A Naturally Light Dilaton

Csaba Csáki (Cornell) with

Brando Bellazzini (Saclay) Jay Hubisz (Syracuse) Javi Serra (Cornell) John Terning (Davis)

Theory Seminar UNC Chapel Hill, March 21, 2014

- Spontaneous breaking of scale invariance could be very interesting for particle physics phenomenology
-Couplings of Higgs in SM: determined by approximate conformal symmetry of SM
-In absence of Higgs mass parameter SM approximately conformal until QCD scale, and <H>=v breaks conformality spontaneously
-Higgs = dilaton, with $\mathrm{f}=\mathrm{v}$, Higgs couplings determined a la Shifman, Vainshtein, Voloshin, Zakharov '79-'80
-One possibility: Higgs actually dilaton of a broken conformal sector
- Spontaneous breaking of scale invariance could be very interesting for particle physics phenomenology
-Cosmological constant problem
- Only known ways of setting \wedge to zero: SUSY or conformal symmetry
- SUSY broken $\rightarrow \wedge \sim(\mathrm{TeV})^{4}$ expected
-What is expectation for broken conformal symmetry?
-Aim for this talk
-What does it take to make a dilaton look like the observed Higgs?
-How can we make the dilaton naturally light?
-What are the consequences for a light dilaton for the CC?

Dilaton basics

- Scale transformations $\quad x \rightarrow x^{\prime}=e^{-\alpha} x$
- Operators transform

$$
\mathcal{O}(x) \rightarrow \mathcal{O}^{\prime}(x)=e^{\alpha \Delta} \mathcal{O}\left(e^{\alpha} x\right)
$$

- Δ is full dimension, classical plus quantum corrections
-Change in action:

$$
S=\sum_{i} \int d^{4} x g_{i} \mathcal{O}_{i}(x) \longrightarrow S^{\prime}=\sum_{i} \int d^{4} x e^{\alpha\left(\Delta_{i}-4\right)} g_{i} \mathcal{O}_{i}(x)
$$

-Assume spontaneous breaking of scale inv. (SBSI)

$$
\langle\mathcal{O}\rangle=f^{n}
$$

Dilaton basics

-Dilaton: Goldstone of SBSI, σ, transforms non-linearly under scale transf.:

$$
\sigma(x) \rightarrow \sigma\left(e^{\alpha} x\right)+\alpha f
$$

-Restore scale invariance by replacing VEV

$$
f \rightarrow f \chi \equiv f e^{\sigma / f}
$$

-Effective dilaton Lagrangian is then (using NDA for coeffs)

$$
\begin{aligned}
\mathcal{L}_{e f f} & =\sum_{n, m \geqslant 0} \frac{a_{n, m}}{(4 \pi)^{2(n-1)} f^{2(n-2)}} \frac{\partial^{2 n} \chi^{m}}{\chi^{2 n+m-4}} \\
& =-a_{0,0}(4 \pi)^{2} f^{4} \chi^{4}+\frac{f^{2}}{2}\left(\partial_{\mu} \chi\right)^{2}+\frac{a_{2,4}}{(4 \pi)^{2}} \frac{(\partial \chi)^{4}}{\chi^{4}}+\ldots
\end{aligned}
$$

Dilaton dynamics

-Main point of dilaton: effective action can have non-derivative X^{4} term - just the cosmological constant in the composite sector

$$
S=\int d^{4} x \frac{f^{2}}{2}(\partial \chi)^{2}-a f^{4} \chi^{4}+\text { higher derivatives }
$$

- Generically $a \neq 0$. Will make SBSI difficult:
-a<0: runaway vacuum $\mathrm{f} \rightarrow \infty$

-a>0: VEV at f=0, no SBSI
-a=0 arbitrary f

- Need to add additional almost-marginal operator to generate dilaton potential

Dilaton dynamics

-Perturbation:

$$
\delta S=\int d^{4} x \lambda(\mu) \mathcal{O}
$$

$$
a f^{4} \rightarrow f^{4} F(\lambda(f))
$$

-Dilaton potential: $\quad V(\chi)=f^{4} F(\lambda(f))$ vacuum energy in units of f
-Dilaton mass:

$$
\begin{aligned}
& \text {-To have a VEV: } \quad V^{\prime}=f^{3}\left[4 F(\lambda(f))+\beta F^{\prime}(\lambda(f))\right]=0 \\
& \text {-Dilaton mass: }
\end{aligned}
$$

$m_{d i l}^{2}=f^{2} \beta\left[\beta F^{\prime \prime}+4 F^{\prime}+\beta^{\prime} F^{\prime}\right] \simeq 4 f^{2} \beta F^{\prime}(\lambda(f))=-16 f^{2} F(\lambda(f))$

What would it take for the 126 GeV Higgs to be a dilatom

-A new particle at $\sim 126 \mathrm{GeV}$ that behaves very similarly to SM Higgs

