effective potential (5.1) of the dilaton. This effective potential depends
on the bulk and brane tensions and also on the parameters of the GW stabilizing field.

The potential in the absence of the GW field is given by

Veff = V0 + V1

�
R

R�

�4

+ Λ(5)R

�
1−

�
R

R�

�4
�

, (7.1)

where Λ(5) is the 5D cosmological constant. In terms of the dilaton f = 1/R� this is written
as

Veff (χ) = V0 + Λ(5)R + f 4
�
V1R

4 − Λ(5)R
5
�
. (7.2)

22

Thus we obtain a naturally light dilaton, below the scale of conformality breaking f as long
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}
CC, FT1 quartic, FT2

This potential is clearly of the form (5.1) as expected from SBSI, with an additional 4D

cosmological constant. The usual RS tuning conditions consist of making the choice V0 =

−V1 = −Λ(5)R. One of these tunings eliminates the 4D cosmological constant, while the

second clearly corresponds to tuning the coefficient of the quartic self-coupling a to zero,

that is to make the dilaton a flat direction. If we did not make this tuning, the two branes

would either collide or fly apart [46], depending on the sign of the quartic V1R4 − Λ(5)R5.

This is the origin of the tuning for the light dilaton mass in RS: the only reason for this

second tuning is to ensure that the dilaton is flat in the absence of a stabilization mechanism,

that is to ensure the spontaneous breaking of conformality. Without this tuning of the IR

brane tension there would be a large quartic. This does not preclude the stabilization of the

dilaton at large VEVs once the stabilizing, explicit breaking is introduced, it simply requires

that the breaking is large (it can no longer be an almost marginal perturbation). In this

case one expects a large dilaton mass of the order of the other scales in the theory, rather

than a parametrically suppressed dilaton mass.

In order to quantify the tuning let us give the NDA value for the size of this quartic δa,
by estimating the bulk contribution Λ(5)R5 and the IR contribution V1R4. To find the bulk

contribution we need to first find the cutoff of a 5D gravitational theory Λgrav in terms of the

5D Planck scale M∗. NDA relates the two as Λgrav = M∗(24π3)
1
3 , where the 24π3 is the 5D

loop-factor [47]. The AdS curvature scale R is given by R2 = −12M3
∗/Λ(5). NDA predicts

the size of the 5D cosmological constant to be at least Λ(5) ∼ (Λgrav)5/(24π3). Putting these

all together one finds that the natural value of the bulk contribution to the tree-level quartic

is of the order

δa(bulk) ∼ Λ(5)R
5 ∼ 12

5
2

24π3
∼ O(1). (7.3)

The IR contribution on the other hand is given by

δa(IR) = −V1R
4
= −V1

�
R

R�

�4

R�4
=

�V1�
Λ
4π

�4 , (7.4)

where �V1 is the warped-down physical value of the IR brane tension, and Λ is the local

cutoff of order 4π/R�. One can clearly see that the correction to this IR piece exactly

matches the estimate for the 4D NDA value of the dilaton quartic: the one-loop correction

to �V1 is just Λ4/(16π2), yielding δa(IR) ∼ 16π2. The tuning is then due to the fact that

δa = δa(bulk) + δa(IR) where the first term is O(1), which needs to cancel against the term

that is O(16π2).

The GW stabilization mechanism instead assumes the original RS tuning for the brane

tensions with δa = 0, that is it assumes that the unperturbed situation corresponds to the

theory with a flat dilaton. At that point the possibility of a small dilaton mass follows from

the discussion in Sec. 5. Without that assumption the dilaton mass would generically not be

light (and the back-reaction of the metric not negligible). Once the RS tuning assumption

is made a light dilaton can be produced.
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The radion in RS/GW
•Assumption for GW: quartic is set to zero/very small, then 
bulk scalar added with non-trivial profile and small bulk mass

•Potential:

• ε is bulk mass, v1,0 IR/UV VEVs in units of AdS curvature,
δa the remaining quartic

•VEV: 

•Tuning determined by 

•Amount:                              ~ 4000 for v1 ~ 0.1.  

In order to find the amount of tuning in RS-GW we need to review the full dilaton
potential. This was first calculated in [25] examined in great detail in [27, 49, 50] and is
given, in the interesting region where f � 1/R, by

V = f
4
�
(4 + 2�) [v1 − v0 (fR)�]2 − �v21 + δa+O(�2)

�
= f

4
F (f) , (7.5)

where v0,1 are the UV and IR VEVs of the GW scalar field in units of the AdS curvature
R, and δa is the tree-level contribution to the quartic from the mistuning of the IR ten-
sion estimated above. The interpretation of this potential is that it is the result of a UV
deformation

δL = λO , (7.6)

where the operator O has dimension 4+ �, and with v0 being related to the UV value of the
coupling λ, while v1 being related to the VEV �O�. Thus v0 sets the UV value of the source
of explicit breaking of conformality. The latter is parametrized by �, the departure from
marginality of O; v1 sets the amount of spontaneous breaking in the limit v0 → 0, and can
be further interpreted as v1 ∼ δλ(f), an IR threshold contribution. The actual running of λ is
given in general by (5.8), which is the actual measure of the explicit breaking of the conformal
symmetry. This explains why in Eq. (7.5), where all bi have been neglected, any non-trivial
dependence on φ vanishes for � = 0: � is the contribution of the CFT to the running of λ,
and when � → 0 there is no explicit breaking of the CFT, so the dilaton potential can only
contain a quartic term. Note then that the parameters v0,1 do not automatically break the
conformal symmetry.

The minimum of the potential Eq. (7.5) is at

f =
1

R

�
v1 +

�
−δa/4

v0
+O(�)

�1/�

, (7.7)

which is exponentially smaller than 1/R, yielding the necessary hierarchy for the RS model.
Notice that this minimum is the solution of Eq. (5.4) with a small β function β � �λ, that
is F (λ(f)) = O(�). The assumption that � is small is a necessary ingredient in order to
reproduce a large hierarchy of scales, but the fact that the full β function Eq. (??) remains
small at the minimum is an unnatural outcome, precisely because it requires the vanishing of
the dilaton quartic coupling at the minimum without any symmetry argument or dynamical
mechanism behind it.

We can now quantify the amount of tuning needed in RS in order to obtain the right
hierarchy. In (7.7) we need the correction of the quartic to be not too different from v1:

�
−δa/4 � v1 (7.8)

yielding a tuning of order

∆ =
a

|δa|
� 4π2

v21

. (7.9)
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N =
�
12(M∗R)3 � 1

Radion as Higgs?
•Radion kinetic term normalization gives

 

•For calculability need                                 , so 

•For higgsless: 

•For models with very heavy higgs:

•Both cases couplings very suppressed, but mass light 

For example for the canonical choice of v0 = 1, v1 = 1/10, � = 1/15 one finds ∆ ∼ 4000,
a per mil level tuning. Without this tuning there would be no hierarchical minimum with
a small back reaction. That would be realized with � < 0 (a relevant deformation) and λ
becoming non-perturbative at low energies, but then no trace of a dilaton associated with
SBSI would remain.9

Once the hierarchy is established, one can try to see if the radion can be made to have
properties similar to the Higgs. It turns out that the main obstacle is to obtain f ≈ v. The
point is that the kinetic term of the radion (in the normalization we have used so far) is very
large, it is in fact enhanced [48–50] by the factor N2 = 12(M∗R)3, which by the requirement
that the gravitational theory is calculable should be N � 1. This leads to an enhancement
for the expression of the physical value of the scale of SBSI for the RS model:

f
(RS) =

1

R�

�
12(M∗R)3 (7.10)

This is the scale that will suppress all the dilaton couplings. If one were to do away with
the Higgs doublet localized on the IR brane and try to substitute the radion for the higgs,
the expression for v/f using the basic relations for higgsless models [52] would be given by

v

f (RS)
=

2

g

1

N

�
log R�

R

. (7.11)

For calculable gravity models with a hierarchy one finds v/f � 1. Alternatively one could
consider a theory with a very heavy higgs on the IR brane, in which case one just finds

v

f (RS)
=

vR�

N
, (7.12)

again yielding v/f � 1 assuming that the KK scale is of order 1/R� ∼ 1 TeV. Thus the basic
RS radion can not be successfully used to replace the higgs. On the other hand, due to the
very large kinetic term for the radion its mass will be even further suppressed compared to
the KK mass scale:

m
2
dil =

16

NR�2

�
v1

√
−δa− δa

2

�
�+O(�2) . (7.13)

Once δa is tuned to obtain the right minimum
√
−δa ∼ O(v1) we can see that we get a

radion mass that is significantly lighter than the KK mass scale in the theory as explained
in [27, 48–50]:

mdil ∼ MKK
2v1

√
��

12(M∗R)3
. (7.14)

9To avoid this tuning and keep a light dilaton in the spectrum, one would like to find an explanation for
why in the limit � → 0 one also finds δa → 0, as in the construction of Contino, Pomarol, Rattazzi [51].
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Dilaton couplings
•Assumption: composite sector + elementary sector

•Composite sector close to conformal, breaks scale inv. 
spontaneously

•Elementary sector is external to composite, but weak 
couplings

•Dilaton coupling in composite sector: assume in UV

•All operators dim 4 or small explicit breaking

•Generic IR Lagrangian

another sector weakly coupled to it that explicitly breaks the conformal invariance, which
we will refer to as the “elementary sector”. There could also be small explicit breaking terms
within the composite sector. The SM matter fields will be mostly elementary, but some of
them (for example the top) can be partly composite.

2.1 Composite sector couplings

Let us assume that in the UV the theory is determined by the Lagrangian
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where the operators above include both scale invariant (∆UV
i = 4) and small explicit break-

ing terms (∆UV
i �= 4). We treat the explicit breaking couplings as spurions under scale

transformations, and assign to them a fictitious scaling dimension

[gi] = 4−∆UV
i . (2.9)

The low-energy effective theory, valid below the scale Λ ∼ 4πf , might present a different
field content. The Lagrangian can be written as

L
IR
CFT =

�

j
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where cj is an unknown function of the scale invariant couplings and we have expanded in
the small explicit breakings. The power of χ is determined by requiring scale invariance:
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For terms with a single power of a symmetry breaking coupling and to leading order in the
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This is just the well-known special case that the dilaton couples to the trace of the energy-
momentum tensor
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µ . (2.14)
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Dilaton couplings I. Composites
•Power of χ fixed

•  

•Single coupling:

•If no explicit breaking

•Coupling to Tr of energy-momentum tensor:

•Trace anomaly included, for 
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For instance, the trace anomaly is included in the perturbative contribution to ∆IR

j for
OIR

j = −(Fµν)2/(4g2)

4−∆IR
j = 2γ(g) =

2β(g)

g
. (2.15)

This is, for example, the case in the original RS model, where the entire SM is assumed to
live in the IR brane, thus being fully composite.

2.2 Elementary-Composite couplings

The more interesting cases however do not correspond to a SM fully embedded into the
composite sector. Instead, the SM fields are considered external to the CFT dynamics,
as in the realistic RS-model of Agashe et al [21]. Indeed the couplings of the dilaton in
this case do not quite follow the above results as shown in [11], since the elementary fields
introduce explicit breakings of the conformal invariance through their (weak) couplings to
the composite operators. In this case one has to perform a spurion analysis to derive the
couplings of the dilaton. Let us consider that at high energies the Lagrangian can be written
as

L
UV = L

UV
CFT + Lelem +

�

i

yi Oelem,i O
UV
CFT,i , (2.16)

where the elementary-composite interactions generically break conformal invariance since
their dimensions are not four. Following the spurion analysis

[yi] = 4−∆UV
elem,i −∆UV

CFT,i . (2.17)

Notice that the scaling dimensions of the elementary fields might differ from their classical
dimensions. This is due to the CFT contribution to their wave function renormalization.
This is generically a subleading effect, unless the coupling yi gets strong, or in special cases
like gauge fields, where gauge invariance fixes the couplings.

