A Naturally Light Dilaton

Csaba Csáki (Cornell) with Brando Bellazzini (Saclay) Jay Hubisz (Syracuse) Javi Serra (Cornell) John Terning (Davis)

Theory Seminar UNC Chapel Hill, March 21, 2014

•Spontaneous breaking of scale invariance could be very interesting for particle physics phenomenology

•Couplings of Higgs in SM: determined by approximate conformal symmetry of SM

 In absence of Higgs mass parameter SM approximately conformal until QCD scale, and <H>=v breaks conformality spontaneously

•Higgs = dilaton, with f=v, Higgs couplings determined a la Shifman, Vainshtein, Voloshin, Zakharov '79-'80

•One possibility: Higgs actually dilaton of a broken conformal sector

•Spontaneous breaking of scale invariance could be very interesting for particle physics phenomenology

Cosmological constant problem

•Only known ways of setting Λ to zero: SUSY or conformal symmetry

•SUSY broken $\rightarrow \Lambda \sim (\text{TeV})^4$ expected

•What is expectation for broken conformal symmetry?

•Aim for this talk

•What does it take to make a dilaton look like the observed Higgs?

•How can we make the dilaton naturally light?

•What are the consequences for a light dilaton for the CC?

Dilaton basics

- •Scale transformations $x \to x' = e^{-\alpha} x'$
- •Operators transform $\mathcal{O}(x) \to \mathcal{O}'(x) = e^{\alpha \Delta} \mathcal{O}(e^{\alpha} x)$
- • Δ is full dimension, classical plus quantum corrections
- •Change in action:

$$S = \sum_{i} \int d^4x \, g_i \mathcal{O}_i(x) \longrightarrow S' = \sum_{i} \int d^4x e^{\alpha(\Delta_i - 4)} g_i \mathcal{O}_i(x)$$

•Assume spontaneous breaking of scale inv. (SBSI)

$$\langle \mathcal{O} \rangle = f^n$$

Dilaton basics

•Dilaton: Goldstone of SBSI, σ , transforms non-linearly under scale transf.: $\sigma(x) \rightarrow \sigma(e^{\alpha}x) + \alpha f$

•Restore scale invariance by replacing VEV

$$f \to f \chi \equiv f e^{\sigma/f}$$

•Effective dilaton Lagrangian is then (using NDA for coeffs)

$$\mathcal{L}_{eff} = \sum_{n,m \ge 0} \frac{a_{n,m}}{(4\pi)^{2(n-1)} f^{2(n-2)}} \frac{\partial^{2n} \chi^m}{\chi^{2n+m-4}}$$
$$= -a_{0,0} (4\pi)^2 f^4 \chi^4 + \frac{f^2}{2} (\partial_\mu \chi)^2 + \frac{a_{2,4}}{(4\pi)^2} \frac{(\partial \chi)^4}{\chi^4} + \dots$$

•Main point of dilaton: effective action can have non-derivative χ^4 term - just the cosmological constant in the composite sector

$$S = \int d^4x \frac{f^2}{2} (\partial \chi)^2 - a f^4 \chi^4 + \text{higher derivatives}$$

Generically a≠0. Will make SBSI difficult:

•a>0: VEV at f=0, no SBSI

•a<0: runaway vacuum $f \rightarrow \infty$

•a=0 arbitrary f

•Need to add additional almost-marginal operator to generate dilaton potential

•Perturbation:

$$\delta S = \int d^4x \lambda(\mu) \mathcal{O}$$

$$af^4 \to f^4 F(\lambda(f))$$

•Dilaton potential: $V(\chi) = f^4 F(\lambda(f))$ vacuum energy in units of f

•To have a VEV: $V' = f^3 \left[4F(\lambda(f)) + \beta F'(\lambda(f)) \right] = 0$ $\beta = \frac{d\lambda}{d\log \mu}$

•Dilaton mass:

 $m_{dil}^{2} = f^{2}\beta \left[\beta F'' + 4F' + \beta' F'\right] \simeq 4f^{2}\beta F'(\lambda(f)) = -16f^{2}F(\lambda(f))$