Dilaton dynamics

-We need $m_{\text {dil }} \sim 125 \mathrm{GeV}$
-With $f \sim v=246 \mathrm{GeV}, \Lambda=4 \pi f \sim 3 \mathrm{TeV}$
-So $m_{\text {dil }} \sim f / 2 \ll \Lambda$
-But dilaton mass:

$$
m_{d i l}^{2}=f^{2} \beta\left[\beta F^{\prime \prime}+4 F^{\prime}+\beta^{\prime} F^{\prime}\right] \simeq 4 f^{2} \beta F^{\prime}(\lambda(f))=-16 f^{2} F(\lambda(f))
$$

- Naive expectation: one loop vacuum energy

$$
F_{N D A} \sim \frac{\Lambda^{4}}{16 \pi^{2} f^{4}} \sim 16 \pi^{2}
$$

$$
m_{d i l} \sim \Lambda
$$

Dilaton dynamics

-Generically DO NOT expect a light dilaton, need the dilaton quartic to be suppressed vs. NDA size
-If quartic not suppressed, need large β to stabilize, large explicit breaking a la QCD and TC, no light dilaton
-Need to start with an almost flat direction
-Dynamics should not generate a large contribution to the vacuum energy...

- Natural in SUSY theories - have flat or almost flat directions
-Not natural in non-SUSY theories

Dilaton dynamics

To find a (non-SUSY) solution we need

- Small vacuum energy (tuning), a<<16 $\boldsymbol{\pi}^{2}$
- δ F dynamically cancels vs. a
-Perturbation should be close to marginal

Dilaton dynamics

-Detailed examination of the dynamics
-Assume small deviation ε from marginality, and coupling λ :

$$
\beta(\lambda)=\frac{d \lambda}{d \ln \mu}=\epsilon \lambda+\frac{b_{1}}{4 \pi} \lambda^{2}+O\left(\lambda^{3}\right)
$$

-Assume λ perturbative $\lambda<4 \pi$, and dilaton quartic very small

$$
F(\lambda)=(4 \pi)^{2}\left[c_{0}+\sum_{n} c_{n}\left(\frac{\lambda}{4 \pi}\right)^{n}\right], \quad c_{0} \ll c_{n} \sim 1, \quad a=(4 \pi)^{2} c_{0}
$$

-Coleman-Weinberg type potential for dilaton

Dilaton dynamics

-For perturbative λ can introduce large hierarchies

$$
f \simeq M\left(\frac{-4 \pi c_{0}}{\lambda(M) c_{1}}\right)^{1 / \epsilon}
$$

if ε small and negative $\mathrm{f} \ll \mathrm{M}$ (if positive more tuning)
-The dilaton mass:

$$
\frac{m_{d i l}^{2}}{\Lambda^{2}} \sim \frac{\beta}{\pi} \simeq \epsilon \frac{\lambda}{\pi}
$$

-Could make it very small by taking $\varepsilon \rightarrow 0$?

Dilaton dynamics

-When ε very small, λ^{2} term in β-function dominates

$$
\frac{m_{d i l}^{2}}{\Lambda^{2}} \sim \frac{\beta}{\pi} \sim \frac{\lambda^{2}}{4 \pi^{2}}
$$

- Shows need perturbative coupling for light dilaton
-QCD and (walking)-TC will not have a light dilaton, since there $\lambda=g \sim 4 \pi$
-Fine-tuning in weakly coupled models: min. condition gives $\lambda(f) \sim 4 \pi c_{0} / c_{1} \equiv 4 \pi / \Delta \quad$ where Δ is FT

$$
\Delta \gtrsim 2 \Lambda / m_{d i l} \simeq 50\left(\frac{f}{246 \mathrm{GeV}}\right)\left(\frac{125 \mathrm{GeV}}{m_{d i l}}\right)
$$

A SUSY example for a light dilaton

- Look at 3-2 model

	$S U(3)$	$S U(2)$	$U(1)$	$U(1)_{R}$
Q	\square	\square	$1 / 3$	1
L	$\mathbf{1}$	\square	-1	-3
\bar{U}	\square	$\mathbf{1}$	$-4 / 3$	-8
\bar{D}	\square	$\mathbf{1}$	$2 / 3$	4

- Classical flat directions $Q \bar{D} L, Q \bar{U} L$ and $\operatorname{det}(\bar{Q} Q)$
-Lifted by superpotential $W=\lambda Q \bar{D} L$
-Dynamical ADS superpotential

$$
W_{\mathrm{dyn}}=\frac{\Lambda_{3}^{7}}{\operatorname{det}(\bar{Q} Q)}
$$

-Will push fields to large VEVs $\gg \wedge_{3}$ as long as $\lambda \ll 1$

- Spontaneous conformality breaking, expect light dilaton

A SUSY example for a light dilaton

- The potential $\quad V \approx \frac{\Lambda_{3}^{14}}{f^{10}}+\lambda \frac{\Lambda_{3}^{7}}{f^{3}}+\lambda^{2} f^{4}$
-VEVs: $\quad f \approx \frac{\Lambda_{3}}{\lambda^{1 / 7}}, \quad V \approx \lambda^{10 / 7} \Lambda_{3}^{4}$
-Dilaton mass: $\quad m_{d i l} \approx \lambda f \approx \lambda^{\frac{6}{7}} \Lambda_{3}$
- Of course here SUSY is playing the essential role of keeping the dilaton light, unlike in the non-SUSY examples we are interested in