The low-energy effective Lagrangian then takes the form

Leff = L
IR
CFT + Lelem +
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mj +O(y2) , (2.18)

The power of χ is determined by requiring scale invariance:
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= ∆UV
elem,i −∆IR

elem,i +∆UV
CFT,i −∆IR

CFT,j . (2.20)

This analysis can be easily extended to include terms of higher order in yi. Notice that
in general the dilaton also couples to operators build only with elementary fields, if the
proper powers of yi are introduced. Likewise, dilaton couplings to composite operators will
be generated, as explained in Sec. 2.1.
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Dilaton couplings II. Partially composite

•Mixing between composite and elementary sectors

•Treat y as spurion with dimension

•Effective Lagrangian 

•Power of χ: 
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Example I: Partially comp. fermions

•Mixing between elementary and composite fermions:

•Spurion dimensions:

•The effective fermion mass: 

•Coupling to dilaton:

•In RS language: 

Partially composite fermions

Consider the following interaction of the elementary fermions ψL, ψR with composite oper-
ators ΘL, ΘR at high energies

Lint = yLψLΘR + yRψRΘL + h.c. . (2.21)

These realize the paradigm of partial compositeness [21], in which the flavor structure of the
SM is reproduced at low energies by fixing the amount of mixing yL, yR and the dimensions
of ΘL, ΘR for each SM chiral fermion. The spurious scaling dimensions are

[yL] = 4−∆UV
ψL

−∆UV
ΘR

, [yR] = 4−∆UV
ψR

−∆UV
ΘL

. (2.22)

After integrating out the massive composite degrees of freedom, the following interaction is
generated

Leff = −M yL yR ψLψRχ
m + h.c. , (2.23)

where

m = 4−
�
4−∆UV

ψL
−∆UV

ΘR
+ 4−∆UV

ψR
−∆UV

ΘL

�
−∆IR

ψL
−∆IR

ψR
(2.24)

= ∆UV
ψL

−∆IR
ψL

+∆UV
ψR

−∆IR
ψR

+∆UV
ΘL

+∆UV
ΘR

− 4 . (2.25)

Using the conventions of AdS/CFT and RS [30]

∆UV
ΘL

= 2 + cL , ∆UV
ΘR

= 2− cR , (2.26)

where cL > −1/2 and cR < 1/2. Neglecting the perturbative anomalous dimensions of the
elementary fermions we have the dilaton coupling

Leff = −M yL yR ψLψRχ
cL−cR . (2.27)

The same result can be obtained by following the dependence on the breaking scale f of the
low energy coupling y(µ). This follows the renormalization group equation [31]

dyL,R

d lnµ
= γL,R yL,R +O(y3L,R) , γL,R = ±cL,R − 1/2 , (2.28)

which determines the low-energy value of yL,R,

yL,R(µ) � yL,R(µ0)

�
f

µ0

�γL,R

. (2.29)

In the low-energy theory the mass term ψLψR has a coefficient MyL(µ)yR(µ) with M ∝ f

and replacing f by feσ/f we find a linear dilaton coupling

−mψ(1 + γL + γR)ψLψR
σ

f
= −mψ(cL − cR)ψLψR

σ

f
. (2.30)

where we have identified mψ = MyLyR.
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Example II: Partially comp. gauge field

•Mixing between gauge field and composite current:

•Spurion dimension:

•Low energy coupling:

•Coupling: 

Partially composite gauge fields

Another simple example: consider the coupling of an elementary gauge field to a global

current of the CFT, given by

L = − 1

4g2UV

FµνF
µν

+ AµJ µ . (2.31)

Since J µ
is a conserved current we assign the spurion dimension

[gUV ] = ∆UV
A − 1 . (2.32)

The term in the low-energy theory is then

Leff = − 1

4g2
FµνF

µνχm , (2.33)

where [g] = [gUV ] and

m = 4− 2[1 +∆IR
A ] + 2[g] = 2(

βIR

g
− βUV

g
) . (2.34)

The same result at one-loop order can be obtained by following the dilaton dependence

of the breaking scale f . We can write the IR gauge coupling as

1

g2(µ)
=

1

g2(µ0)
− bUV

8π2
ln

µ0

f
− bIR

8π2
ln

f

µ
, (2.35)

In the low-energy theory F µνFµν has a coefficient −1/4g2(µ) and replacing f by feσ/f we

find a linear dilaton coupling

g2

32π2
(bIR − bUV )F

µνFµν
σ

f
. (2.36)

In the next section we will specify these formulae for the interesting case when the SM is

partially embedded into the conformal sector, but most of the SM fields remain elementary.

3 Dilaton phenomenology

In this section we discuss the couplings of the dilaton to SM fields, in order to eventually

address its viability as a candidate for the recently discovered LHC resonance at 125 GeV.

We assume that SM fermions (except perhaps the top) and gauge bosons are elementary,

not composites of the strong dynamics, but are are weakly coupled to it. This assumption is

supported by mounting experimental evidence on the elementary nature of the SM leptons
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f → fe
σ
f

Example II: Partially comp. gauge field
•Can also find this from matching of coupling

•With replacement

•Coupling again
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Could this be the 126 GeV particle?

•Couplings compatible with SM values, but at this point some 
could also be somewhat off.



Dilaton coupling to SM
•Couplings to massive fields:

•Anomalous dimensions γL,R might be flavor dependent. 
Assume flavor symmetry to tame dilaton mediated FCNCs

•Coupling to massless gauge bosons:

•Assuming photon, gluon partially composite 

and light quarks, as well as of the photon, gluon, and transverse components of the W and
Z. On the other hand, the dilaton and the longitudinal components of the W and Z are
assumed to be composites. This is equivalent to the assumption that EWSB is fully driven
by the composite sector. Furthermore, the heaviness of the top quark might be an indication
of its compositeness as well, a possibility yet to be tested at the LHC. Here we will assume
that tR is composite, and indicate how the results change if it was elementary.

Next we use the general results of the previous section to specify couplings of the el-
ementary SM fields to the strong sector. The coupling of a gauge field Aµ is dictated by
gauge invariance: it couples linearly to the corresponding global current J µ of the strong
sector with the gauge coupling g. For a chiral fermion, ψ, we will assume that each fermion
couples linearly to a (single) fermionic composite operator Θ. These interactions realize the
framework of partial compositeness for the SM. The corresponding low-energy couplings of
the dilaton to the SM fields can be derived following the discussion in Sec. 2.2, and they are
given by Eq. (2.30) and Eq. (2.36) respectively for fermions and gauge fields. For complete-
ness, let us write down the full effective Lagrangian for the SM at low energies and derive
the couplings of the dilaton at leading order in 1/f . For operators with classical dimension
less than or equal to four, the Lagrangian can be divided into kinetic terms,

Lkin = − 1

4g2A

�
F (A)
µν

�2
+ iψ̄/Dψ , (3.1)

and mass terms,

Lmass =
v2

2
|DµΣ|2 − Yψ

v√
2
ψLΣψR + h.c. (3.2)

Mass terms arise after the spontaneous breaking of scale and electroweak invariances. The
first term, giving rise to the W and Z masses, is just the leading operator in derivatives
of the non-linear sigma model parametrized by Σ, which contains the Goldstone bosons of
the spontaneous breaking of EWS, SU(2)L × SU(2)R → SU(2)V . The second term comes
from a SU(2)V invariant strong sector operator of the form Θ̄LΘR, after rotation of the
fermionic mixing term in Eq. (2.21). Therefore we expect that the Yukawa couplings scale
as Yψ ∝ yLyR at leading order in yL,R.

The couplings of the dilaton to the SM fields are then given by

δLkin =
g2A
32π2

�
b(A)
IR − b(A)

UV

� �
F (A)
µν

�2 σ
f
, (3.3)

and

δLmass =
�
2m2

WW+
µ W−µ +m2

ZZ
2
µ

� σ
f
− Yψ

v√
2
ψLψR(1 + γL + γR)

σ

f
+ h.c. , (3.4)

where we have moved to unitary gauge and canonically normalized the gauge fields. The
β function coefficient b(A)

UV and b(A)
IR parametrize the explicit breaking of scale invariance in
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Therefore, in such a naive dilaton scenario one has b(3)IR = b(3)SM . Recalling that the coupling

of the dilaton to gluons can be obtained, analogously to the SM higgs, by making the re-

placement f → f χ in the expression for gs(µ ∼ mχ), one obtains a much larger coupling

than the SM higgs (assuming f ∼ v). Besides, recent LHC dijet data severely constrains the

scale of compositeness of the gluon to Λ � 5.5TeV > 4πv [36]. In the more realistic case we

are considering, the final answer for the dilaton coupling to gluons depends on b(3)UV , effec-

tively a free parameter,
5
and b(3)IR, which under the assumption of a composite tR, is given by

b(3)tR = −1/3, although this is model dependent. However, this is not the final result for the

coupling of the dilaton to gluons. Just as in the case of the SM higgs, particles heavier than

mχ/2, that is the top quark, also contribute at loop level. Using the low energy theorems as

an approximation to the computation of the triangle diagrams, we can include this contri-

bution by cutting the corresponding logarithms in the r.h.s. of Eq. (3.9) at µ = mt = ytf ,
which gives an extra dilaton coupling after the substitution f → f χ. Notice then that the

full contribution from tR is obtained from,

1

g2s(µ)
= −

b(3)tR

8π2
log

�
f

ytv

�
+ . . . (3.10)

which gives no coupling to the dilaton. If composite, the heavy right-handed top decouples,

which is expected since the contribution of a almost massless composite that turns out to

be heavy should not have been included in b(3)IR in the first place. The final (approximate)

result for the dilaton coupling to gluons is then given by

− (b(3)UV + b(3)tL )
αs

8π
G2

µν

χ

f
. (3.11)

A similar analysis can be carried out for the coupling of the dilaton to photons. The

result is obtained by making the obvious substitutions, gs → e, b(3)UV → b(EM)
UV = b(1)UV + b(2)UV ,

and b(3)IR → b(EM)
IR , and including the low-energy standard loop contributions from the top

and the W . Now b(EM)
IR includes, besides tR, with Nc b

(EM)
tR = −8/9, the NGB’s acting

as the longitudinal components of W±
, with b(EM)

W±
L

= −1/3. These contributions, because

mW ,mt � mχ/2, effectively decouple. Altogether, the final (approximate) result for the

dilaton coupling to photons is given by

− (b(EM)
UV + b(EM)

W±
T

+Nc b
(EM)
tL )

α

8π
A2

µν

χ

f
. (3.12)

We properly account for subleading corrections of order m2
χ/(2mt)

2
and m2

χ/(2mW )
2
in Sec-

tion 4.

5It is only constrained by unitarity bounds on the central charge of CFT’s [37].
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Dilaton coupling to SM
•In terms of generic parametrization

•For massive fields

•For massless GBs including top and W loops:

4 The dilaton at colliders

In order to make contact with the recent literature on the properties of the higgs like particle

discovered at the LHC, which we denote by h, we can make use of the following effective
Lagrangian,

Leff = cV

�
2m2

W

v
W+

µ
W−µ

+
m2

Z

v
Z2

µ

�
h

−ct
mt

v
t̄t h− cb

mb

v
b̄b h− cτ

mτ

v
τ̄ τ h

+cg
αs

8πv
G2

µνh+ cγ
α

8πv
A2

µν , (4.1)

where we are assuming custodial symmetry in the interaction of h with the electroweak

gauge bosons, and we have included only couplings to fermions that are relevant for LHC

phenomenology.
6
The tree-level values of these coefficients in the SM are given by

cV,SM = ct,SM = cb,SM = cτ,SM = 1 , cg,SM = cγ,SM = 0 . (4.2)

Loop diagrams with the top quark and/or the W induce a coupling to gluons and photons,

which can be encoded as a contribution to the coefficients cg and cγ respectively. In the SM

they are given by,

ĉg,SM =
1

2
F1/2(xt), ĉγ,SM = 3

�
2

3

�2

F1/2(xt)− F1(xW ) , (4.3)

where xi = 4m2
i
/m2

h
and the functions F1/2,1 are given by,

F1/2(x) = 2x[1 + (1− x)f(x)] , (4.4)

F1(x) = 2 + 3x+ 3x(2− x)f(x) , (4.5)

where f(x) = [sin
−1
(1/

√
x)]2 for x � 1 as it is the case for the top and W , since mh �

125GeV. The numerical values of the coefficients are then ĉg,SM � 2/3 and ĉγ,SM � −6.5.
These values are very close to the prediction from the higgs low energy theorems, that is

ĉg = −(b(3)tR
+ b(3)tL

) = 2/3 and ĉγ = −(b(EM)

W
±
T

+ b(EM)
H

+ Ncb
(EM)
tR

+ Ncb
(EM)
tL

) � −6.1, where

we have made explicit the different contributions from each chirality and have separated the

contributions from transverse and longitudinal components of the W±
.

As reviewed in Section 3, the couplings of the dilaton depart from those of the SM higgs.