What would it take for the 126 GeV Higgs to be a dilatom

 A new particle at ~ 126 GeV that behaves very similarly to SM Higgs

•We need $m_{dil} \sim 125 \ {\rm GeV}$

•With $f \sim v = 246~{\rm GeV}, \Lambda = 4\pi f \sim 3~{\rm TeV}$

•So
$$m_{dil}\sim f/2\ll\Lambda$$

•But dilaton mass:

$$m_{dil}^2 = f^2 \beta \left[\beta F'' + 4F' + \beta' F' \right] \simeq 4f^2 \beta F'(\lambda(f)) = -16f^2 F(\lambda(f))$$

•Naive expectation: one loop vacuum energy

$$F_{NDA} \sim \frac{\Lambda^4}{16\pi^2 f^4} \sim 16\pi^2$$

$$m_{dil} \sim \Lambda$$

•Generically DO NOT expect a light dilaton, need the dilaton quartic to be suppressed vs. NDA size

•If quartic not suppressed, need large β to stabilize, large explicit breaking a la QCD and TC, no light dilaton

•Need to start with an almost flat direction

•Dynamics should not generate a large contribution to the vacuum energy...

•Natural in SUSY theories - have flat or almost flat directions

•Not natural in non-SUSY theories

To find a (non-SUSY) solution we need

•Small vacuum energy (tuning), a<<16π²

•δF dynamically cancels vs. a

•Perturbation should be close to marginal

Detailed examination of the dynamics

•Assume small deviation ε from marginality, and coupling λ :

$$\beta(\lambda) = \frac{d\lambda}{d\ln\mu} = \epsilon\lambda + \frac{b_1}{4\pi}\lambda^2 + O(\lambda^3)$$

•Assume λ perturbative $\lambda < 4\pi$, and dilaton quartic very small $F(\lambda) = (4\pi)^2 \left[c_0 + \sum_n c_n \left(\frac{\lambda}{4\pi} \right)^n \right], \quad c_0 \ll c_n \sim 1, \quad a = (4\pi)^2 c_0$

Coleman-Weinberg type potential for dilaton

•For perturbative λ can introduce large hierarchies

$$f \simeq M \left(\frac{-4\pi c_0}{\lambda(M)c_1}\right)^{1/\epsilon}$$

- if **c** small and negative f<<M (if positive more tuning)
- •The dilaton mass:

$$\frac{m_{dil}^2}{\Lambda^2} \sim \frac{\beta}{\pi} \simeq \epsilon \frac{\lambda}{\pi}$$

•Could make it very small by taking $\epsilon \rightarrow 0$?

•When ϵ very small, λ^2 term in β -function dominates

$$\frac{m_{dil}^2}{\Lambda^2} \sim \frac{\beta}{\pi} \sim \frac{\lambda^2}{4\pi^2}$$

•Shows need perturbative coupling for light dilaton

•QCD and (walking)-TC will not have a light dilaton, since there λ =g~4 π

•Fine-tuning in weakly coupled models: min. condition gives $\lambda(f) \sim 4\pi c_0/c_1 \equiv 4\pi/\Delta$ where Δ is FT

$$\Delta \gtrsim 2\Lambda/m_{dil} \simeq 50 \left(\frac{f}{246 \text{GeV}}\right) \left(\frac{125 \text{GeV}}{m_{dil}}\right)$$

A SUSY example for a light dilaton

- •Classical flat directions $Q\bar{D}L$, $Q\bar{U}L$ and $det(\bar{Q}Q)$
- •Lifted by superpotential $W = \lambda Q \overline{D} L$
- Dynamical ADS superpotential
- $W_{\rm dyn} = \frac{\Lambda_3^7}{\det(\overline{Q}Q)}$
- •Will push fields to large VEVs >> Λ_3 as long as λ <<1
- •Spontaneous conformality breaking, expect light dilaton

A SUSY example for a light dilaton

• The potential
$$V \approx \frac{\Lambda_3^{14}}{f^{10}} + \lambda \frac{\Lambda_3^7}{f^3} + \lambda^2 f^4$$

•VEVs:
$$f \approx \frac{\Lambda_3}{\lambda^{1/7}}$$
, $V \approx \lambda^{10/7} \Lambda_3^4$

•Dilaton mass:
$$m_{dil} \approx \lambda f \approx \lambda^{\frac{6}{7}} \Lambda_3$$

•Of course here SUSY is playing the essential role of keeping the dilaton light, unlike in the non-SUSY examples we are interested in