The radion in RS/GW

- The effective potential w/o stabilization

$$
V_{e f f}=V_{0}+V_{1}\left(\frac{R}{R^{\prime}}\right)^{4}+\Lambda_{(5)} R\left(1-\left(\frac{R}{R^{\prime}}\right)^{4}\right)
$$

-With $f=1 / R^{\prime}$ get a characteristic SBSI potential with quartic

$$
V_{e f f}(\chi)=\underbrace{V_{0}+\Lambda_{(5)}}_{\text {CC, FT1 }} R \underbrace{}_{\text {quartic, FT2 }}+f^{4}(\underbrace{V_{1} R^{4}-\Lambda_{(5)} R^{5}})
$$

- Natural size of quartic: NDA in 5D $\quad \delta a_{(\text {(bulk })} \sim \Lambda_{(5)} R^{5} \sim \frac{12^{\frac{5}{2}}}{24 \pi^{3}} \sim \mathcal{O}(1)$
like in 4 D like in 4D EFT

$$
\delta a_{(I R)}=-V_{1} R^{4}=-V_{1}\left(\frac{R}{R^{\prime}}\right)^{4} R^{4}=\frac{\widetilde{V}_{1}}{\left(\frac{\Lambda}{4 \pi}\right)^{4}} \sim 16 \pi^{2}
$$

The radion in RS/GW

-Assumption for GW: quartic is set to zero/very small, then bulk scalar added with non-trivial profile and small bulk mass
-Potential:

$$
V=f^{4}\left\{(4+2 \epsilon)\left[v_{1}-v_{0}(f R)^{\epsilon}\right]^{2}-\epsilon v_{1}^{2}+\delta a+O\left(\epsilon^{2}\right)\right\}=f^{4} F(f)
$$

- ε is bulk mass, $\mathrm{v}_{1,0} \mathrm{IR} / \mathrm{UV}$ VEVs in units of AdS curvature, δa the remaining quartic
-VEV:

$$
f=\frac{1}{R}\left(\frac{v_{1}+\sqrt{-\delta a / 4}}{v_{0}}+O(\epsilon)\right)^{1 / \epsilon}
$$

-Tuning determined by $\sqrt{-\delta a / 4} \lesssim v_{1}$
-Amount: $\quad \Delta=\frac{a}{|\delta a|} \gtrsim \frac{4 \pi^{2}}{v_{1}^{2}} \sim 4000$ for $\mathrm{v}_{1} \sim 0.1$.

Radion as Higgs?

-Radion kinetic term normalization gives

$$
f^{(R S)}=\frac{1}{R^{\prime}} \sqrt{12\left(M_{*} R\right)^{3}}
$$

-For calculability need $N=\sqrt{12\left(M_{*} R\right)^{3}} \gg 1$, so
-For higgsless: $\quad \frac{v}{f^{(R S)}}=\frac{2}{g} \frac{1}{N \sqrt{\log \frac{R^{\prime}}{R}}}$
-For models with very heavy higgs: $\quad \frac{v}{f^{(R S)}}=\frac{v R^{\prime}}{N}$
-Both cases couplings very suppressed, but mass light

$$
m_{d i l} \sim M_{K K} \frac{2 v_{1} \sqrt{\epsilon}}{\sqrt{12\left(M_{*} R\right)^{3}}}
$$

Dilaton couplings

-Assumption: composite sector + elementary sector
-Composite sector close to conformal, breaks scale inv. spontaneously

- Elementary sector is external to composite, but weak couplings
-Dilaton coupling in composite sector: assume in UV

$$
\mathcal{L}_{C F T}^{U V}=\sum_{i} g_{i} \mathcal{O}_{i}^{U V}
$$

-All operators dim 4 or small explicit breaking $\left[g_{i}\right]=4-\Delta_{i}^{U V}$

- Generic IR Lagrangian

$$
\mathcal{L}_{C F T}^{I R}=\sum_{i} c_{j}\left(\Pi g_{i}^{n_{i}}\right) \mathcal{O}_{j}^{I R} \chi^{m_{j}}
$$

Dilaton couplings I. Composites

-Power of X fixed $\quad \mathcal{L}_{C F T}^{I R}=\sum_{i} c_{j}\left(\Pi g_{i}^{n_{i}}\right) \mathcal{O}_{j}^{I R} \chi^{m_{j}}$