Such modifications, when encoded in the parameters of the Lagrangian Eq. (4.1), read,

cV,χ =
v

f
, (4.6)

6We are not including a coupling to Zγ because of the absence of current measurements.
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ct,χ =
v

f
(1 + γt) , cb,χ =

v

f
(1 + γb) , cτ,χ =

v

f
(1 + γτ ) , (4.7)

cg,χ =
v

f
(b(3)IR − b(3)UV ) , cγ,χ =

v

f
(b(EM)

IR − b(EM)
UV ) . (4.8)

All the coefficients are suppressed by the ratio v/f . Further, the couplings to fermions de-

pend on the anomalous dimension of the associated Yukawa coupling, while the coupling

to massless gauge bosons depends on the strong sector’s contribution to the corresponding

β function. Recall that b(J )
IR includes the light composites only, specifically the NGB’s of

electroweak symmetry breaking (the charged components of the SM higgs doublet), and,

although more model dependent, the right-handed top quark. Therefore b(3)IR = b(3)tR = −1/3

and b(EM)
IR = Ncb

(EM)
tR + b(EM)

W±
L

= −11/9.

When the coefficients of Eq. (4.1) depart from the SM, decay rates and production cross

sections change. To first approximation, one can simply write for the former,

ΓWW

ΓWW,SM
=

ΓZZ

ΓZZ,SM
� |cV |2 ,

Γbb

Γbb,SM
� |cb|2 ,

Γττ

Γττ,SM
� |cτ |2 . (4.9)

The decay widths to gluons and photons have a more complicated expression because of

the interplay between the direct contribution from cg and cγ, and the modification to the

couplings of the particles running in the loop. One can write

Γgg

Γgg,SM
� |ĉg|2

|ĉg,SM |2 ,
Γγγ

Γγγ,SM
� |ĉγ|2

|ĉγ,SM |2 (4.10)

where at the one-loop level

ĉg = cg + ct
1

2
F1/2(xt) , (4.11)

ĉγ = cγ + ct
4

3
F1/2(xt)− cV F1(xW ) . (4.12)

As explained in Section 3.1, those composite SM particles (W±
L and tR) which get large

masses m > mχ/2 (in practice all of them), partly decouple in their contribution to the

dilaton coupling to massless gauge bosons, due to the relation between the trace anomaly

contribution and the triangle loop diagrams. These then read

ĉg,χ � v

f

�
b(3)IR − b(3)UV +

1

2
F1/2(xt)

�
≡ v

f
b(3)eff , (4.13)

ĉγ,χ � v

f

�
b(EM)
IR − b(EM)

UV +
4

3
F1/2(xt)− F1(xW )

�
≡ v

f
b(EM)
eff , (4.14)

where we have assumed that ct,χ ≈ v/f .
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where we have assumed that ct,χ ≈ v/f .

13



Dilaton rates and production
•Decay rates:

•Production rates:

•Rates for individual channels:

•where C = 

ct,χ =
v

f
(1 + γt) , cb,χ =

v

f
(1 + γb) , cτ,χ =

v

f
(1 + γτ ) , (4.7)

cg,χ =
v

f
(b(3)IR − b(3)UV ) , cγ,χ =

v

f
(b(EM)

IR − b(EM)
UV ) . (4.8)
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ĉg = cg + ct
1

2
F1/2(xt) , (4.11)
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� |ĉγ|2
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The generic predictions for the dilaton are then an overall suppression of all decay rates
by v2/f 2, which will then be required to be close to one, as expected by naturalness and
electroweak precision tests (EWPT) (see Section 4.1). The latter being so, enhancement of
some of the decay rates is plausible, if large anomalous dimensions are present, for instance
in the couplings to gluons and photons. An extra suppression of the coupling to fermions by
γ < 0 is not unplausible.

The dilaton production cross sections will also differ from those of the SM higgs. At the
Tevatron and LHC, the relevant production channels are gluon fusion (GF), vector boson
fusion (VBF), and associated production with an electroweak vector boson (Vh). One can
express such cross section as,

σGF

σGF,SM
� |ĉg|2

|ĉg,SM |2 ,
σV BF

σV BF,SM
� |cV |2 ,

σV h

σV h,SM
� |cV |2 . (4.15)

Therefore, for the dilaton one can expect a reduction in any of the production channels,
unless the coupling to gluons is enhanced by a large b(3)UV , in which case the gluon fusion
process could be larger than in SM.

4.1 Constraints from EWPT and LHC data

Previous to the recent discovery at the LHC, indirect contraints on the higgs couplings, in
particular cV , were coming from EWPT. These arise from the higgs one-loop contribution
to the vector boson self energies. When compared to the SM prediction, the additional
contributions due to cV �= 1 to the parameters T̂ , Ŝ [39] is

∆T̂ = − 3α

16π cos2 θW
(1− c2V ) log

�
Λ2

m2
h

�
, ∆Ŝ = +

α

48π sin2 θW
(1− c2V ) log

�
Λ2

m2
h

�
, (4.16)

where we assume that the logarithmically divergent one-loop contribution is cut at Λ. For our
dilaton scenario one expects Λ � 4πf = 4πv/cV,χ. The one parameter fit, for mh = 125GeV,
yields the 99% CL allowed region 0.86 � c2V � 1.41 and thus the constraint v/f � 0.93.
One must keep in mind that this bound is obtained under the assumption of no extra UV
contributions to T̂ and Ŝ. While a tree-level T̂UV can be forbidden by invoking custodial
symmetry, one typically expects tree-level contributions coming from (2.31) to ŜUV of order
m2

W/Λ2 ∼ 7× 10−4(v2/f 2).

Decay rates and production cross sections are the necessary ingredients to compare with
Tevatron and LHC higgs data. This is given in terms of the rates of each individual channel
j → i (or combinations of) normalized to the SM prediction,

Rji ≡ [σj→h × BRh→i]/[σj→h × BRh→i]SM . (4.17)

14

individual production channels,

RGF,(WW,ZZ) �
v2

f 2

1

C2

�
b(3)
eff

b(3)t

�2

, RGF,γγ � v2

f 2

1

C2

�
b(3)
eff

b(EM)
eff

b(3)t b(EM)
t+W

�2

,

RGF,ττ � v2

f 2

1

C2

�
b(3)
eff

(1 + γτ )

b(3)t

�2

, RV BF,γγ � v2

f 2

1

C2

�
b(EM)
eff

b(EM)
t+W

�2

,

RV BF,(WW,ZZ) �
v2

f 2

1

C2
, RV BF,ττ � v2

f 2

1

C2
(1 + γτ )

2 , RV h,bb �
v2

f 2

1

C2
(1 + γb)

2 .

(4.19)

All the rates scale as v2/f 2, and the inclusive modes as well, since all coefficients in Eq. (4.1)
for the dilaton are proportional to v/f , and likewise for |Ctot|. Paying attention to the
individual channels one can gain information on the anomalous dimensions. We show in
Fig. 1 the constraints from the present measurements of three different rates: inclusive higgs
production and decay to ZZ or to γγ, Rincl.,ZZ andRincl.,γγ respectively, and associated vector
boson production and decay to bb̄, RV h,bb. From the left panel one can see the preference of the
data for values of v/f very close to one, as was already suggested by EWPT (also shown as a
vertical strip). This is driven by the measurement of RV H,bb, since we assumed no deviations
in the coupling to the bottom except for the v/f factor. The inclusive measurements Rincl.,ZZ

and Rincl.,γγ are instead sensitive to the β-function coefficients. In particular, as shown in

the right panel of Fig. 1, Rincl.,ZZ delimits the preferred values for b(3)
UV

, while the overlap

with Rincl.,γγ does this for b(EM)
UV

. We also show in Fig. 2 the prediction for these three

rates as a function of b(3)
UV

= b(EM)
UV

/2 (this choice correspond to the symmetric scenario

b(1)
UV

= b(2)
UV

= b(3)
UV

), and its overlap with current measurements at 1σ CL. Enhancement of
the ZZ and γγ rates are easily obtained for both v/f = 1 (left panel) and v/f = 0.8 (right

panel). The difference between negative and positive values of b(3)
UV

is due to the difference
in sign of the SM contribution to ĉg and ĉγ. Finally, notice that the bb̄ rate from associated
production is generically suppressed, due to the lack of enhancement in the production cross
section. This conclusion would not be changed by turning on γb �= 0, since the bb̄ channel
already dominates the decay of the higgs for γb = 0.

5 General considerations for the dilaton mass

The main difference between a standard Goldstone boson arising from an internal global
symmetry and the dilaton is that scale invariance allows for a non-derivative quartic self
coupling, which plays a crucial role in the discussion of the SBSI:

S =

�
d4x

f 2

2
(∂χ)2 − af 4χ4 + higher derivatives (5.1)
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There is already an extensive literature on constraints for the coefficients in Eq. (4.1) obtained
by fitting the Rij’s. The current errors on these are large, however strong correlations among
the actual multi-dimensional fit parameters are obscured if one considers only the limits on
individual coefficients. For this reason, in this section we directly compare the results of
our theoretical predictions with the experimental values of the rates [38]. It is useful to
present the scaling of the different Rij with the dilaton parameters, that is v/f and the

anomalous dimensions γi, b
(J )
eff

. The total decay rate of the dilaton compared to the SM can
be approximated (if the deviations of the couplings are small) by

|Ctot|2 =
Γtot,χ

Γtot,SM
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�
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C2 . (4.18)

With this we can compute the rates as R � (σΓ)/(σΓ)SM × |Ctot|−2, and one obtains for the
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/2 for v/f = 1 (left panel) and v/f = 0.8 (right).
Also shown as horizontal bands the current experimental intervals at 1σ CL (same color
code).

The presence of this term will make it very difficult to achieve the SBSI. When a �= 0 the
theory is either forced to f → ∞ for a < 0 (a runaway direction), or to f = 0 for a > 0.
Thus one needs to tune a = 0 in the effective theory (as explained by Fubini [41]). In order
to achieve SBSI one needs to relax a = 0 to |a| � 1, so that the broken phase �χ� = 1 is only
metastable. Adding an explicit breaking term to the CFT with an almost marginal operator

δS =

�
d4xλ(µ)O (5.2)

gives rise, in general, to an effective potential for the dilaton of the form

V (χ) = f 4F (λ(f)) , (5.3)

where F is a function of λ which parametrizes the explicit breaking of scale invariance as
a non-trivial function of χ. This potential is of the Coleman-Weinberg type when λ is
almost marginal. Then, as explained by Weinberg [42] and also stressed by Rattazzi and
Zaffaroni [27], a natural SBSI along with the generation of a large hierarchy of scales is
possible within naturalness. For this one needs a to be small (as assumed) and O to be a
marginally relevant deformation (as in QCD) while λ remains perturbative over the relevant
range of renormalization group running. In this case F (λ(f)) can have a minimum at a
scale f � Λs, where Λs is the scale where λ would become non-perturbative. Because
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A naturally light dilaton
•We have seen, hard to get light dilaton

•Large quartic expected for dilaton in non-SUSY models

•To remove quartic w/o tuning, Contino, Pomarol, 
Rattazzi suggested

•Start with exactly conformal theory

•Add close to marginal perturbation with dimension 4-ε

•Make sure β function remains small even when 
coupling is large - very non-trivial requirement!

•Quartic will relax to close to zero, dilaton light cc small



A naturally light dilaton
•By adding small explicit breaking quartic will be slowly 
running

•Model will slowly scan through space of quartics

•SBSI happens when quartic is small

•If β function small dilaton will remain light

•Minimum expected at small CC also!

•Similar construction by Weinberg (no-go thm)

•Zero CC requires exact scale invariance, but then 
dilaton can not be fixed



A naturally light dilaton
•RS-GW vs. CPR approaches

•RS-GW starts with a tuned setup (IR brane tension)

•CPR approach allows arbitrary IR tension, but quartic 
will slowly relax, that is where IR brane stabilized

at the minimum of the potential.

The paper is organized as follows:

2 Light dilatons via long running and small β-function

Unlike for internal symmetries, non-linearly realized spontaneously broken scale invariance
allows a non-derivative quartic self-interaction for the dilaton:

Veff = Fχ4 (2.1)

where χ is the dilaton field. For a theory without explicit breaking one needs to have F = 0
in order for SBSI to occur: if F > 0, the minimum is at χ = 0 (no SBSI), while for F < 0 we
find χ → ∞, thus no scale invariant theory. So the only possibility is that F = 0, and thus
χ is a flat direction: just like a valley of flat direction for ordinary Goldstone bosons, the
main difference being that the dilaton corresponds to a non-compact flat direction. If one
wants to stabilize the scale one needs to introduce a small explicit breaking by perturbing
the theory with a close-to-marginal operator O with coupling λ that is slowly running.
This will generate a small non-trivial potential

Veff = χ4F (λ(χ)) , F (λ = 0) ∼ 0 (2.2)

which can introduce a non-trivial minimum for the potential at hirearchically small dilaton
values, and give rise to a small dilaton mass.

F = 0 and the appearance of a flat direction is natural in supersymmetric theories.
Focusing on non-supersymmetric theories, one may ask how likely it is for F ∼ 0 to be
happening in any given theory. The simplest answer is to perform an NDA analysis in the
low-energy effective theory for the dilaton to find an estimate for the size of the quartic [1]
to find F ∼ 16π2. From this point of view spontaneous scale symmetry breaking looks
quite unlikely and tuned at best in non-susy theories.