The radion in RS/GW

• The effective potential w/o stabilization

$$V_{eff} = V_0 + V_1 \left(\frac{R}{R'}\right)^4 + \Lambda_{(5)} R \left(1 - \left(\frac{R}{R'}\right)^4\right)$$

•With f=1/R' get a characteristic SBSI potential with quartic

$$V_{eff}(\chi) = V_0 + \Lambda_{(5)}R + f^4 \left(V_1R^4 - \Lambda_{(5)}R^5\right)$$

$$CC, FT1 \qquad quartic, FT2$$

$$V_{eff}(\chi) = V_0 + \Lambda_{(5)}R + f^4 \left(V_1R^4 - \Lambda_{(5)}R^5\right)$$

$$CC, FT1 \qquad quartic, FT2$$

•Natural size of quartic: NDA in 5D $\delta a_{(bulk)} \sim \Lambda_{(5)} R^5 \sim \frac{12^2}{24\pi^3} \sim \mathcal{O}(1)$ like in 4D EFT

$$\delta a_{(IR)} = -V_1 R^4 = -V_1 \left(\frac{R}{R'}\right)^4 R'^4 = \frac{\widetilde{V}_1}{\left(\frac{\Lambda}{4\pi}\right)^4} \sim 16\pi^2$$

The radion in RS/GW

•Assumption for GW: quartic is set to zero/very small, then bulk scalar added with non-trivial profile and small bulk mass

•Potential:

$$V = f^4 \left\{ (4+2\epsilon) \left[v_1 - v_0 \left(fR \right)^{\epsilon} \right]^2 - \epsilon v_1^2 + \delta a + O(\epsilon^2) \right\} = f^4 F(f)$$

• ϵ is bulk mass, $v_{1,0}$ IR/UV VEVs in units of AdS curvature, ba the remaining quartic

•VEV:
$$f = \frac{1}{R} \left(\frac{v_1 + \sqrt{-\delta a/4}}{v_0} + O(\epsilon) \right)^{1/\epsilon}$$

•Tuning determined by $\sqrt{-\delta a/4} \lesssim v_1$

•Amount:
$$\Delta = \frac{a}{|\delta a|} \gtrsim \frac{4\pi^2}{v_1^2}$$
 ~ 4000 for v₁ ~ 0.1.

Radion as Higgs?

Radion kinetic term normalization gives

$$f^{(RS)} = \frac{1}{R'} \sqrt{12(M_*R)^3}$$

•For calculability need $N = \sqrt{12(M_*R)^3} \gg 1$, so

•For higgsless:
$$\frac{v}{f^{(RS)}} = \frac{2}{g} \frac{1}{N\sqrt{\log \frac{R'}{R}}}$$

•For models with very heavy higgs:

$$\frac{v}{f^{(RS)}} = \frac{vR'}{N}$$

•Both cases couplings very suppressed, but mass light

$$m_{dil} \sim M_{KK} \frac{2v_1 \sqrt{\epsilon}}{\sqrt{12(M_*R)^3}}$$

Dilaton couplings

•Assumption: composite sector + elementary sector

•Composite sector close to conformal, breaks scale inv. spontaneously

•Elementary sector is external to composite, but weak couplings

•Dilaton coupling in composite sector: assume in UV

$$\mathcal{L}_{CFT}^{UV} = \sum_{i} g_i \mathcal{O}_i^{UV}$$

•All operators dim 4 or small explicit breaking $[g_i] = 4 - \Delta_i^{UV}$

•Generic IR Lagrangian

$$\mathcal{L}_{CFT}^{IR} = \sum_{i} c_j \left(\Pi g_i^{n_i} \right) \mathcal{O}_j^{IR} \chi^{m_j}$$

Dilaton couplings I. Composites

•Power of
$$\chi$$
 fixed $\mathcal{L}_{CFT}^{IR} = \sum_{i} c_j (\Pi g_i^{n_i}) \mathcal{O}_j^{IR} \chi^{m_j}$
• $m_j = 4 - \Delta_j^{IR} - \sum_{i} n_i (4 - \Delta_i^{UV})$
•Single coupling: $\mathcal{L}_{breaking}^{IR} = \sum_{j} c_j g_i (\Delta_i^{UV} - \Delta_j^{IR}) \mathcal{O}_j^{IR} \frac{\sigma}{f}$

•If no explicit breaking
$$\mathcal{L}_{symmetric}^{IR} = \sum_{j} c_j \left(4 - \Delta_j^{IR}\right) \mathcal{O}_j^{IR} \frac{\sigma}{f}$$