- $m_{j}=4-\Delta_{j}^{I R}-\sum_{i} n_{i}\left(4-\Delta_{i}^{U V}\right)$
- Single coupling: $\quad \mathcal{L}_{\text {breaking }}^{I R}=\sum_{j} c_{j} g_{i}\left(\Delta_{i}^{U V}-\Delta_{j}^{I R}\right) \mathcal{O}_{j}^{I R} \frac{\sigma}{f}$
-If no explicit breaking $\mathcal{L}_{\text {symmetric }}^{I R}=\sum_{j} c_{j}\left(4-\Delta_{j}^{I R}\right) \mathcal{O}_{j}^{I R} \frac{\sigma}{f}$
-Coupling to Tr of energy-momentum tensor: $\mathcal{L}_{\text {eff }}=-\frac{\sigma}{f} \mathcal{T}_{\mu}^{\mu}$
-Trace anomaly included, for $\mathcal{O}_{j}^{I R}=-\left(F_{\mu \nu}\right)^{2} /\left(4 g^{2}\right)$

$$
4-\Delta_{j}^{I R}=2 \gamma(g)=\frac{2 \beta(g)}{g}
$$

Dilaton couplings II. Partially composite

- Mixing between composite and elementary sectors

$$
\mathcal{L}^{U V}=\mathcal{L}_{C F T}^{U V}+\mathcal{L}_{\text {elem }}+\sum_{i} y_{i} O_{\text {elem }, i} \mathcal{O}_{C F T, i}^{U V}
$$

-Treat y as spurion with dimension $\quad\left[y_{i}\right]=4-\Delta_{\text {elem }, i}^{U V}-\Delta_{C F T, i}^{U V}$
-Effective Lagrangian

$$
\mathcal{L}_{e f f}=\mathcal{L}_{C F T}^{I R}+\mathcal{L}_{\text {elem }}+\sum_{j} c_{j} y_{i} O_{\text {elem }, i} \mathcal{O}_{C F T, j}^{I R} \chi^{m_{j}}+\mathcal{O}\left(y^{2}\right)
$$

-Power of X :

$$
\Delta_{\text {elem }, i}^{U V}-\Delta_{\text {elem }, i}^{I R}+\Delta_{C F T, i}^{U V}-\Delta_{C F T, j}^{I R}
$$

Example I: Partially comp. fermions

-Mixing between elementary and composite fermions:

$$
\mathcal{L}_{i n t}=y_{L} \psi_{L} \Theta_{R}+y_{R} \psi_{R} \Theta_{L}+\text { h.c. }
$$

- Spurion dimensions: $\left[y_{L}\right]=4-\Delta_{\psi_{L}}^{U V}-\Delta_{\theta_{R}}^{U V}, \quad\left[y_{R}\right]=4-\Delta_{\psi_{R}}^{U V}-\Delta_{\Theta_{L}}^{U V}$
-The effective fermion mass: $\mathcal{L}_{e f f}=-M y_{L} y_{R} \psi_{L} \psi_{R} \chi^{m}+$ h.c.

$$
\Delta_{\psi_{L}}^{U V}-\Delta_{\psi_{L}}^{I R}+\Delta_{\psi_{R}}^{U V}-\Delta_{\psi_{R}}^{I R}+\Delta_{\theta_{L}}^{U V}+\Delta_{\theta_{R}}^{U V}-4
$$

-Coupling to dilaton: $\quad \Delta_{\Theta_{L}}^{U V}=2+c_{L}, \quad \Delta_{\Theta_{R}}^{U V}=2-c_{R}$,
-In RS language:

$$
\mathcal{L}_{e f f}=-M y_{L} y_{R} \psi_{L} \psi_{R} \chi^{c_{L}-c_{R}}
$$

Example II: Partially comp. gauge field

- Mixing between gauge field and composite current:

$$
\mathcal{L}=-\frac{1}{4 g_{U V}^{2}} F_{\mu \nu} F^{\mu \nu}+A_{\mu} \mathcal{J}^{\mu}
$$

-Spurion dimension: $\left[g_{U V}\right]=\Delta_{A}^{U V}-1$
-Low energy coupling: $\quad \mathcal{L}_{e f f}=-\frac{1}{4 g^{2}} F_{\mu \nu} F^{\mu \nu} \chi^{m}$
-Coupling:

$$
m=4-2\left[1+\Delta_{A}^{I R}\right]+2[g]=2\left(\frac{\beta_{I R}}{g}-\frac{\beta_{U V}}{g}\right)
$$

Example II: Partially comp. gauge field

-Can also find this from matching of coupling

$$
\frac{1}{g^{2}(\mu)}=\frac{1}{g^{2}\left(\mu_{0}\right)}-\frac{b_{U V}}{8 \pi^{2}} \ln \frac{\mu_{0}}{f}-\frac{b_{I R}}{8 \pi^{2}} \ln \frac{f}{\mu}
$$

-With replacement $\quad f \rightarrow f e^{\frac{\sigma}{f}}$
-Coupling again

$$
\frac{g^{2}}{32 \pi^{2}}\left(b_{I R}-b_{U V}\right) F^{\mu \nu} F_{\mu \nu} \frac{\sigma}{f}
$$

Could this be the 126 GeV particle?

-Couplings compatible with SM values, but at this point some could also be somewhat off.