Contino, Pomarol and Rattazzi [2] have however suggested a different viewpoint, point-
ing out that to have a flat direction in the absence of perturbation, is not required (nor
natural). Their approach is then that a theory with F �= 0 will simply not break scale
invariance spontaneously. Thus for a successful breaking of scale invariance a theory needs
to be able to scan its value of F , until F ∼ 0 is reached. In effect one needs a scale de-
pendent quartic F (µ), which can be achieved by introducing again an external coupling λ,
explicitly breaking scale invariance via its running

dλ

d logµ
= β(µ) ≡ � � 1 . (2.3)

This running coupling will in effect adjust the value of F from its UV value (presumably of
order ∼ 16π2). If sufficiently long running is allowed, the corrections δF ∼ (µ/ΛUV )� can

3

One additional important property of the effective potential (3.12) is that it is auto-

matically minimized at a solution that satisfies the bulk equations of motion and all BC’s.

The minimum of the potential is at

dVeff

dy1
= −4A�e−4A

�
V1 +

6

κ2
A�
�
+ e−4A

�
∂V1

∂φ
φ�

+
6

κ2
A��

�
(3.16)

The first term vanishes by the BC for the metric (3.6), while the second term (using a

combination of the bulk EOM’s A��
= κ2φ�2/3 can be brought to the form of the scalar

boundary condition (3.7). From the 5D picture it is not too surprising that a flat solution

automatically minimizes the dilaton potential: since the dilaton potential is a part of the

full bulk action evaluated along the equations of motion (without imposing the BC for

the warp factor), a full solution which extremizes the full action should also minimize the

effective potential. The key question is whether a flat solution actually exists without

tuning the parameters or not.

The potential (3.13) also has a very clear holographic interpretation in terms of a 4D

picture. The generic form of the dilaton potential is given by

Veff(χ) = χ4F (λ(χ)) + Λ4
UV , (3.17)

where λ is a coupling of an operator explicitly breaking the scale invariance. If the coupling

is constant, the potential is a pure quartic as discussed before. Based on our expression for

the potential (3.13 we can identify

F = V1 +
6

κ2
A�

(3.18)

In addition, the coupling λ will be identified with the bulk scalar through the relation,

φ ≡ log(λ) (3.19)

The minimization condition of the dilaton potential (3.16) can then be rewritten as

dVeff(χ)

dχ

����
χ=�χ�

= 0 , (3.20)

with

dVeff(χ)

dχ
= 4χ3F + χ4∂F

∂λ
β , β =

∂λ

∂χ
(3.21)

We can then identify (using ∂χ/∂y1 = −A�χ),

χ
∂F

∂λ
β =

1

A�

�
∂V1

∂φ
φ�

+
6

κ2
A��

�
(3.22)
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at the minimum of the potential.

The paper is organized as follows:

2 Light dilatons via long running and small β-function

Unlike for internal symmetries, non-linearly realized spontaneously broken scale invariance
allows a non-derivative quartic self-interaction for the dilaton:

Veff = Fχ4 (2.1)

where χ is the dilaton field. For a theory without explicit breaking one needs to have F = 0
in order for SBSI to occur: if F > 0, the minimum is at χ = 0 (no SBSI), while for F < 0 we
find χ → ∞, thus no scale invariant theory. So the only possibility is that F = 0, and thus
χ is a flat direction: just like a valley of flat direction for ordinary Goldstone bosons, the
main difference being that the dilaton corresponds to a non-compact flat direction. If one
wants to stabilize the scale one needs to introduce a small explicit breaking by perturbing
the theory with a close-to-marginal operator O with coupling λ that is slowly running.
This will generate a small non-trivial potential

Veff = χ4F (λ(χ)) , F (λ = 0) ∼ 0 (2.2)

which can introduce a non-trivial minimum for the potential at hirearchically small dilaton
values, and give rise to a small dilaton mass.

F = 0 and the appearance of a flat direction is natural in supersymmetric theories.
Focusing on non-supersymmetric theories, one may ask how likely it is for F ∼ 0 to be
happening in any given theory. The simplest answer is to perform an NDA analysis in the
low-energy effective theory for the dilaton to find an estimate for the size of the quartic [1]
to find F ∼ 16π2. From this point of view spontaneous scale symmetry breaking looks
quite unlikely and tuned at best in non-susy theories.

Contino, Pomarol and Rattazzi [2] have however suggested a different viewpoint, point-
ing out that to have a flat direction in the absence of perturbation, is not required (nor
natural). Their approach is then that a theory with F �= 0 will simply not break scale
invariance spontaneously. Thus for a successful breaking of scale invariance a theory needs
to be able to scan its value of F , until F ∼ 0 is reached. In effect one needs a scale de-
pendent quartic F (µ), which can be achieved by introducing again an external coupling λ,
explicitly breaking scale invariance via its running

dλ

d logµ
= β(µ) ≡ � � 1 . (2.3)

This running coupling will in effect adjust the value of F from its UV value (presumably of
order ∼ 16π2). If sufficiently long running is allowed, the corrections δF ∼ (µ/ΛUV )� can
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One additional important property of the effective potential (3.12) is that it is auto-

matically minimized at a solution that satisfies the bulk equations of motion and all BC’s.

The minimum of the potential is at

dVeff

dy1
= −4A�e−4A

�
V1 +

6

κ2
A�
�
+ e−4A

�
∂V1

∂φ
φ�

+
6

κ2
A��

�
(3.16)

The first term vanishes by the BC for the metric (3.6), while the second term (using a

combination of the bulk EOM’s A��
= κ2φ�2/3 can be brought to the form of the scalar

boundary condition (3.7). From the 5D picture it is not too surprising that a flat solution

automatically minimizes the dilaton potential: since the dilaton potential is a part of the

full bulk action evaluated along the equations of motion (without imposing the BC for

the warp factor), a full solution which extremizes the full action should also minimize the

effective potential. The key question is whether a flat solution actually exists without

tuning the parameters or not.

The potential (3.13) also has a very clear holographic interpretation in terms of a 4D

picture. The generic form of the dilaton potential is given by

Veff(χ) = χ4F (λ(χ)) + Λ4
UV , (3.17)

where λ is a coupling of an operator explicitly breaking the scale invariance. If the coupling

is constant, the potential is a pure quartic as discussed before. Based on our expression for

the potential (3.13 we can identify

F = V1 +
6

κ2
A�

(3.18)

In addition, the coupling λ will be identified with the bulk scalar through the relation,

φ ≡ log(λ) (3.19)

The minimization condition of the dilaton potential (3.16) can then be rewritten as

dVeff(χ)

dχ

����
χ=�χ�

= 0 , (3.20)

with
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1 Dilaton-graviton mixing

S =

�
d5x

√
g

�
− 1

2κ2
R+

1

2
gMN∂Mφ∂Nφ− V (φ)

�
−

�
d4x

√
g0V0(φ)−

�
d4x

√
g1V1(φ). (1)

Both the 5D Ricci scalar and the bulk scalar kinetic terms in our general effective action Eq. (1)

give rise to a kinetic mixing between dilaton and other degrees of freedom, respectively the graviton

and the KK excitations of the scalar.

VUV/IR = e−4A(y0,1)

�
V0,1 (φ(y0,1))∓

6

κ2
A�(y0,1)

�
. (2)

The kinematic mixing with the graviton is of particular relevance for our effective dilaton potential

Eq. (2). The decomposition of the 5D Ricci scalar R[g] into the graviton and dilaton components

reads

L(kin)
eff = − 1

2κ2

� y1

y0

dy
√
gR

= − 1

2κ2

� y1

y0

dy
�
ĝ
�
e−2ATR[ĝ] + 6e−2AT (∂A)2 − 6e−2A∂T∂A + . . .

�
(3)

where we have parametrized the 5D metric as,

ds2 = e−2A(x,y)ĝµν(x)dx
µdxν + T (x, y)2dy2 . (4)

The dots in Eq. (3) stand for derivates in y.

Upon integration of Eq. (3), and with the identification of the dilaton as the fluctuation of the

IR brane position, χ = χ(y1, x), one obtains

L(kin)
eff = − 1

2κ2

�
ĝf(χ, y0)R[ĝ] (5)
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written in terms of �χ� = e−ky1 and µ0 = e−ky0 . This suggests that the proper normalization of the

fluctuation should be f̃ = f/�χ�2, in which case

L(kin,RS)
eff =

√
ĝ

2kκ2

��
µ
2
0

�
1− �χ�2

µ2
0

�
− 2f̃

2�χ�2
�
1− �χ�2

µ2
0

��
R[ĝ] + 6(∂f̃)2�χ�2

�
1− �χ�2

µ2
0

��
(8)

which matches the RS result.

The RS computation leads us to the following parametrization for the case of a more general

metric,

F (x, y) = f(x)e
2A(y)

(9)

which probably assumes that the dilaton fluctuation does not mix with the bulk scalar fluctuation.

With this Eq. (6) becomes

L(kin)
eff =

1

κ2

� y1

y0

dy
�
ĝ
��
e
−2A

+ 2f
2
e
2A
�
R[ĝ] + 6e

2A
(∂f)2 +O(f

3
)
�

(10)

1.1 Dilaton reparametrizations

ds
2
= e

−2A(y)
dx

2 − dy
2
. (11)

Plugging the metric background Eq. (11) into Eq. (3), we can compute the effective 4D gravity

term,

1

κ2

�� y1

y0

dye
−2A

��
ĝR[ĝ] (12)

However, it is convenient for a simpler holographic interpretation of the effective dilaton Lagrangian,

to reabsorb the dependence on y1, and thus on χ = χ(y1), into ĝ. This Weyl rescaling of the metric,

rescales the effective potential, and brings it to the form Veff = χ4F (χ/µ0), regardless of the

parametrization of the dilaton χ as a function of y1.

In the main text we have used the parametrizations χ = e−A(y1) and χ̂ = e−ky1

RS+GW
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Figure 1: Pictorial representation of the tuned scenario with vanishing quartic in the ab-
sence of stabilizing perturbation (left) versus the proposal discussed in this work, where a
large perturbation compensates for the large initial quartic (right).

a slowly running coupling λ. This will generate a small non-trivial potential

Veff = χ4F (λ(χ)) , F (λ = 0) ∼ 0 (2.2)

which can introduce a non-trivial minimum for the potential at hierarchically small dilaton
values, and give rise to a small dilaton mass.

F = 0 and the appearance of a flat direction is natural in supersymmetric theories.
Focusing on non-supersymmetric theories, one may ask how likely it is for F ∼ 0 to occur
in any given theory. The simplest answer is to perform an NDA analysis in the low-energy
effective theory for the dilaton which gives an estimate for the size of the quartic [11]
F ∼ 16π2. From this point of view spontaneous scale symmetry breaking looks quite
unlikely and tuned at best in non-SUSY theories. This issue is even more evident if we
notice that by reparametrizing the dilaton as χ = feσ/f with �σ� = 0, the question of
F = 0 is reminiscent of a vanishing cosmological constant, Λeff = Ff 4.

Contino, Pomarol and Rattazzi [13] have however suggested a different viewpoint: the
presence of a flat direction (in the absence of perturbation) is not required (nor is it natural).
Their approach is then that a theory with F �= 0 will simply not break scale invariance
spontaneously. Thus for a successful breaking of scale invariance a theory needs to be able
to scan its value of F , until F ∼ 0 is reached. In effect one needs a scale dependent quartic
F (µ), which can be achieved by introducing an external coupling λ, explicitly breaking
scale invariance via its running

dλ

d log µ
= β(µ) ≡ � b(λ) � 1 , (2.3)
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spontaneously broken.

CPR also comment on the nature of the bulk scalar and the origin of its suppressed

potential: a large coupling with a small β-function in 4D may be dual of a 5D Goldstone

boson of the bulk with the potential suppressed by the Goldstone shift symmetry. Of

course, other realizations of small β-functions can be envisioned as well, e.g. the coupling

approaching a strongly interacting IR fixed point that is not reached because of early
condensation. The construction presented here can be thought of as the proper realization

of walking in technicolor theories [19]: in order to obtain a light dilaton the β-function needs

to remain small even at the scale where the condensates are generated. In the following we

will not actually need to commit to any specific realization and the only crucial assumption

is that the bulk potential is suppressed by a small symmetry breaking parameter.