•Coupling to Tr of energy-momentum tensor: $\mathcal{L}_{eff} = -\frac{\sigma}{f} \mathcal{T}^{\mu}_{\mu}$

•Trace anomaly included, for $\mathcal{O}_j^{IR} = -(F_{\mu\nu})^2/(4g^2)$ $4 - \Delta_j^{IR} = 2\gamma(g) = \frac{2\beta(g)}{g}$

Dilaton couplings II. Partially composite

Mixing between composite and elementary sectors

$$\mathcal{L}^{UV} = \mathcal{L}_{CFT}^{UV} + \mathcal{L}_{elem} + \sum_{i} y_i O_{elem,i} \mathcal{O}_{CFT,i}^{UV}$$

•Treat y as spurion with dimension $[y_i] = 4 - \Delta_{elem,i}^{UV} - \Delta_{CFT,i}^{UV}$

•Effective Lagrangian

•Po

$$\begin{split} \mathcal{L}_{eff} &= \mathcal{L}_{CFT}^{IR} + \mathcal{L}_{elem} + \sum_{j} c_{j} \, y_{i} \, O_{elem,i} \, \mathcal{O}_{CFT,j}^{IR} \, \chi^{m_{j}} + \mathcal{O}(y^{2}) \\ \text{wer of } \chi: \qquad \Delta_{elem,i}^{UV} - \widetilde{\Delta}_{elem,i}^{IR} + \Delta_{CFT,i}^{UV} - \Delta_{CFT,j}^{IR} \end{split}$$

Example I: Partially comp. fermions

•Mixing between elementary and composite fermions:

$$\mathcal{L}_{int} = y_L \psi_L \Theta_R + y_R \psi_R \Theta_L + h.c.$$

•Spurion dimensions: $[y_L] = 4 - \Delta_{\psi_L}^{UV} - \Delta_{\Theta_R}^{UV}$, $[y_R] = 4 - \Delta_{\psi_R}^{UV} - \Delta_{\Theta_L}^{UV}$

•The effective fermion mass: $\mathcal{L}_{eff} = -M y_L y_R \psi_L \psi_R \chi^m + h.c.$

$$\Delta^{UV}_{\psi_L} - \Delta^{IR}_{\psi_L} + \Delta^{UV}_{\psi_R} - \Delta^{IR}_{\psi_R} + \Delta^{UV}_{\Theta_L} + \Delta^{UV}_{\Theta_R} - 4$$

•Coupling to dilaton: $\Delta_{\Theta_L}^{UV} = 2 + c_L$, $\Delta_{\Theta_R}^{UV} = 2 - c_R$,

•In RS language: $\mathcal{L}_{eff} = -M y_L y_R \psi_L \psi_R \chi^{c_L - c_R}$

Example II: Partially comp. gauge field

•Mixing between gauge field and composite current:

$$\mathcal{L} = -\frac{1}{4g_{UV}^2} F_{\mu\nu} F^{\mu\nu} + A_\mu \mathcal{J}^\mu$$

•Spurion dimension: $[g_{UV}] = \Delta_A^{UV} - 1$

•Low energy coupling:

$$\mathcal{L}_{eff} = -\frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} \chi^m$$

•Coupling: $m = 4 - 2[1 + \Delta_A^{IR}] + 2[g] = 2(\frac{\beta_{IR}}{g} - \frac{\beta_{UV}}{g})$

Example II: Partially comp. gauge field

Can also find this from matching of coupling

$$\frac{1}{g^2(\mu)} = \frac{1}{g^2(\mu_0)} - \frac{b_{UV}}{8\pi^2} \ln \frac{\mu_0}{f} - \frac{b_{IR}}{8\pi^2} \ln \frac{f}{\mu}$$

•With replacement $f \to f e^{\frac{\sigma}{f}}$

•Coupling again

$$\frac{g^2}{32\pi^2} \left(b_{IR} - b_{UV} \right) F^{\mu\nu} F_{\mu\nu} \frac{\sigma}{f}$$

Could this be the 126 GeV particle?

•Couplings compatible with SM values, but at this point some could also be somewhat off.