Dilaton coupling to SM

-Couplings to massive fields:

$$
\delta \mathcal{L}_{\text {mass }}=\left(2 m_{W}^{2} W_{\mu}^{+} W^{-\mu}+m_{Z}^{2} Z_{\mu}^{2}\right) \frac{\sigma}{f}-Y_{\psi} \frac{v}{\sqrt{2}} \psi_{L} \psi_{R}\left(1+\gamma_{L}+\gamma_{R}\right) \frac{\sigma}{f}+\text { h.c. }
$$

-Anomalous dimensions $\gamma \mathrm{L}, \mathrm{R}$ might be flavor dependent. Assume flavor symmetry to tame dilaton mediated FCNCs
-Coupling to massless gauge bosons:

$$
\delta \mathcal{L}_{k i n}=\frac{g_{A}^{2}}{32 \pi^{2}}\left(b_{I R}^{(A)}-b_{U V}^{(A)}\right)\left(F_{\mu \nu}^{(A)}\right)^{2} \frac{\sigma}{f}
$$

-Assuming photon, gluon partially composite
$-\left(b_{U V}^{(3)}+b_{t_{L}}^{(3)}\right) \frac{\alpha_{s}}{8 \pi} G_{\mu \nu}^{2} \frac{\chi}{f}-\left(b_{U V}^{(E M)}+b_{W_{T}^{T}}^{(E M)}+N_{c} b_{t_{L}}^{(E M)}\right) \frac{\alpha}{8 \pi} A_{\mu \nu}^{2} \frac{\chi}{f}$

Dilaton coupling to SM

-In terms of generic parametrization

$$
\begin{aligned}
\mathcal{L}_{e f f}= & c_{V}\left(\frac{2 m_{W}^{2}}{v} W_{\mu}^{+} W^{-\mu}+\frac{m_{Z}^{2}}{v} Z_{\mu}^{2}\right) h \\
& -c_{t} \frac{m_{t}}{v} \bar{t} t h-c_{b} \frac{m_{b}}{v} \bar{b} b h-c_{\tau} \frac{m_{\tau}}{v} \bar{\tau} \tau h \\
& +c_{g} \frac{\alpha_{s}}{8 \pi v} G_{\mu \nu}^{2} h+c_{\gamma} \frac{\alpha}{8 \pi v} A_{\mu \nu}^{2}
\end{aligned}
$$

-For massive fields

$$
c_{t, \chi}=\frac{v}{f}\left(1+\gamma_{t}\right), \quad c_{b, \chi}=\frac{v}{f}\left(1+\gamma_{b}\right), \quad c_{\tau, \chi}=\frac{v}{f}\left(1+\gamma_{\tau}\right),
$$

-For massless GBs including top and W loops:

$$
\begin{aligned}
\hat{c}_{g, \chi} & \simeq \frac{v}{f}\left(b_{I R}^{(3)}-b_{U V}^{(3)}+\frac{1}{2} F_{1 / 2}\left(x_{t}\right)\right) \equiv \frac{v}{f} b_{e f f}^{(3)} \\
\hat{c}_{\gamma, \chi} & \simeq \frac{v}{f}\left(b_{I R}^{(E M)}-b_{U V}^{(E M)}+\frac{4}{3} F_{1 / 2}\left(x_{t}\right)-F_{1}\left(x_{W}\right)\right) \equiv \frac{v}{f} b_{e f f}^{(E M)}
\end{aligned}
$$

Dilaton rates and production

-Decay rates:

$$
\begin{gathered}
\frac{\Gamma_{W W}}{\Gamma_{W W, S M}}=\frac{\Gamma_{Z Z}}{\Gamma_{Z Z, S M}} \simeq\left|c_{V}\right|^{2}, \frac{\Gamma_{b b}}{\Gamma_{b b, S M}} \simeq\left|c_{b}\right|^{2}, \frac{\Gamma_{\tau \tau}}{\Gamma_{\tau \tau, S M}} \simeq\left|c_{\tau}\right|^{2} \\
\frac{\Gamma_{g g}}{\Gamma_{g g, S M}} \simeq \frac{\left|\hat{c}_{g}\right|^{2}}{\left|\hat{c}_{g, S M}\right|^{2}}, \quad \frac{\Gamma_{\gamma \gamma}}{\Gamma_{\gamma \gamma, S M}} \simeq \frac{\left|\hat{c}_{\gamma}\right|^{2}}{\left|\hat{c}_{\gamma, S M}\right|^{2}}
\end{gathered}
$$