The paper is organized as follows: in Sec. 2 we give an overview of the mechanism for

obtaining a light dilaton and in particular emphasize the differences between the standard

GW picture and the CPR proposal. In Sec. 3 we show how to calculate the dilaton effective
potential in general holographic theories where the metric could deviate from AdS signif-

icantly. Sec. 4 is devoted to the discussion of the solution with a dimension 4 condensate

(vanishing bulk scalar mass), and how to obtain a flat dilaton potential in that case via

tuning two condensates against each other. Finally in Sec. 5 we show how a naturally light

dilaton can be obtained via the introduction of the small bulk mass, and comment on the

suppression of the resulting cosmological constant in that case. Several appendices are de-

voted to alternative derivation of the dilaton effective potential (A), the detailed derivation

of the small back-reaction case (B) and the GW case (C), an explanation of the asymptotic

matching procedure for the boundary layer problem used for finding the full solution (D),

a discussion of the dilaton kinetic term as well as dilaton parametrizations (E), and finally

a discussion on an alternative choice for the IR brane potential (F).

2 Light dilatons via long running and small β-function

Unlike for internal symmetries, non-linearly realized spontaneously broken scale invariance

allows a non-derivative quartic self-interaction for the dilaton:

Veff = Fχ4
(2.1)

where χ is the dilaton field with scaling dimension one. For a theory without explicit

breaking one needs to have F = 0 in order for SBSI to occur: if F > 0, the minimum is at

χ = 0 (no SBSI), while for F < 0 we find χ → ∞, thus there is no scale invariant theory. So

the only possibility is that F = 0, and thus χ is a flat direction: just like the flat potential

valley for ordinary Goldstone bosons, the main difference being that the dilaton corresponds

to a non-compact flat direction. If one wants to stabilize the scale one needs to introduce a

small explicit breaking by perturbing the theory with a close-to-marginal operator O with
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= κ2φ�2/3 can be brought to the form of the scalar

boundary condition (3.7). From the 5D picture it is not too surprising that a flat solution

automatically minimizes the dilaton potential: since the dilaton potential is a part of the

full bulk action evaluated along the equations of motion (without imposing the BC for
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1 Dilaton-graviton mixing

S =

�
d5x

√
g

�
− 1

2κ2
R+

1

2
gMN∂Mφ∂Nφ− V (φ)

�
−

�
d4x

√
g0V0(φ)−

�
d4x

√
g1V1(φ). (1)

Both the 5D Ricci scalar and the bulk scalar kinetic terms in our general effective action Eq. (1)

give rise to a kinetic mixing between dilaton and other degrees of freedom, respectively the graviton

and the KK excitations of the scalar.

VUV/IR = e−4A(y0,1)

�
V0,1 (φ(y0,1))∓

6

κ2
A�(y0,1)

�
. (2)

The kinematic mixing with the graviton is of particular relevance for our effective dilaton potential

Eq. (2). The decomposition of the 5D Ricci scalar R[g] into the graviton and dilaton components

reads

L(kin)
eff = − 1

2κ2

� y1

y0

dy
√
gR

= − 1

2κ2

� y1

y0

dy
�
ĝ
�
e−2ATR[ĝ] + 6e−2AT (∂A)2 − 6e−2A∂T∂A + . . .

�
(3)

where we have parametrized the 5D metric as,

ds2 = e−2A(x,y)ĝµν(x)dx
µdxν + T (x, y)2dy2 . (4)

The dots in Eq. (3) stand for derivates in y.

Upon integration of Eq. (3), and with the identification of the dilaton as the fluctuation of the

IR brane position, χ = χ(y1, x), one obtains

L(kin)
eff = − 1

2κ2

�
ĝf(χ, y0)R[ĝ] (5)
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written in terms of �χ� = e−ky1 and µ0 = e−ky0 . This suggests that the proper normalization of the

fluctuation should be f̃ = f/�χ�2, in which case

L(kin,RS)
eff =

√
ĝ

2kκ2

��
µ
2
0

�
1− �χ�2

µ2
0

�
− 2f̃

2�χ�2
�
1− �χ�2

µ2
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��
R[ĝ] + 6(∂f̃)2�χ�2

�
1− �χ�2

µ2
0

��
(8)

which matches the RS result.

The RS computation leads us to the following parametrization for the case of a more general

metric,

F (x, y) = f(x)e
2A(y)

(9)

which probably assumes that the dilaton fluctuation does not mix with the bulk scalar fluctuation.

With this Eq. (6) becomes

L(kin)
eff =

1

κ2

� y1

y0

dy
�
ĝ
��
e
−2A

+ 2f
2
e
2A
�
R[ĝ] + 6e

2A
(∂f)2 +O(f

3
)
�

(10)

1.1 Dilaton reparametrizations

ds
2
= e

−2A(y)
dx

2 − dy
2
. (11)

Plugging the metric background Eq. (11) into Eq. (3), we can compute the effective 4D gravity

term,

1

κ2

�� y1

y0

dye
−2A

��
ĝR[ĝ] (12)

However, it is convenient for a simpler holographic interpretation of the effective dilaton Lagrangian,

to reabsorb the dependence on y1, and thus on χ = χ(y1), into ĝ. This Weyl rescaling of the metric,

rescales the effective potential, and brings it to the form Veff = χ4F (χ/µ0), regardless of the

parametrization of the dilaton χ as a function of y1.

In the main text we have used the parametrizations χ = e−A(y1) and χ̂ = e−ky1

RS+GW
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Figure 1: Pictorial representation of the tuned scenario with vanishing quartic in the ab-
sence of stabilizing perturbation (left) versus the proposal discussed in this work, where a
large perturbation compensates for the large initial quartic (right).

a slowly running coupling λ. This will generate a small non-trivial potential

Veff = χ4F (λ(χ)) , F (λ = 0) ∼ 0 (2.2)

which can introduce a non-trivial minimum for the potential at hierarchically small dilaton
values, and give rise to a small dilaton mass.

F = 0 and the appearance of a flat direction is natural in supersymmetric theories.
Focusing on non-supersymmetric theories, one may ask how likely it is for F ∼ 0 to occur
in any given theory. The simplest answer is to perform an NDA analysis in the low-energy
effective theory for the dilaton which gives an estimate for the size of the quartic [11]
F ∼ 16π2. From this point of view spontaneous scale symmetry breaking looks quite
unlikely and tuned at best in non-SUSY theories. This issue is even more evident if we
notice that by reparametrizing the dilaton as χ = feσ/f with �σ� = 0, the question of
F = 0 is reminiscent of a vanishing cosmological constant, Λeff = Ff 4.

Contino, Pomarol and Rattazzi [13] have however suggested a different viewpoint: the
presence of a flat direction (in the absence of perturbation) is not required (nor is it natural).
Their approach is then that a theory with F �= 0 will simply not break scale invariance
spontaneously. Thus for a successful breaking of scale invariance a theory needs to be able
to scan its value of F , until F ∼ 0 is reached. In effect one needs a scale dependent quartic
F (µ), which can be achieved by introducing an external coupling λ, explicitly breaking
scale invariance via its running

dλ

d log µ
= β(µ) ≡ � b(λ) � 1 , (2.3)
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The first term vanishes by the BC for the metric (3.6), while the second term (using a
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= κ2φ�2/3 can be brought to the form of the scalar

boundary condition (3.7). From the 5D picture it is not too surprising that a flat solution

automatically minimizes the dilaton potential: since the dilaton potential is a part of the

full bulk action evaluated along the equations of motion (without imposing the BC for
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1 Dilaton-graviton mixing

S =

�
d5x

√
g

�
− 1

2κ2
R+

1

2
gMN∂Mφ∂Nφ− V (φ)

�
−

�
d4x

√
g0V0(φ)−

�
d4x

√
g1V1(φ). (1)

Both the 5D Ricci scalar and the bulk scalar kinetic terms in our general effective action Eq. (1)

give rise to a kinetic mixing between dilaton and other degrees of freedom, respectively the graviton

and the KK excitations of the scalar.

VUV/IR = e−4A(y0,1)

�
V0,1 (φ(y0,1))∓

6

κ2
A�(y0,1)

�
. (2)

The kinematic mixing with the graviton is of particular relevance for our effective dilaton potential

Eq. (2). The decomposition of the 5D Ricci scalar R[g] into the graviton and dilaton components

reads

L(kin)
eff = − 1

2κ2

� y1

y0

dy
√
gR

= − 1

2κ2

� y1

y0

dy
�
ĝ
�
e−2ATR[ĝ] + 6e−2AT (∂A)2 − 6e−2A∂T∂A + . . .

�
(3)

where we have parametrized the 5D metric as,

ds2 = e−2A(x,y)ĝµν(x)dx
µdxν + T (x, y)2dy2 . (4)

The dots in Eq. (3) stand for derivates in y.

Upon integration of Eq. (3), and with the identification of the dilaton as the fluctuation of the

IR brane position, χ = χ(y1, x), one obtains

L(kin)
eff = − 1

2κ2

�
ĝf(χ, y0)R[ĝ] (5)
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e−2ATR[ĝ] + 6e−2AT (∂A)2 − 6e−2A∂T∂A + . . .

�
(3)

where we have parametrized the 5D metric as,

ds2 = e−2A(x,y)ĝµν(x)dx
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ĝ
�
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written in terms of �χ� = e−ky1 and µ0 = e−ky0 . This suggests that the proper normalization of the

fluctuation should be f̃ = f/�χ�2, in which case

L(kin,RS)
eff =

√
ĝ

2kκ2

��
µ
2
0

�
1− �χ�2

µ2
0

�
− 2f̃

2�χ�2
�
1− �χ�2

µ2
0

��
R[ĝ] + 6(∂f̃)2�χ�2

�
1− �χ�2

µ2
0

��
(8)

which matches the RS result.

The RS computation leads us to the following parametrization for the case of a more general

metric,

F (x, y) = f(x)e
2A(y)

(9)

which probably assumes that the dilaton fluctuation does not mix with the bulk scalar fluctuation.

With this Eq. (6) becomes

L(kin)
eff =

1

κ2

� y1

y0

dy
�
ĝ
��
e
−2A

+ 2f
2
e
2A
�
R[ĝ] + 6e

2A
(∂f)2 +O(f

3
)
�

(10)

1.1 Dilaton reparametrizations

ds
2
= e

−2A(y)
dx

2 − dy
2
. (11)

Plugging the metric background Eq. (11) into Eq. (3), we can compute the effective 4D gravity

term,

1

κ2

�� y1

y0

dye
−2A

��
ĝR[ĝ] (12)

However, it is convenient for a simpler holographic interpretation of the effective dilaton Lagrangian,

to reabsorb the dependence on y1, and thus on χ = χ(y1), into ĝ. This Weyl rescaling of the metric,

rescales the effective potential, and brings it to the form Veff = χ4F (χ/µ0), regardless of the

parametrization of the dilaton χ as a function of y1.

In the main text we have used the parametrizations χ = e−A(y1) and χ̂ = e−ky1

RS+GW
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Figure 1: Pictorial representation of the tuned scenario with vanishing quartic in the ab-
sence of stabilizing perturbation (left) versus the proposal discussed in this work, where a
large perturbation compensates for the large initial quartic (right).

a slowly running coupling λ. This will generate a small non-trivial potential

Veff = χ4F (λ(χ)) , F (λ = 0) ∼ 0 (2.2)

which can introduce a non-trivial minimum for the potential at hierarchically small dilaton
values, and give rise to a small dilaton mass.

F = 0 and the appearance of a flat direction is natural in supersymmetric theories.
Focusing on non-supersymmetric theories, one may ask how likely it is for F ∼ 0 to occur
in any given theory. The simplest answer is to perform an NDA analysis in the low-energy
effective theory for the dilaton which gives an estimate for the size of the quartic [11]
F ∼ 16π2. From this point of view spontaneous scale symmetry breaking looks quite
unlikely and tuned at best in non-SUSY theories. This issue is even more evident if we
notice that by reparametrizing the dilaton as χ = feσ/f with �σ� = 0, the question of
F = 0 is reminiscent of a vanishing cosmological constant, Λeff = Ff 4.