Dilaton coupling to SM

•Couplings to massive fields:

$$\delta \mathcal{L}_{mass} = \left(2m_W^2 W_\mu^+ W^{-\mu} + m_Z^2 Z_\mu^2\right) \frac{\sigma}{f} - Y_\psi \frac{v}{\sqrt{2}} \psi_L \psi_R (1 + \gamma_L + \gamma_R) \frac{\sigma}{f} + h.c.$$

•Anomalous dimensions $\gamma_{L,R}$ might be flavor dependent. Assume flavor symmetry to tame dilaton mediated FCNCs

•Coupling to massless gauge bosons:

$$\delta \mathcal{L}_{kin} = \frac{g_A^2}{32\pi^2} \left(b_{IR}^{(A)} - b_{UV}^{(A)} \right) \left(F_{\mu\nu}^{(A)} \right)^2 \frac{\sigma}{f}$$

•Assuming photon, gluon partially composite

$$- (b_{UV}^{(3)} + b_{t_L}^{(3)}) \frac{\alpha_s}{8\pi} G_{\mu\nu}^2 \frac{\chi}{f} - (b_{UV}^{(EM)} + b_{W_T^{\pm}}^{(EM)} + N_c \, b_{t_L}^{(EM)}) \frac{\alpha}{8\pi} A_{\mu\nu}^2 \frac{\chi}{f}$$

Dilaton coupling to SM

•In terms of generic parametrization

$$\mathcal{L}_{eff} = c_V \left(\frac{2m_W^2}{v} W^+_{\mu} W^{-\mu} + \frac{m_Z^2}{v} Z^2_{\mu} \right) h$$
$$-c_t \frac{m_t}{v} \bar{t} t h - c_b \frac{m_b}{v} \bar{b} b h - c_\tau \frac{m_\tau}{v} \bar{\tau} \tau h$$
$$+c_g \frac{\alpha_s}{8\pi v} G^2_{\mu\nu} h + c_\gamma \frac{\alpha}{8\pi v} A^2_{\mu\nu},$$

•For massive fields

$$c_{t,\chi} = \frac{v}{f}(1+\gamma_t), \ c_{b,\chi} = \frac{v}{f}(1+\gamma_b), \ c_{\tau,\chi} = \frac{v}{f}(1+\gamma_\tau),$$

•For massless GBs including top and W loops:

$$\hat{c}_{g,\chi} \simeq \frac{v}{f} \left(b_{IR}^{(3)} - b_{UV}^{(3)} + \frac{1}{2} F_{1/2}(x_t) \right) \equiv \frac{v}{f} b_{eff}^{(3)},$$

$$\hat{c}_{\gamma,\chi} \simeq \frac{v}{f} \left(b_{IR}^{(EM)} - b_{UV}^{(EM)} + \frac{4}{3} F_{1/2}(x_t) - F_1(x_W) \right) \equiv \frac{v}{f} b_{eff}^{(EM)}$$

Dilaton rates and production

•Decay rates:
$$\frac{\Gamma_{WW}}{\Gamma_{WW,SM}} = \frac{\Gamma_{ZZ}}{\Gamma_{ZZ,SM}} \simeq |c_V|^2, \quad \frac{\Gamma_{bb}}{\Gamma_{bb,SM}} \simeq |c_b|^2, \quad \frac{\Gamma_{\tau\tau}}{\Gamma_{\tau\tau,SM}} \simeq |c_\tau|^2$$
$$\frac{\Gamma_{gg}}{\Gamma_{gg,SM}} \simeq \frac{|\hat{c}_g|^2}{|\hat{c}_{g,SM}|^2}, \quad \frac{\Gamma_{\gamma\gamma}}{\Gamma_{\gamma\gamma,SM}} \simeq \frac{|\hat{c}_\gamma|^2}{|\hat{c}_{\gamma,SM}|^2}$$
•Production rates:
$$\frac{\sigma_{GF}}{\sigma_{GF,SM}} \simeq \frac{|\hat{c}_g|^2}{|\hat{c}_{g,SM}|^2}, \quad \frac{\sigma_{VBF}}{\sigma_{VBF,SM}} \simeq |c_V|^2, \quad \frac{\sigma_{Vh}}{\sigma_{Vh,SM}} \simeq |c_V|^2$$

Rates for individual channels:

 $R \simeq (\sigma \Gamma) / (\sigma \Gamma)_{SM} \times |C_{tot}|^{-2}$

$$\begin{split} R_{GF,(WW,ZZ)} &\simeq \frac{v^2}{f^2} \frac{1}{C^2} \left(\frac{b_{eff}^{(3)}}{b_t^{(3)}} \right)^2 , \quad R_{GF,\gamma\gamma} \simeq \frac{v^2}{f^2} \frac{1}{C^2} \left(\frac{b_{eff}^{(3)} b_{eff}^{(EM)}}{b_t^{(3)} b_{t+W}^{(EM)}} \right)^2 , \\ R_{GF,\tau\tau} &\simeq \frac{v^2}{f^2} \frac{1}{C^2} \left(\frac{b_{eff}^{(3)} (1+\gamma_{\tau})}{b_t^{(3)}} \right)^2 , \quad R_{VBF,\gamma\gamma} \simeq \frac{v^2}{f^2} \frac{1}{C^2} \left(\frac{b_{eff}^{(EM)}}{b_{t+W}^{(EM)}} \right)^2 , \\ R_{VBF,(WW,ZZ)} &\simeq \frac{v^2}{f^2} \frac{1}{C^2} , \quad R_{VBF,\tau\tau} \simeq \frac{v^2}{f^2} \frac{1}{C^2} (1+\gamma_{\tau})^2 , \quad R_{Vh,bb} \simeq \frac{v^2}{f^2} \frac{1}{C^2} (1+\gamma_b)^2 \\ \bullet \text{where } \mathbf{C} = \left[\text{BR}_{WW,SM} + \text{BR}_{ZZ,SM} + (1+\gamma_b) \text{BR}_{bb,SM} + \frac{(b_{eff}^{(3)})^2}{(b_t^{(3)})^2} \text{BR}_{gg,SM} \right] \end{split}$$

LHC and EWPT constraints

Enhancement in h→yy

Rates for

 $\begin{array}{c} h \rightarrow \gamma \gamma \\ h \rightarrow ZZ \end{array}$ Can be ea largish b's $h \rightarrow bb$

Can be easily enhanced for largish b's

- •We have seen, hard to get light dilaton
- •Large quartic expected for dilaton in non-SUSY models
- •To remove quartic w/o tuning, <u>Contino, Pomarol,</u> <u>Rattazzi</u> suggested
- •Start with exactly conformal theory
- •Add close to marginal perturbation with dimension 4-ε
- •Make sure β function remains small even when coupling is large very non-trivial requirement!
- •Quartic will relax to close to zero, dilaton light cc small

- •By adding small explicit breaking quartic will be slowly running
- •Model will slowly scan through space of quartics
- •SBSI happens when quartic is small
- •If β function small dilaton will remain light
- •Minimum expected at small CC also!
- •Similar construction by Weinberg (no-go thm)
- •Zero CC requires exact scale invariance, but then dilaton can not be fixed

•RS-GW vs. CPR approaches

•RS-GW starts with a tuned setup (IR brane tension)

•CPR approach allows arbitrary IR tension, but quartic will slowly relax, that is where IR brane stabilized

Expression for effective potential

$$V_{eff} = F\chi^4 \longrightarrow V_{eff} = \chi^4 F(\lambda(\chi))$$

•Due to running coupling:

$$\frac{d\lambda}{d\log\mu} = \beta(\mu) \equiv \epsilon \, b(\lambda) \ll 1$$

•After long running $\delta F \sim (\Lambda_{UV}/\mu)^{\epsilon}$ •At some scale $F(\lambda(\mu_{IR})) \sim 0.$

•Can check explicitly in a warped 5D setup!

5D picture of naturally light dilaton

•General warped metric with scalar action

$$S = \int d^5x \sqrt{g} \left(-\frac{1}{2\kappa^2} \mathcal{R} + \frac{1}{2} g^{MN} \partial_M \phi \partial_N \phi - V(\phi) \right) - \int d^4x \sqrt{g_0} V_0(\phi) - \int d^4x \sqrt{g_1} V_1(\phi) d^4x \sqrt{g_1} V_1(\phi) + \int d^4x \sqrt{g_1} V_1(\phi) V_1(\phi) + \int d^4x \sqrt{g_1} V_1(\phi) + \int d^4x \sqrt{g_$$