-Production rates: $\quad \frac{\sigma_{G F}}{\sigma_{G F, S M}} \simeq \frac{\left|\hat{c}_{g}\right|^{2}}{\left|\hat{c}_{g, S M}\right|^{2}}, \frac{\sigma_{V B F}}{\sigma_{V B F, S M}} \simeq\left|c_{V}\right|^{2}, \frac{\sigma_{V h}}{\sigma_{V h, S M}} \simeq\left|c_{V}\right|^{2}$
-Rates for individual channels: $\quad R \simeq(\sigma \Gamma) /(\sigma \Gamma)_{S M} \times\left|C_{t o t}\right|^{-2}$

$$
\begin{aligned}
& R_{G F,(W W, Z Z)} \simeq \frac{v^{2}}{f^{2}} \frac{1}{C^{2}}\left(\frac{b_{e f f}^{(3)}}{b_{t}^{(3)}}\right)^{2}, R_{G F, \gamma \gamma} \simeq \frac{v^{2}}{f^{2}} \frac{1}{C^{2}}\left(\frac{b_{e f f}^{(3)} b_{e f f}^{(E M)}}{b_{t}^{(3)} b_{t+W}^{(E M)}}\right)^{2}, \\
& R_{G F, \tau \tau} \simeq \frac{v^{2}}{f^{2}} \frac{1}{C^{2}}\left(\frac{b_{e f f}^{(3)}\left(1+\gamma_{\tau}\right)}{b_{t}^{(3)}}\right)^{2}, R_{V B F, \gamma \gamma} \simeq \frac{v^{2}}{f^{2}} \frac{1}{C^{2}}\left(\frac{b_{e f f}^{(E M)}}{b_{t+W}^{(E M)}}\right)^{2}, \\
& R_{V B F,(W W, Z Z)} \simeq \frac{v^{2}}{f^{2}} \frac{1}{C^{2}}, \quad R_{V B F, \tau \tau} \simeq \frac{v^{2}}{f^{2}} \frac{1}{C^{2}}\left(1+\gamma_{\tau}\right)^{2}, \quad R_{V h, b b} \simeq \frac{v^{2}}{f^{2}} \frac{1}{C^{2}}\left(1+\gamma_{b}\right)^{2}
\end{aligned}
$$

-where $\mathbf{C}=\left[\mathrm{BR}_{W W, S M}+\mathrm{BR}_{Z Z, S M}+\left(1+\gamma_{b}\right) \mathrm{BR}_{b b, S M}+\frac{\left(b_{e f f}^{(3)}\right)^{2}}{\left(b_{t}^{(3)}\right)^{2}} \mathrm{BR}_{g g, S M}\right]$

LHC and EWPT constraints

Enhancement in $\mathrm{h} \rightarrow \mathrm{yv}$

Rates for
$h \rightarrow Y Y\}$ Can be easily enhanced for $h \rightarrow Z Z\}$ largish b's
$\mathrm{h} \rightarrow \mathrm{bb}$

A naturally light dilaton

-We have seen, hard to get light dilaton
-Large quartic expected for dilaton in non-SUSY models
-To remove quartic w/o tuning, Contino, Pomarol, Rattazzi suggested
-Start with exactly conformal theory
-Add close to marginal perturbation with dimension $4-\varepsilon$

- Make sure β function remains small even when coupling is large - very non-trivial requirement!
-Quartic will relax to close to zero, dilaton light cc small

A naturally light dilaton

-By adding small explicit breaking quartic will be slowly running

- Model will slowly scan through space of quartics
-SBSI happens when quartic is small
-If β function small dilaton will remain light
-Minimum expected at small CC also!
- Similar construction by Weinberg (no-go thm)
-Zero CC requires exact scale invariance, but then dilaton can not be fixed

A naturally light dilaton

-RS-GW vs. CPR approaches

-RS-GW starts with a tuned setup (IR brane tension)
-CPR approach allows arbitrary IR tension, but quartic will slowly relax, that is where IR brane stabilized

A naturally light dilaton

-Expression for effective potential

$$
V_{e f f}=F \chi^{4} \rightarrow \quad V_{e f f}=\chi^{4} F(\lambda(\chi))
$$

-Due to running coupling:

$$
\frac{d \lambda}{d \log \mu}=\beta(\mu) \equiv \epsilon b(\lambda) \ll 1
$$

-After long running $\quad \delta F \sim\left(\Lambda_{U V} / \mu\right)^{\epsilon}$
-At some scale $F\left(\lambda\left(\mu_{I R}\right)\right) \sim 0$.
-Can check explicitly in a warped 5D setup!

5D picture of naturally light dilaton

-General warped metric with scalar action

$$
S=\int d^{5} x \sqrt{g}\left(-\frac{1}{2 \kappa^{2}} \mathcal{R}+\frac{1}{2} g^{M N} \partial_{M} \phi \partial_{N} \phi-V(\phi)\right)-\int d^{4} x \sqrt{g_{0}} V_{0}(\phi)-\int d^{4} x \sqrt{g_{1}} V_{1}(\phi)
$$

- Metric $\quad d s^{2}=e^{-2 A(y)} d x^{2}-d y^{2}$
-Identification of scale $\quad \mu=k e^{-A(y)}$
-And dilaton: location of IR brane $\quad \chi=e^{\frac{\sigma}{f}}=e^{-A\left(y_{1}\right)}$

The effective potential

- It is a pure boundary term

$$
V_{U V / I R}=e^{-4 A\left(y_{0,1}\right)}\left[V_{0,1}\left(\phi\left(y_{0,1}\right)\right) \mp \frac{6}{\kappa^{2}} A^{\prime}\left(y_{0,1}\right)\right]
$$