Contino, Pomarol and Rattazzi [13] have however suggested a different viewpoint: the
presence of a flat direction (in the absence of perturbation) is not required (nor is it natural).
Their approach is then that a theory with F �= 0 will simply not break scale invariance
spontaneously. Thus for a successful breaking of scale invariance a theory needs to be able
to scan its value of F , until F ∼ 0 is reached. In effect one needs a scale dependent quartic
F (µ), which can be achieved by introducing an external coupling λ, explicitly breaking
scale invariance via its running

dλ

d log µ
= β(µ) ≡ � b(λ) � 1 , (2.3)

4

where b(λ) is a generic function of λ, whose detailed form is not important as long as the
small parameter � can be factored out. This running coupling will in effect adjust the
value of F from its UV value (presumably of order ∼ 16π2). If sufficiently long running
is allowed, the corrections δF ∼ (ΛUV /µ)� can become sizable, and at some scale µIR we
find F (λ(µIR)) ∼ 0. At this scale spontaneous breaking of scale invariance can happen.
Since scale invariance is effectively recovered by substituting µ → χ, this mechanism is
equivalent to a generation of a non-trivial potential for the dilaton, Eq. (2.2), but with
F (λ = 0) ∼ 16π2, and with its minimum determined by F (λ(χ)) ∼ 0. Thus the CPR idea
is to let the theory scan through the values of F driven by the small explicit breaking term.
The running will stop when the critical value F ∼ 0 is reached and spontaneous breaking of
scale invariance will occur. The differences between the scenario with F ∼ 0, to which we
refer as RS+GW (recalling its extra-dimensional realization), and F ∼ 16π2, are illustrated
in Fig. 1. It is of course very important that the explicit breaking of scale invariance, that
is the β-function, remains very small all throughout the running, and in particular at the
IR scale where F ∼ 0, otherwise the dilaton would pick up a large mass. This is exactly
what happens in QCD or in technicolor: one starts out with a small β-function and an
approximately conformal theory in the UV. However, in the IR the coupling and β become
large, and thus at energies where the QCD (or techniquark) condensates form there is no
longer an approximate scale invariance and hence no light dilaton is expected, in accordance
with the absence of an additional light scalar in QCD.

In order for the scanning mechanism to be possible, the contribution of the perturba-
tion must approximately cancel the existing large tree-level quartic in the dilaton potential.
This can happen only if the value of the coupling of the perturbing operator eventually
becomes large. That does not automatically imply a large dilaton mass as long as the
β-function remains small even while the coupling, λ, itself is big. This cancelation can be
understood as follows: the increase in λ along the running will be accompanied by a con-
densate for the perturbing operator O, which will contribute a term ∝ χ4−� to the dilaton
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5D picture of naturally light dilaton
•General warped metric with scalar action

•Metric

•Identification of scale

•And dilaton: location of IR brane

3 The dilaton effective potential in holographic
models

A general holographic model can be obtained by considering the action

S =

�
d5x

√
g

�
− 1

2κ2
R+

1

2
gMN∂Mφ∂Nφ− V (φ)

�
−

�
d4x

√
g0V0(φ)−

�
d4x

√
g1V1(φ).

(3.1)

of a bulk scalar field φ coupled to gravity. Here κ2
is the 5D Newton constant, which is

related to 5D Planck scale via κ2
=

1
2M3

∗
. We will be considering 4D Lorentz invariant

solutions to the Einstein equations, thus our metric ansatz will be

ds2 = e−2A(y)dx2 − dy2. (3.2)

where e−A(y)
is the general warp factor. The AdS/CFT prescription gives an identification

between the extra dimensional coordinate and an energy scale in a dual 4D CFT:

µ = ke−A(y) , (3.3)

where k =

�
−Λ(5)κ2

6 is the curvature of the AdS space, determined by the 5D cosmological

constant Λ(5).

We can then calculate the effective potential for the dilaton for an arbitrary back-

ground. We will assume that the general background is cut off at the position y = y1 with

orbifold boundary conditions, which corresponds to the presumed spontaneous breaking of

conformality. The dilaton is identified as the scale of the spontaneous breaking, which in

this case corresponds to the IR brane position y1, implying

χ = e
σ
f = e−A(y1) . (3.4)

Both µ and χ are identified up to an unphysical arbitrary constant, A(y) → A(y)+a being

a symmetry of the system. We will fix it by requiring A(0)=0. Besides, reparametrizations

of the dilaton field should not change physical quantities, and when convenient we will

simply take χ = e−ky1 (see also Appendix E).

The background has to solve the bulk equations of motion

4A�2 − A��
= −2κ2

3
V (φ)

A�2
=

κ2φ�2

12
− κ2

6
V (φ)

φ��
= 4A�φ�

+
∂V

∂φ
. (3.5)
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The effective potential
•It is a pure boundary term

•Dilaton potential will be

•In accordance with expectation

•With 

The BC’s (assumed to be Z2-symmetric) are then:

2A�|y=y0,y1 = ±κ2

3
V1(φ)|y=y0,y1 (3.6)

2φ�|y=y0,y1 = ±∂V1

∂φ
|y=y0,y1 , (3.7)

where the + sign is for the UV brane and the − sign for the IR brane.

Let us now calculate the effective potential for the dilaton in these general backgrounds.
The effective potential is obtained by integrating the bulk action over the solutions of the
bulk equations of motion, with the scalar BC’s (3.6) imposed both at the UV and the IR.
We do not impose the Israel junction conditions (3.6) corresponding to the BC for the
warp factor. Eventually the UV brane junction condition can be imposed thereby fixing
the location y0 of the UV brane, and possibly at the price of tuning the UV brane tension.
The effective potential in terms of the general warp factor A(y) and the general scalar
background φ(y) is then given by

Veff (χ) = −2

� y1

y0

dy
√
g

�
− 1

2κ2
(20A�2 − 8A��)− 1

2
φ�2 − V (φ)

�
+
√
gV |0 +

√
gV |1 (3.8)

Here we have integrated over the full circle rather than just over the orbifold. Special
attention has to be paid to the singular pieces in A�� at the two boundaries, which will give
an additional contribution to the effective potential of

V (sing)
eff =

�
√
g
8A�

κ2

�1

0

(3.9)

while using the bulk equations of motion in (3.5) the smooth part of the bulk is given by

Vbulk =
2

κ2

� y1

y0

dye−4A(y)(4A�2 − A��) = −
�
√
g
2

κ2
A�
�1

0

. (3.10)

As expected, the entire effective potential is a boundary term, given in terms of the location
of the IR brane y1 by

Veff = VUV + VIR (3.11)

with

VUV/IR = e−4A(y0,1)

�
V0,1 (φ(y0,1))∓

6

κ2
A�(y0,1)

�
. (3.12)

An alternative derivation of this effective potential using the Gibbons-Hawking boundary
action is given in Appendix A. As expected, this potential vanishes for a solution that
actually satisfies the boundary conditions (3.6) which we have not yet imposed. Once
those are satisfied one has a flat solution to the bulk equations of motion and the resulting
effective 4D cosmological constant necessarily vanishes. This does not mean that the entire
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potential identically vanishes, nor does it imply that the minimum of the potential has to
be at zero. In terms of the dilaton field χ = e−A(y1) and the location of the UV brane
µ0 = e−A(y0) (which effectively acts as UV cutoff regulator), the effective potential is

VIR = χ4

�
V1

�
φ
�
A−1(− logχ)

��
+

6

κ2
A� �A−1(− logχ)

��
. (3.13)

while VUV is obtained by χ → µ0 and a sign flip in front of the A� term. The form of
this potential is in accordance with the expectation that the general dilaton potential of a
spontaneously broken conformal theory should be of the form [11]

Veff (χ) = χ4F (λ(χ)), (3.14)

where λ is a coupling that introduces an explicit breaking of scale invariance. Therefore
we can make the holographic identification

F = V1 +
6

κ2
A� . (3.15)

In the case of pure spontaneous breaking the potential should just be a pure quartic,
which must vanish if there is a stable vacuum in which scale invariance is spontaneously
broken. For example in the case of pure AdS space without a scalar field (the original
RS1 setup) the effective potential is indeed a pure quartic. In this case, we have A� = k,
and V1(φ) = Λ1 (the IR brane potential is just a pure tension) and the effective dilaton
potential is

Vdil,RS = χ4

�
Λ1 +

6k

κ2

�
. (3.16)

This pure quartic must vanish for the IR brane to not fly away or collide with the UV
brane. From the 5D point of view the vanishing of this quartic is interpreted as the second
fine tuning of RS.

The minimization condition of the dilaton potential Eq. (3.14) can be written as

dVeff (χ)

dχ

����
χ=�χ�

= 0 , (3.17)

with

dVeff (χ)

dχ
= χ3

�
4F +

∂F

∂λ
β

�
, β =

∂λ

∂ logχ
(3.18)

Since we will require that the potential is minimized, we see that at the minimum

F = −1

4

∂F

∂λ
β (3.19)

implying that the potential at the minimum will be proportional to the value of the β-
function. We will derive explicitly this same result from Eq. (3.13) in Section 5. That
the value at the minimum itself might be non-vanishing implies that the solution does not
actually have flat 4D sections, therefore to find the corresponding complete bulk solution
a more general ansatz different from (3.2) would be needed, along the lines of [22].
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Toy case: constant bulk potential
Flat dilaton via tuning two condensates

• Provides of a dimension 4 condensate - a soft-wall 
version of RS (=spontaneous breaking of SI with dim 4 
rather than ∞ dimensional)

•Will be the IR region of the full problem with bulk mass 
for scalar

•Bulk equations can be solved explicitly

4 Constant bulk potential - flat dilaton potential by
tuning two condensates

Before we discuss the case with a non-trivial scalar bulk potential, it is very instructive to
consider the theory with a constant potential. This is useful for two reasons:

• It provides a 5D gravity dual for the formation of a dimension four condensate and
hence a “soft-wall” version of the RS-model of SBSI.

• This solution will be relevant for the IR region for the discussion of the general case
with a small bulk mass in the next section.

The theory with constant bulk potential corresponds to adding an additional exactly
marginal operator to the theory. If this operator condenses, it is expected to give another
χ4 quartic term to the dilaton potential. For the case with a finite UV brane one also
generically expects additional terms suppressed by the UV scale µ0. This will provide
us with an alternative way of obtaining a flat dilaton potential compared to RS/GW. In
GW one tunes the IR brane tension against the bulk cosmological constant to ensure that
the condensate corresponding to the IR brane does not produce a quartic dilaton term,
resulting in a flat dilaton potential. The other possibility considered here is to not impose
the RS tuning at the IR brane, allowing a tree-level quartic from the condensate, but then
canceling this with another quartic corresponding to the condensate of the bulk scalar. By
appropriately tuning the the two condensates against each other one finds another way of
obtaining a flat dilaton potential. While this also involves tuning, the significance of this
is that by introducing the small bulk mass this tuning can be alleviated.

We parametrize the bulk potential as

V (φ) = Λ(5) = −6k2

κ2
. (4.1)

For concreteness we will choose quadratic brane potentials,

Vi(φ) = Λi + λi(φ− vi)
2 , (4.2)

though for most arguments the detailed form of the brane potentials will not matter. The
bulk only depends on the derivative of the scalar field, and thus one has a φ → φ + C
shift symmetry, which signals the presence of conformal symmetry in this case. Thus one
expects this to correspond to a purely spontaneous breaking of scale invariance.

The bulk equations of motion for this case can be solved analytically and the solutions
are [23]

A(y) = −1

4
log

�
sinh 4k(yc − y)

sinh 4kyc

�
(4.3)

φ(y) = −
√
3

2κ
log tanh[2k(yc − y)] + φ0 . (4.4)
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Toy case: constant bulk potential
Flat dilaton via tuning two condensates

• For finite yc deviates from AdS space. AdS recovered 
in yc→∞ limit. 

•Location of IR and UV branes:

•Parametrization of deviation from AdS

In this expression the (unphysical) constant in the warp factor was fixed such that A(0) = 0.
This solution describes the formation of a 4-dimensional condensate corresponding to the
operator O that φ couples to. The singularity at yc corresponds to this condensate. This
solution on its own can be considered a “soft-wall” version of a model of SBSI. While RS
corresponds to the condensation of an infinite dimensional operator (hence the metric is
exactly AdS all the way till the condensate forms, described by the appearance of the IR
brane), here we have the more realistic case of the formation of a dimension four condensate.
Both of these correspond to pure spontaneous breaking of scale invariance, and hence both
of these should give pure quartic potentials for the dilaton. In our construction we will
assume that both condensates are present, and that the pure RS condensate forms earlier,
hence the IR brane will shield the singularity. Therefore we consider the region y < yc, and
the location of the IR brane y1 appears before the singularity, y1 < yc: the RS condensate
in the CFT forms at a higher energy scale than the O condensate.

For finite yc, the AdS boundary is at y = −∞,

A�(y → −∞) = k , φ(y → −∞) = φ0 . (4.5)

Exact AdS space is only obtained in the limit yc → ∞,

lim
yc→∞

A�(y) = k , lim
yc→∞

φ(y) = φ0 . (4.6)

The scalar profile is constant in this limit. The AdS limit Eq. (4.6) can only be obtained by
imposing that both brane potentials are pure tensions (no φ-dependence) and the tensions
obey the RS tunings:

Vi(φ) = ∓
Λ(5)

k
, (4.7)

in which case the singularity is pushed to yc → ∞.