• Metric $ds^2 = e^{-2A(y)}dx^2 - dy^2$

•Identification of scale $\mu = ke^{-A(y)}$

•And dilaton: location of IR brane $\chi = e^{\frac{\sigma}{f}} = e^{-A(y_1)}$

The effective potential

•It is a pure boundary term

$$V_{UV/IR} = e^{-4A(y_{0,1})} \left[V_{0,1} \left(\phi(y_{0,1}) \right) \mp \frac{6}{\kappa^2} A'(y_{0,1}) \right]$$

•Dilaton potential will be

$$V_{IR} = \chi^4 \left[V_1 \left(\phi \left(A^{-1} (-\log \chi) \right) \right) + \frac{6}{\kappa^2} A' \left(A^{-1} (-\log \chi) \right) \right]$$

•In accordance with expectation $V_{eff}(\chi) = \chi^4 F(\lambda(\chi))$

•With
$$F = V_1 + \frac{6}{\kappa^2}A'$$

- Provides of a dimension 4 condensate a soft-wall version of RS (=spontaneous breaking of SI with dim 4 rather than ∞ dimensional)
- •Will be the IR region of the full problem with bulk mass for scalar
- Bulk equations can be solved explicitly

$$A(y) = -\frac{1}{4} \log \left[\frac{\sinh 4k(y_c - y)}{\sinh 4ky_c} \right]$$

$$\phi(y) = -\frac{\sqrt{3}}{2\kappa} \log \tanh[2k(y_c - y)] + \phi_0$$

- For finite y_c deviates from AdS space. AdS recovered in $y_c \rightarrow \infty$ limit.
- •Location of IR and UV branes:

$$\chi^4 = e^{-4A(y_1)} = \frac{\sinh 4k(y_c - y_1)}{\sinh 4ky_c}, \quad \mu_0^4 = e^{-4A(y_0)} = \frac{\sinh 4k(y_c - y_0)}{\sinh 4ky_c} ,$$

Parametrization of deviation from AdS

$$\delta^4 = \frac{1}{\sinh 4ky_c}.$$

•The potential will be:

$$V_{IR} = \chi^4 \left[\Lambda_1 + \frac{6k}{\kappa^2} \sqrt{1 + \frac{\delta^8}{\chi^8}} + \lambda_1 \left(\phi_0 - v_1 - \frac{\sqrt{3}}{2\kappa} \log \left[\sqrt{1 + \frac{\delta^8}{\chi^8}} - \frac{\delta^4}{\chi^4} \right] \right)^2 \right]$$

•The BC for scalar will give (in limit of stiff brane potentials): $\phi_0 = v_0 \left(1 + O(\chi^4/\mu_0^4)\right),$

$$\delta^4 = \chi^4 f_1 \left(v_0 (1 + \mathcal{O}(\chi^4 / \mu_0^4)), \lambda_1, v_1 \right)$$

•Pure quartic up to corrections in UV brane position. Coefficient of quartic: $6k = 6k = \frac{6k}{2\kappa}$

$$a(v_0) = \Lambda_1 + \frac{6k}{\kappa^2} \cosh\left(\frac{2\kappa}{\sqrt{3}}(v_1 - v_0)\right)$$

Can TUNE to zero by choosing v₀ properly!

•A theory that deviates strongly from AdS

•Nevertheless this is a spontaneously broken CFT

•Gravity will be explicit breaking, UV contribution to potential

$$V_{UV} = \mu_0^4 \left[\Lambda_0 - \frac{6k}{\kappa^2} \sqrt{1 + \frac{\delta^8}{\mu_0^8}} + \lambda_0 \left(\phi_0 - v_0 - \frac{\sqrt{3}}{2\kappa} \log \left[\sqrt{1 + \frac{\delta^8}{\mu_0^8}} - \frac{\delta^4}{\mu_0^4} \right] \right)^2 \right]$$

• μ_0 location of UV brane, in limit $\mu_0 \rightarrow \infty$ gravity decoupled

Important comments

•In the limit of no gravity potential is pure quartic (as it should be in a pure CFT)

•Quartic can be tuned to vanish by choosing v_0 (value of Φ on UV brane)

•Different from GW: here we tune UV value of perturbation - if small explicit breaking, this will run $v_0 \rightarrow v_0 (\chi/\mu_0)^{\epsilon}$ and will find the position where quartic is vanishing

•Scale invariance of metric non-trivial: $y \rightarrow y + a, x \rightarrow e^{\alpha}(a)x$. also requires shift in y₁ and y_c.