-Dilaton potential will be

$$
V_{I R}=\chi^{4}\left[V_{1}\left(\phi\left(A^{-1}(-\log \chi)\right)\right)+\frac{6}{\kappa^{2}} A^{\prime}\left(A^{-1}(-\log \chi)\right)\right]
$$

-In accordance with expectation $V_{e f f}(\chi)=\chi^{4} F(\lambda(\chi))$
-With $\quad F=V_{1}+\frac{6}{\kappa^{2}} A^{\prime}$

Toy case: constant bulk potential Flat dilaton via tuning two condensates

- Provides of a dimension 4 condensate - a soft-wall version of RS (=spontaneous breaking of SI with dim 4 rather than ∞ dimensional)
-Will be the IR region of the full problem with bulk mass for scalar
-Bulk equations can be solved explicitly

$$
\begin{aligned}
A(y) & =-\frac{1}{4} \log \left[\frac{\sinh 4 k\left(y_{c}-y\right)}{\sinh 4 k y_{c}}\right] \\
\phi(y) & =-\frac{\sqrt{3}}{2 \kappa} \log \tanh \left[2 k\left(y_{c}-y\right)\right]+\phi_{0}
\end{aligned}
$$

Toy case: constant bulk potential Flat dilaton via tuning two condensates

- For finite y_{c} deviates from AdS space. AdS recovered in $y_{c} \rightarrow \infty$ limit.
-Location of IR and UV branes:

$$
\chi^{4}=e^{-4 A\left(y_{1}\right)}=\frac{\sinh 4 k\left(y_{c}-y_{1}\right)}{\sinh 4 k y_{c}}, \quad \mu_{0}^{4}=e^{-4 A\left(y_{0}\right)}=\frac{\sinh 4 k\left(y_{c}-y_{0}\right)}{\sinh 4 k y_{c}},
$$

-Parametrization of deviation from AdS

$$
\delta^{4}=\frac{1}{\sinh 4 k y_{c}}
$$

Toy case: constant bulk potential Flat dilaton via tuning two condensates

-The potential will be:

$$
V_{I R}=\chi^{4}\left[\Lambda_{1}+\frac{6 k}{\kappa^{2}} \sqrt{1+\frac{\delta^{8}}{\chi^{8}}}+\lambda_{1}\left(\phi_{0}-v_{1}-\frac{\sqrt{3}}{2 \kappa} \log \left[\sqrt{1+\frac{\delta^{8}}{\chi^{8}}}-\frac{\delta^{4}}{\chi^{4}}\right]\right)^{2}\right]
$$

- The BC for scalar will give (in limit of stiff brane potentials):

$$
\begin{aligned}
\phi_{0} & =v_{0}\left(1+\mathcal{O}\left(\chi^{4} / \mu_{0}^{4}\right)\right), \\
\delta^{4} & =\chi^{4} f_{1}\left(v_{0}\left(1+\mathcal{O}\left(\chi^{4} / \mu_{0}^{4}\right)\right), \lambda_{1}, v_{1}\right)
\end{aligned}
$$

-Pure quartic up to corrections in UV brane position. Coefficient of quartic:

$$
a\left(v_{0}\right)=\Lambda_{1}+\frac{6 k}{\kappa^{2}} \cosh \left(\frac{2 \kappa}{\sqrt{3}}\left(v_{1}-v_{0}\right)\right)
$$

-Can TUNE to zero by choosing vo properly!

Toy case: constant bulk potential Flat dilaton via tuning two condensates

-A theory that deviates strongly from AdS

- Nevertheless this is a spontaneously broken CFT
- Gravity will be explicit breaking, UV contribution to potential

$$
V_{U V}=\mu_{0}^{4}\left[\Lambda_{0}-\frac{6 k}{\kappa^{2}} \sqrt{1+\frac{\delta^{8}}{\mu_{0}^{8}}}+\lambda_{0}\left(\phi_{0}-v_{0}-\frac{\sqrt{3}}{2 \kappa} \log \left[\sqrt{1+\frac{\delta^{8}}{\mu_{0}^{8}}}-\frac{\delta^{4}}{\mu_{0}^{4}}\right]\right)^{2}\right]
$$

$\bullet \mu_{0}$ location of UV brane, in limit $\mu_{0} \rightarrow \infty$ gravity decoupled

Important comments

-In the limit of no gravity potential is pure quartic (as it should be in a pure CFT)
-Quartic can be tuned to vanish by choosing vo (value of Φ on UV brane)
-Different from GW: here we tune UV value of perturbation - if small explicit breaking, this will run $v_{0} \rightarrow v_{0}\left(\chi / \mu_{0}\right)^{\text {e }}$ and will find the position where quartic is vanishing
-Scale invariance of metric non-trivial: $y \rightarrow y+a, x \rightarrow e^{\alpha}(a) x$. also requires shift in y_{1} and y_{c}.