For generic brane potentials yc will be finite, thus the space will deviate from pure
AdS. We want to find the effective potential for the dilaton field in this case. A convenient
parameterization of the the dilaton χ and the location of the UV brane µ0 is

χ4 = e−4A(y1) =
sinh 4k(yc − y1)

sinh 4kyc
, µ4

0 = e−4A(y0) =
sinh 4k(yc − y0)

sinh 4kyc
, (4.8)

while for the location of the singularity we will use the parametrization

δ4 =
1

sinh 4kyc
. (4.9)

To determine the effective potential we need to impose the BC’s for the scalar field Eq. (3.7).
For concreteness we can choose simple quadratic brane potentials Eq. (4.2), though the
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Toy case: constant bulk potential
Flat dilaton via tuning two condensates

•The potential will be:

•The BC for scalar will give (in limit of stiff brane 
potentials):

•Pure quartic up to corrections in UV brane position. 
Coefficient of quartic:

•Can TUNE to zero by choosing v0 properly!

VIR = χ4



Λ1 +
6k
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χ8
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�
φ0 − v1 −

√
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2κ
log

��
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χ8
− δ4

χ4

��2


 . (4.20)

We can see that using (4.14) the IR term will become a pure quartic modulo the
χ-dependence of φ0 that is suppressed by the location of the UV brane, while the UV
contribution will be a pure cosmological constant given by the RS tuning, and additional
χ4/µ4

0-type corrections:

VIR = χ4
�
a(v0) +O(χ4

/µ
4
0)
�

(4.21)

VUV = µ
4
0

�
∆0 +O(χ8

/µ
8
0)
�
, (4.22)

where a(v0) is a constant that determines the quartic dilaton coupling, which depends on
the UV value of the scalar field v0 (and all the other parameters of the theory), while ∆0

is the usual RS UV fine tuning condition ∆0 = Λ0 − 6k/κ2. For generic values of the
parameters this potential would be minimized for χ ∼ O(µ0) and thus no hierarchy would
be generated.

Again for the sake of illustration, in the limit λ0,1 → ∞ one finds the potentials

VUV = µ
4
0



Λ0 −
6k

κ2
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χ8 sinh2
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2κ√
3
(v1 − φ0)

�

µ8
0 + χ8 − 2µ4χ4 cosh
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2κ√
3
(v1 − φ0)

�





1/2


 , (4.23)

VIR = −VUV (µ0 ↔ χ,Λ0 → −Λ1), (4.24)

and therefore the quartic dilaton coupling reads

a(v0) = Λ1 +
6k

κ2
cosh

�
2κ√
3
(v1 − v0)

�
. (4.25)

This can be made to vanish by properly tuning the UV value of the scalar, v0, which is the
holographic equivalent to a tuning of the initial value of the external perturbation, λ(µ0)O.
It is particularly illuminating to notice that in the limit λ1 → ∞ we have taken, the whole
IR potential comes from the (6/κ2)A� piece, that is from the back-reaction on the metric.
This is easy to understand since the IR φ BC fixes φ� ∼ ∂V1/∂φ and due to the structure
of V1 one has V1 ∼ φ�2/λ1 → 0 when λ1 → ∞.

The generic structure of the effective potential has a very clear explanation: the only
explicit breaking of scale invariance in this theory corresponds to the introduction of the
UV brane. Thus in the limit when the UV brane is removed, the effective potential must
reduce to a pure quartic (plus a UV contribution to the cosmological constant). This is
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specific form of the brane potentials will not be important. For these potentials the scalar
boundary conditions are

2λi

�
φ0 −

√
3

2κ
log tanh[2k(yc − yi)]− vi

�
= ∓2

√
3k

κ

1

sinh 4k(yc − yi)
(4.10)

These should be used to determine the constants yc and φ0 for use in the effective potential.
Since both of these equations depend only on the distances of the brane to the singularity
yi − yc both of them can be written in terms of the combination of the variables χ4/δ4 and
µ4
0/δ

4. We can use the UV scalar equation to determine φ0 in terms of the location of the
UV brane as

φ0 = v0
�
1 + f0(δ

4/µ4
0)
�

(4.11)

since in the simultaneous limit δ → 0 and µ0 → ∞, φ0 approaches v0. The IR brane
equation can then be used to separately determine δ, and the result will be of the form

δ4 = χ4f1(φ0, v1,λ1). (4.12)

Combining these two equations we find that the structure of the solutions to the scalar
BC’s will be of the form

φ0 = v0
�
1 +O(χ4/µ4

0)
�
, (4.13)

δ4 = χ4f1
�
v0(1 +O(χ4/µ4

0)),λ1, v1
�
. (4.14)

These expressions have the right limits to be identified with an external source and a
condensate:

lim
µ0→∞

φ0 = v0 , (4.15)

lim
χ→0

δ4 = 0 . (4.16)

For example in the limit λ0,1 → ∞ we find

φ0 = v0 +

√
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��
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δ8

µ8
0

− δ4

µ4
0

�
, δ4 = χ4 sinh

�
2κ√
3
(v1 − φ0)

�
, (4.17)

and the system can be exactly solved, although the exact expressions are not important
for the general argument.

The full effective dilaton potential is

Veff = VUV + VIR (4.18)

with

VUV = µ4
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 (4.19)

12

VIR = χ4



Λ1 +
6k

κ2

�

1 +
δ8

χ8
+ λ1

�
φ0 − v1 −

√
3

2κ
log

��

1 +
δ8

χ8
− δ4

χ4

��2


 . (4.20)

We can see that using (4.14) the IR term will become a pure quartic modulo the
χ-dependence of φ0 that is suppressed by the location of the UV brane, while the UV
contribution will be a pure cosmological constant given by the RS tuning, and additional
χ4/µ4

0-type corrections:

VIR = χ4
�
a(v0) +O(χ4

/µ
4
0)
�

(4.21)

VUV = µ
4
0

�
∆0 +O(χ8

/µ
8
0)
�
, (4.22)

where a(v0) is a constant that determines the quartic dilaton coupling, which depends on
the UV value of the scalar field v0 (and all the other parameters of the theory), while ∆0

is the usual RS UV fine tuning condition ∆0 = Λ0 − 6k/κ2. For generic values of the
parameters this potential would be minimized for χ ∼ O(µ0) and thus no hierarchy would
be generated.

Again for the sake of illustration, in the limit λ0,1 → ∞ one finds the potentials

VUV = µ
4
0



Λ0 −
6k

κ2



1 +
χ8 sinh2

�
2κ√
3
(v1 − φ0)

�

µ8
0 + χ8 − 2µ4χ4 cosh

�
2κ√
3
(v1 − φ0)

�





1/2


 , (4.23)

VIR = −VUV (µ0 ↔ χ,Λ0 → −Λ1), (4.24)

and therefore the quartic dilaton coupling reads

a(v0) = Λ1 +
6k

κ2
cosh

�
2κ√
3
(v1 − v0)

�
. (4.25)

This can be made to vanish by properly tuning the UV value of the scalar, v0, which is the
holographic equivalent to a tuning of the initial value of the external perturbation, λ(µ0)O.
It is particularly illuminating to notice that in the limit λ1 → ∞ we have taken, the whole
IR potential comes from the (6/κ2)A� piece, that is from the back-reaction on the metric.
This is easy to understand since the IR φ BC fixes φ� ∼ ∂V1/∂φ and due to the structure
of V1 one has V1 ∼ φ�2/λ1 → 0 when λ1 → ∞.

The generic structure of the effective potential has a very clear explanation: the only
explicit breaking of scale invariance in this theory corresponds to the introduction of the
UV brane. Thus in the limit when the UV brane is removed, the effective potential must
reduce to a pure quartic (plus a UV contribution to the cosmological constant). This is

13



Toy case: constant bulk potential
Flat dilaton via tuning two condensates

•A theory that deviates strongly from AdS

•Nevertheless this is a spontaneously broken CFT

•Gravity will be explicit breaking, UV contribution to 
potential 

•µ0 location of UV brane, in limit µ0→∞ gravity 
decoupled
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Important comments

•In the limit of no gravity potential is pure quartic (as it 
should be in a pure CFT)

•Quartic can be tuned to vanish by choosing v0 (value of 
Φ on UV brane)

•Different from GW: here we tune UV value of 
perturbation - if small explicit breaking, this will run
                    and will find the position where quartic is 
vanishing

•Scale invariance of metric non-trivial:
also requires shift in y1 and yc.

 

indeed what we find here, and the explicit expression for the quartic depends on v0, the

value of the scalar field in the UV. One can make the entire potential vanish by tuning

the UV cosmological constant to zero, and by tuning v0 appropriately. The important

difference in this tuning compared to Goldberger-Wise is that here we tune the UV value

of the scalar field (that is the value of the perturbing coupling in the UV), rather than

the IR brane tension (which is arbitrary here). We will see in the next section that this

tuning will be alleviated once we let the perturbing coupling run, that is once we include

a non-trivial potential for φ, in particular a mass term, m2 ∼ �k2. Then v0 → v0(χ/µ0)
�,

which will become the leading order term in χ/µ0, and will then set the hierarchy.

We should stress that once the tuning on v0 is imposed corresponding to setting the

quartic to zero, a(v0) = 0, the spacetime (3.2) with the warp factor given by (4.3), still

represents the 5D dual of a spontaneously broken CFT, even though the metric deviates

significantly from AdS:

ds
2
=

�
sinh 4k(yc − y)

sinh 4kyc
dx

2 − dy
2
. (4.26)

That this metric corresponds to a spontaneously broken scale invariant theory should be

clear from the previous analysis and the resulting effective potential for the dilaton, but one
can also explicitly consider the effect of the scale transformation y → y + a, x → eα(a)x.

If the IR brane is kept fixed, then this transformation will not leave the metric invariant

simply due to the presence of the IR brane1 - this is exactly what one expects from a

spontaneous breaking of scale invariance. The symmetry is restored by simultaneously

moving the IR brane, y1 → y1 + a. Due to the scalar BCs that result in (4.14) a shift in y1

should also be accompanied by a shift in yc, which will make the shift in the warp factor

y-independent: the net shift in the warp factor is then compensated by the scale factor

eα(a) = [sinh(4kyc)/ sinh(4k(yc + a))]
1/2

. 2

Notice that in order to obtain a small cosmological constant (neglecting O(χ8/µ4
0)

terms), we have to impose the UV RS tuning ∆0 � 1. This condition is actually also

needed in order to obtain a suitable dilaton potential, due to the presence of a dilaton-

gravity kinetic mixing, of O(χ2/µ2
0) (see Appendix E). If the UV RS tuning is not imposed

we generate a term ∆0µ
2
0χ

2 in the potential, which would not allow for the generation of a

large hierarchy between µ0 and χ.

In two appendices, B and C, we present the detailed description of the cases with a

small back-reaction and no bulk mass, and small back-reaction and small bulk mass (the

1The UV brane is a source of explicit breaking, which is eliminated once the UV brane is removed,

µ0 → ∞.
2The reader may notice that eα(a) is mildly dependent on y1 so that the scale transformation of the

dilaton field is slightly non-linear, χ → f(χ)χ, with f(χ) a slowly varying function. One might then argue

that a more natural parametrization of the dilaton field is provided by χ = Exp[−ky1] which transforms

covariantly even though it does not seem to reproducing the expected quartic potential. In fact, in App. E,

we clarify these points and show how both parametrizations are legitimate and give rise to a purely quartic

potential once the kinetic mixing with gravity is properly taken into account.
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The general case: small bulk mass

•Bulk potential

•ε<<1, dimension 4-ε operator.

•Two regions of space:

 

GW case).

5 Light dilaton without tuning: the general case

We are now ready to consider the general case with O(1) IR brane mistuning, a large
condensate and long slow running of the scalar due to a small scalar bulk mass. The bulk
scalar potential is again given by

V (φ) = −6k2

κ2
− 2�k2φ2

. (5.1)

We want to stress again that the exact form of the perturbing bulk potential does not
matter, as long as it is always parametrically suppressed (that is � multiplies the entire
bulk potential). For more complicated potentials the form of the RGE running will change,
but as long as the � suppression persists the running will be mild. CPR suggested that the
overall suppression of the bulk potential by � may be due to φ being a 5D bulk Goldstone
field and � is the parameter of a small explicit breaking term.

For the brane potentials we will again use a quadratic expression, Eq. (4.2), but as
explained before the detailed form of this potential again does not matter.

In order to find the bulk solution, we note that we can break up the bulk into two
regions: the UV region dominated by a mild RGE running of the scalar where the solution
remains close to AdS, and the IR region dominated by the condensate, where the solution
is of the form considered in the previous section. We will then match up these two solutions
using asymptotic matching for the boundary layer theory of differential equations [24].