The general case: small bulk mass

- •Bulk potential $V(\phi) = -\frac{6k^2}{\kappa^2} 2\epsilon k^2 \phi^2$
- • ϵ <<1, dimension 4- ϵ operator.
- •Two regions of space:
 - UV region:
 Φ" can be neglected, slow running of scalar

$$\begin{array}{rcl} A'_r(y) &=& k \\ \phi_r(y) &=& \phi_0 e^{\epsilon k y} \end{array}$$

Space remains AdS, RGE running of scalar

The general case: small bulk mass

 IR region (``condensate region"): Scalar dominated by Φ",Φ', mass term can be neglected: just like the solution without mass

$$A'_{c}(y) = -k \coth \left(4k(y - y_{c})\right)$$

$$\phi_{c}(y) = \phi_{m} - \frac{\sqrt{3}}{2\kappa} \log \left(-\tanh \left(2k(y - y_{c})\right)\right)$$

•Need to match up these two solutions

Asymptotic matching for boundary layer theory

•Full solution:
$$A'_{full}(z) = \left(-1 + \frac{2z^8}{z^8 + \chi^8 \tanh^2\left(\frac{\kappa}{\sqrt{3}}(v_1 - v_0(\mu_0/\chi)^\epsilon)\right)}\right)^{-1},$$

 $\phi_{full}(z) = v_0 \left(\frac{\mu_0}{z}\right)^\epsilon - \frac{\sqrt{3}}{2\kappa} \log\left[-1 + \frac{2z^4}{z^4 + \chi^4 \tanh\left(\frac{\kappa}{\sqrt{3}}(v_1 - v_0(\mu_0/\chi)^\epsilon)\right)}\right]$

The matched solutions

Figure 2: Left, bulk scalar profile: ϕ_{full} (solid black), ϕ_r (dashed red), and ϕ_b (dotted blue). Right, effective AdS curvature, A'(y): same color code.

The effective dilaton potential

•Dilaton VEV hierarchical:

$$\frac{\langle \chi \rangle}{\mu_0} = \left(\frac{v_0}{v_1 - \operatorname{sign}(\epsilon) \frac{\sqrt{3}}{2\kappa} \operatorname{arcsech}(-6k/\kappa^2 \Lambda_1)}\right)^{1/\epsilon} + O(\epsilon)$$

Dilaton mass and CC

•Dilaton mass:

$$m_{\chi}^2 \sim \epsilon \frac{32\sqrt{3}kv_0}{\kappa} \tanh\left(\frac{\kappa}{\sqrt{3}}(v_1 - v_0(\mu_0/\chi)^{\epsilon})\right) \langle \chi \rangle^2 (\mu_0/\chi)^{\epsilon} + O(\epsilon^2)$$

 $m_{\chi}^2 \sim \epsilon \langle \chi \rangle^2$

•Vacuum energy:

$$V_{IR}^{min} = -\epsilon \frac{2\sqrt{3}kv_0}{\kappa} \tanh\left(\frac{\kappa}{\sqrt{3}}(v_1 - v_0(\mu_0/\chi)^{\epsilon})\right) \langle \chi \rangle^4 (\mu_0/\chi)^{\epsilon} \sim -m_\chi^2 \frac{\langle \chi \rangle^2}{16}$$
$$\Lambda \sim \epsilon \langle \chi \rangle^4$$

<u>Dilaton mass and CC</u>

•Dilaton naturally light, no tuning here (except UV CC) $m_{\chi}^2 \sim \epsilon \langle \chi \rangle^2$

•Vacuum energy:
$$\Lambda \sim \epsilon \langle \chi
angle^4$$

•Suppressed compared to SUSY, but non-zero.

•Need conformal symmetry to set CC to zero. To stabilize scales need to break it - reintroduces CC, but small breaking can do it.

•Here ε also sets hierarchy - can not be too small.

Conclusions

•Spontaneous breaking of scale invariance could be interesting for phenomenology

- •Dilaton could be Higgs-like particle, motivated
- Large quartic expected for dilaton in non-SUSY models
- •Hard to get light dilaton, but can fit LHC data
- •To obtain light dilaton need small explicit breaking that remains small even at large coupling
- •Explicit 5D construction possible

•
$$m_{\chi}^2 \sim \epsilon \langle \chi \rangle^2, \Lambda \sim \epsilon \langle \chi \rangle^4$$