The general case: small bulk mass

-Bulk potential $\quad V(\phi)=-\frac{6 k^{2}}{\kappa^{2}}-2 \epsilon k^{2} \phi^{2}$
$\bullet \varepsilon \ll 1$, dimension 4- ε operator.
-Two regions of space:

1. UV region:
$\Phi^{\prime \prime}$ can be neglected, slow running of scalar

$$
\begin{aligned}
A_{r}^{\prime}(y) & =k \\
\phi_{r}(y) & =\phi_{0} e^{\epsilon k y}
\end{aligned}
$$

Space remains AdS, RGE running of scalar

The general case: small bulk mass

2. IR region ("condensate region"): Scalar dominated by $\Phi^{\prime \prime}, \Phi^{\prime}$, mass term can be neglected: just like the solution without mass

$$
\begin{aligned}
A_{c}^{\prime}(y) & =-k \operatorname{coth}\left(4 k\left(y-y_{c}\right)\right) \\
\phi_{c}(y) & =\phi_{m}-\frac{\sqrt{3}}{2 \kappa} \log \left(-\tanh \left(2 k\left(y-y_{c}\right)\right)\right)
\end{aligned}
$$

-Need to match up these two solutions
-Asymptotic matching for boundary layer theory
-Full solution: $A_{\text {full }}^{\prime}(z)=\left(-1+\frac{2 z^{8}}{z^{8}+\chi^{8} \tanh ^{2}\left(\frac{\kappa}{\sqrt{3}}\left(v_{1}-v_{0}\left(\mu_{0} / X\right)^{9}\right)\right)}\right)^{-1}$

$$
\phi_{\text {full }}(z)=v_{0}\left(\frac{\mu_{0}}{z}\right)^{\epsilon}-\frac{\sqrt{3}}{2 \kappa} \log \left[-1+\frac{2 z^{4}}{z^{4}+\chi^{4} \tanh \left(\frac{\kappa}{\sqrt{3}}\left(v_{1}-v_{0}\left(\mu_{0} / \chi\right)^{\epsilon}\right)\right)}\right]
$$

The matched solutions

Figure 2: Left, bulk scalar profile: $\phi_{f u l l}$ (solid black), ϕ_{r} (dashed red), and ϕ_{b} (dotted blue). Right, effective AdS curvature, $A^{\prime}(y)$: same color code.

The effective dilaton potential

-Dilaton VEV hierarchical:

$$
\frac{\langle\chi\rangle}{\mu_{0}}=\left(\frac{v_{0}}{v_{1}-\operatorname{sign}(\epsilon) \frac{\sqrt{3}}{2 \kappa} \operatorname{arcsech}\left(-6 k / \kappa^{2} \Lambda_{1}\right)}\right)^{1 / \epsilon}+O(\epsilon)
$$

Dilaton mass and CC

-Dilaton mass:

$$
\begin{gathered}
m_{\chi}^{2} \sim \epsilon \frac{32 \sqrt{3} k v_{0}}{\kappa} \tanh \left(\frac{\kappa}{\sqrt{3}}\left(v_{1}-v_{0}\left(\mu_{0} / \chi\right)^{\epsilon}\right)\right)\langle\chi\rangle^{2}\left(\mu_{0} / \chi\right)^{\epsilon}+O\left(\epsilon^{2}\right) \\
m_{\chi}^{2} \sim \epsilon\langle\chi\rangle^{2}
\end{gathered}
$$

- Vacuum energy:

$$
\begin{gathered}
V_{I R}^{m i n}=-\epsilon \frac{2 \sqrt{3} k v_{0}}{\kappa} \tanh \left(\frac{\kappa}{\sqrt{3}}\left(v_{1}-v_{0}\left(\mu_{0} / \chi\right)^{\epsilon}\right)\right)\langle\chi\rangle^{4}\left(\mu_{0} / \chi\right)^{\epsilon} \sim-m_{\chi}^{2} \frac{\langle\lambda\rangle^{2}}{16} \\
\Lambda \sim \epsilon\langle\chi\rangle^{4}
\end{gathered}
$$

Dilaton mass and CC

-Dilaton naturally light, no tuning here (except UV CC)

$$
m_{\chi}^{2} \sim \epsilon\langle\chi\rangle^{2}
$$

- Vacuum energy: $\quad \Lambda \sim \epsilon\langle\chi\rangle^{4}$
- Suppressed compared to SUSY, but non-zero.
- Need conformal symmetry to set CC to zero. To stabilize scales need to break it - reintroduces CC, but small breaking can do it.
-Here ε also sets hierarchy - can not be too small.

Conclusions

- Spontaneous breaking of scale invariance could be interesting for phenomenology
-Dilaton could be Higgs-like particle, motivated
-Large quartic expected for dilaton in non-SUSY models
-Hard to get light dilaton, but can fit LHC data
-To obtain light dilaton need small explicit breaking that remains small even at large coupling
-Explicit 5D construction possible
- $m_{\chi}^{2} \sim \epsilon\langle\chi\rangle^{2}, \Lambda \sim \epsilon\langle\chi\rangle^{4}$