The UV solution is characterized by a mild running of the scalar, which means that
one can neglect the second derivative of the scalar: φ�, δV (φ) � φ��. The deviation from
AdS space is small, so in this region A� = k, and the scalar equation is first order:

kφ� − �φ = 0 (5.2)

so the solution in the UV region (which we call the “running region” and denote by subscript
r) is given by

A
�
r(y) = k (5.3)

φr(y) = φ0e
�ky

. (5.4)

This solution is self-consistent in the UV as long as the back-reaction on the metric is
negligible, that is κ2�k2φ2/3 � A�2, which restricts the region of validity to

y � 1

�k
log

�
1√
�φ0κ

�
. (5.5)
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1. UV region:
    Φ’’ can be neglected, slow running of  scalar

    Space remains AdS, RGE running of scalar
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The general case: small bulk mass

•Need to match up these two solutions

•Asymptotic matching for boundary layer theory

•Full solution:

 

2. IR region (``condensate region”):
    Scalar dominated by Φ’’,Φ’, mass term can be 
neglected: just like the solution without mass

The second region where we can find an analytic solution is the region where the condensate
dominates. In this case the behavior of the scalar is dominated by the φ��,φ� terms and
the additional bulk potential is negligible. In this case we recover the equations for the
zero bulk mass considered in the previous section. Thus there is a universality in the IR
behavior of the solution, since it is dominated by the dimension 4 condensate. Therefore
in this IR “condensate region” (denoted by the subscript c) the solution is given by

A�
c(y) = −k coth (4k(y − yc)) (5.6)

φc(y) = φm −
√
3

2κ
log (− tanh (2k(y − yc))) , (5.7)

where φm is the matching value of the scalar field. Applying the method of asymptotic
matching for a boundary layer theory we obtain the matching conditions:

lim
y→−∞

φc = lim
y→y1

φr ⇒ φm = φ0e
�ky1 (5.8)

lim
y→−∞

A�
c = lim

y→y1
A�

r ⇒ k = k (5.9)

The details of this matching are explained in Appendix D.

As before, to determine the constants φ0 and yc we impose the UV BC for φr and the
IR BC for φc:

2φ�
r|y=y0 = +

∂V0

∂φ
|φ(y)=φr(y0) , (5.10)

2φ�
c|y=y1 = −∂V1

∂φ
|φ(y)=φc(y1) (5.11)

from which we find, in the limit λ0,λ1 → ∞,

φ0 = v0µ
�
0 , (5.12)

δ = χ tanh1/4

�
κ√
3
(v1 − φm)

�
. (5.13)

To simplify our expressions we have used the alternate definition of the dilaton, the UV
scale and the condensate µ0 = e−ky0 , δ = e−kyc , and χ = e−ky1 . As we learned from the
constant bulk potential case, the distance between the singularity and the IR brane, or
equivalently δ/χ, depends on the IR potential parameters, in particular on the difference
between φ(y1) = v1, and φ(y0) = v0, where the latter is now modulated by (µ0/χ)�.

The full approximate solution3 to the system is

φfull(y) = φr(y) + φc(y)− φm (5.14)

= v0 e
�k(y−y0) −

√
3

2κ
log (tanh (2k(yc − y))) (5.15)

3We have dropped a term
√
3

2κ log (tanh (2k(yc − y0))) which is exponentially small for yc � y0, but which
strictly ensures φ(y0) = v0. This term would be automatically included if the matching of the φr was at
y = y0 instead of y → −∞. This approximation propagates to Eq. (5.13), and amounts to unimportant
O(χ/µ0) corrections.
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Figure 2: Left, bulk scalar profile: φfull (solid black), φr (dashed red), and φb (dotted blue).
Right, effective AdS curvature, A�(y): same color code.

and equivalently for A�(y). In z = e−ky coordinates these are

A
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−1 +
2z8

z8 + χ8 tanh2
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κ√
3
(v1 − v0(µ0/χ)�)

�




−1
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φfull(z) = v0

�
µ0

z

��
−

√
3

2κ
log



−1 +
2z4

z4 + χ4 tanh
�

κ√
3
(v1 − v0(µ0/χ)�)

�



 . (5.17)

This solution exhibits the correct asymptotic behavior. We can see this explicitly in Fig. 2.
The full solution interpolates nicely between the running and the condensate dominated
solutions.

We can now compute the effective potential for the dilaton as usual (again in the
λ0,1 → ∞ limit)

VUV = µ
4
0

�
Λ0 −

6k

κ2

�
, (5.18)

VIR = χ4

�
Λ1 +

6k

κ2
cosh

�
2κ√
3
(v1 − v0(µ0/χ)

�)

��
sech2

�
κ√
3
(v1 − v0(µ0/χ)

�)

�
. (5.19)

The UV effective potential contains a constant piece, which must be tuned to zero in order
to obtain a flat 4D space (usual UV RS tuning). The IR potential is of the expected form
χ4F [(µ0/χ)�]. This is the leading part of the potential, whose minimization will determine
the position of the minimum, �χ�, up to O(�) corrections. Recall also that the potentials
Eq. (5.18) and Eq. (5.19) are corrected by O(χ2/µ2

0) once the dilaton-gravity kinetic mixing
is fully included, see Appendix E. It is therefore important to tune Λ0 � 6k/κ2 in order
not to generate a large χ2 term.
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The effective dilaton potential
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Figure 3: The plot of the effective dilaton potential Eq. (5.19) for the parameters � = 0.1,
v0 = 0.1, v1 = 4.5, Λ1 = −50, µ0 = 1, and κ = 0.5, all of them in units k = 1. The plot in
the right is a zoom of the region where the minimum of the potential is.

To leading order in �, the condition for the minimum of the potential is

∂VIR

∂χ
= χ3 (4F [(µ0/χ)

�] + F
�[(µ0/χ)

�]�(µ0/χ)
�) = 0 (5.20)

leading to a dilaton VEV

�χ�
µ0

=

�
v0

v1 − sign(�)
√
3

2κ arcsech(−6k/κ2Λ1)

�1/�

+O(�) (5.21)

while the potential will be obviously of order F [(µ0/χ)�] = O(�). Notice that for this to be a
good minimum we need Λ1 < 0 and |Λ1| > 6k/κ2. One can clearly see from Eq. (5.19) that
if these conditions are not satisfied then the effective quartic is always positive F [χ/µ0] > 0
for all χ, and the minima can only be found at �χ� = 0 or �χ� = µ0. Furthermore, in order
for the effective quartic to be positive at χ = µ0 (thus avoiding this as a minimum), one
must have |Λ1| <

6k
κ2 cosh(

2κ√
3
(v1 − v0)). This condition is easily satisfied, either if v1 � v0,

a condition consistent with � > 0, or v0 � v1, consistent with � < 0. However, notice that
a large hierarchy, which in this scenario it is given by the point where 6A�/κ2 compensates
Λ1, is easier to produce for the case � > 0, since in this case v1−v0(µ0/χ)� runs slower than
for � < 0. This is the scenario we have advocated for naturally canceling a large quartic
at the scale µ0. We show a plot of the potential (5.19) in Fig. 3, where we can see that a
shallow stable minimum with a small mass is indeed generated.

The dual CFT interpretation of the potential Eq. (5.19) for the interesting � > 0 is
simple. The quartic in the absence of perturbation (that is v0 = 0) is given by F0 =
Λ1 +

6k
κ2 cosh(

2κ√
3
v1). This is generically large and positive, hence there is no SBSI at high

scales. Once the perturbation is turned on, it grows larger in the IR, v0(µ0/χ)�. This in turn
decreases the effective quartic, until the minimum F [χ/µ0] = O(�) is found. Effectively,
the dilaton quartic coupling relaxes to zero at χ/µ0 � 1. At this point SBSI will occur.
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must have |Λ1| <
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(v1 − v0)). This condition is easily satisfied, either if v1 � v0,

a condition consistent with � > 0, or v0 � v1, consistent with � < 0. However, notice that
a large hierarchy, which in this scenario it is given by the point where 6A�/κ2 compensates
Λ1, is easier to produce for the case � > 0, since in this case v1−v0(µ0/χ)� runs slower than
for � < 0. This is the scenario we have advocated for naturally canceling a large quartic
at the scale µ0. We show a plot of the potential (5.19) in Fig. 3, where we can see that a
shallow stable minimum with a small mass is indeed generated.

The dual CFT interpretation of the potential Eq. (5.19) for the interesting � > 0 is
simple. The quartic in the absence of perturbation (that is v0 = 0) is given by F0 =
Λ1 +

6k
κ2 cosh(

2κ√
3
v1). This is generically large and positive, hence there is no SBSI at high

scales. Once the perturbation is turned on, it grows larger in the IR, v0(µ0/χ)�. This in turn
decreases the effective quartic, until the minimum F [χ/µ0] = O(�) is found. Effectively,
the dilaton quartic coupling relaxes to zero at χ/µ0 � 1. At this point SBSI will occur.
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•Dilaton VEV hierarchical:



m2
χ ∼ ��χ�2

Λ ∼ ��χ�4

Dilaton mass and CC

•Dilaton mass:

•Vacuum energy:

The dilaton mass, to leading order in � is given by

m
2
χ ∼ �

32
√
3kv0

κ
tanh

�
κ√
3
(v1 − v0(µ0/χ)

�
)

�
�χ�2(µ0/χ)

�
+O(�2) (5.22)

One then concludes, that regardless of the size of the back-reaction on the metric, the

dilaton remains light as long as the β-function is small. Of course the actual physical mass

of the dilaton also depends on the normalization of its kinetic term, which we have not

calculated in this paper, we assume it is O(1) or bigger. The kinetic term normalization

does not remove the � suppression in (5.22).

Next we examine the value of the potential at the minimum, which is the effective cos-
mological constant. In the approximation we have followed in this section, the cosmological

constant is given by Λeff = VIR(�χ�) from Eq. (5.19), since we have fine-tuned away VUV .

The value of the IR potential at the minimum is

V
min
IR = −�

2
√
3kv0

κ
tanh

�
κ√
3
(v1 − v0(µ0/χ)

�
)

�
�χ�4(µ0/χ)

� ∼ −m
2
χ

�χ�2

16
(5.23)

As expected, the value of the minimum is suppressed by �, and also by 4 − � powers of

the dilaton at the minimum. Assuming that this is the origin of the hierarchy, that is

�χ�k ∼ TeV, the resulting potential is of order � TeV4. Therefore, since we have minimized

the potential at O(�0) Eq. (5.20), then, VIR(�χ�) = O(��χ�4k4). Phenomenologically, this

contribution is still too large unless � ∼ 10−60. Also, since � > 0 for most interesting appli-

cations, the IR potential is usually negative. Of course since our full potential contained

a tuned value of the UV contribution, one could have tuned VUV = O(��χ�4k4) previously,

such that eventually Λeff = 0 or small positive. This change in the UV potential affects
the minimization only at O(�), and thus it does not affect our conclusions.

We finally show that regardless of the explicit form of the IR brane potential the

value of the potential at the minimum is always suppressed by �. The form of the dilaton

potential is e−4A(y1)F (y1, yc), hence the derivative of the potential is given by

∂VIR

∂y
|y1 = e

−4A(y)

�
−4A

�
(y)F (y, yc) +

d

dy
F (y, yc) +

d

dyc
F (y, yc)

dyc

dy1

�
|y1 = 0 (5.24)

Note that

d

dy
F (y, yc) =

∂V1

∂φ
φ�

+
6

κ2
A

��
, (5.25)

by using the bulk equation of motion A�� = κ2φ�2/3, can be brought to a form proportional

to the scalar boundary condition (3.7), and thus vanishes at the IR brane. Note also that

the functional dependence of F on yc comes in the form yc − y, so in the � → 0 limit we

also have
d

dyc
F (y, yc) = 0. Thus at the minimum

d

dyc
F (y, yc) = − d

dy
F (y, yc) + � k φ0 e

−�k(y−y0)
∂V1

∂φ
= � k φ0 e

−�k(y−y0)
∂V1

∂φ
(5.26)
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m2
χ ∼ ��χ�2

Λ ∼ ��χ�4

Dilaton mass and CC

•Dilaton naturally light, no tuning here (except UV 
CC) 

•Vacuum energy:

•Suppressed compared to SUSY, but non-zero.

•Need conformal symmetry to set CC to zero. To 
stabilize scales need to break it - reintroduces CC, 
but small breaking can do it.

•Here ε also sets hierarchy - can not be too small.



Conclusions
•Spontaneous breaking of scale invariance could be 
interesting for phenomenology

•Dilaton could be Higgs-like particle, motivated

•Large quartic expected for dilaton in non-SUSY models

•Hard to get light dilaton, but can fit LHC data 

•To obtain light dilaton need small explicit breaking that 
remains small even at large coupling 

•Explicit 5D construction possible 

• m2
χ ∼ ��χ�2,Λ ∼ ��χ�4


