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What is indecomposability?

@ Indecomposability < Jordan cells
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@ A simple example of an indecomposable CFT: symplectic
fermions
S = 1/dzz €2 0x? OXP
47
gives the OPE x?x? ~ —¢’log|z — w|?
@ In CFT: indecomposable dilatation operator = logarithmic
correlation functions



A little bit of history

The origins
@ 1992: study of the Alexander Conway polynomial
[Rozansky & Saleur]

@ 1992-93: work on dense polymers exhibited logarithmic features
at ¢ = —2 [Saleur, Kausch]

@ 1993: crucial observation by Gurarie: non-trivial theories at
¢ = 0 must exhibit logarithmic features.

Developments

@ algebraic developments in the late 1990s (for example [Nahm,
Gaberdiel & Kausch])

@ ...not much progress
Modern perspectives

@ progress comes from concrete models: conformal supersigma
models and/or scaling limit of concrete lattice models

@ and modern indecomposable algebra.



@ High energy community:
supersigma models, AdS/CFT, ...?

@ Condensed matter community:

e geometrical aspects of 2D phase transitions, polymers,
percolation

o statistical models with quenched disorder (e.g random bond
Ising model)

@ spin quantum Hall effect

e transitions between integer quantum Hall effects



Lattice Loop Models

We are particularly interested in ¢ = 0 loop models
e dilute polymers (i.e. critical O(n) model in the n — 0 limit)

e critical percolation (i.e. Potts model in the Q — 1 limit)



What is a lattice loop model?
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Bond percolation < loops

7 = Z p# filled bonds (1 o p)# empty bonds _ 1

conf.

Critical point corresponds to p = 1/2.




What is a lattice loop model?

Boltzmann weight of a configuration
X# links n# loops

Dilute polymers correspond to

n—20 x = xc (critical coupling)



The O(n) loop model —2<n<2
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Temperley-Lieb algebra

TLy : algebra of diagrams with a parameter
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Transfer matrix for the dense loop model

509+ DY +§RD + LR

Th = +

+ +

i€ £

v




A little bit of representation theory

For generic values of n, the standard modules are irreducible

Standard modules over TL
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We are interested in non-generic cases. For example, for n = 1:

VU -~ |11

Vo = vi={l111}
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so there is a inclusion Vo < Va. In general (for n = 1)
0 «— Vk <« Vi < Vork < Vio-k «— ..

Irreducible modules are quotients: (k) = Vi /Im (V4_k)
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Temperley-Lieb «— Virasoro

@ In particular,
o (k):

Vi — Vi14k/V1—1-k
0 Vi1gk/Vi—1-k — Vi14a—k/V1,—1-44k — .-

“Scaling limit”
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mapping to the Dilatation Lg
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boundary operator ¢
acts on a module
Vo (Virasoro)
correspondance . ..

in the scaling limit.

(k) is a Feigin-Fuchs (Rocha-Caridi) module!



TL / Virasoro  correspondance

Some aspects of the TL/Virasoro correspondance in
lattice/continuum loop models:

Spectrum generating | Temperley-Lieb Virasoro
algebra
Parameter n C
Non generic n=q+q?! c=1- w
cases g root of unity p, g integers
Modules Vi Vs
Adjoint el = e Lh=1_,
(scalar product)
Determinants Gram det. Kac det.
Restrictions RSOS models | Minimal models




Relation with spin chains

TL algebra in the spin %—XXZ spin chain

T19l®l®---01T1®1&1
L

o Hxxz = (1/2)%F
@ anisotropic Heisenberg coupling

-1 -1 -1
+ —
H Z |:O'I)-(O';(_,’_1 + O';YO'I)-/_i_l + arq 2q oiofi| + -9 [0F — of]
i=1

@ quantum group symmetry [Ug(SU(2)), H] =0



Relation with spin chains

TL algebra in the spin %—XXZ spin chain

T19l®l®---01T3]1&1
L

o Hxxz = (1/2)®t

@ The algebra of projectors over g-singlets is the Temperley-Lieb
algebra

@ Schur-Weyl duality (here L even)

L/2
Hxxz = @ (2j +1)Vy [module over TL]
j=0

L/2
— @ d; (j) [module over Uq(SU(2))]
j=0



Relation with SUSY models

A simple example: a g/(1]1) chain (O ® O)®t

Ol ---@0c0
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formed by the fundamental rep. [ and its adjoint [J. Represented
by fermionic operators

thy=0  {ff}=(10
Coupling between nearest neighbours
e = (F+ fha)(fi+ i)
which obey (with n = 0)

e,-2 = ne;
€i€i+1€ = €
eiej = e€je (|I —j| > 1)

This is again the TL algebra.



Relation with SUSY models

Important observation: alternating [J and [J = interpretation as
edges with a fixed orientation

This is the lattice of the Chalker-Coddington model (plateau

transition in the IQHE).



CFTatc=0

Gurarie's argument and b parameter



Gurarie's

@ Conformal invariance requires the OPE

1 2h , L
®p(2)®4(0) ~ —5 1—{—?2 T(0) + ... |+ other primaries
z

which is ill-defined when ¢ — 0.

@ Solution: combine one primary field with descendants of the
identity

1 2h ;
Ph(2)®n(0) ~ — [1+ 722 T(0) + z"o; +] +...

such that h — 2 when ¢ — 0



Gurarie's

@ ®; is not an eigenstate of Lg in the limit ¢ —, it can cancel the
divergence. The OPE becomes

®p(2)®H(0) ~ % [1 + gz2 (log z T(0) + t(0)) +] +...

where t(z) is a combination of T(z) and ®;(z), and
ooy —1
b= —(25%) .
@ Lo is not diagonalizable any more
Lo|T) = 2|T) Lolt)=2[t)+]|T)
@ b appears in correlation functions
(T(2)T(0)) = 0
b
(T(2)t(0)) =

(t(2)e(0) =

—b log z + cst
4



Gurarie's b parameter:

how does it appear in physical quantities?



Gurarie's b parameter:

how does it appear in physical quantities?

Who knows. .. 7?



Gurarie's b parameter:

at least, can one compute it in some more concrete models?



Gurarie's b parameter:

at least, can one compute it in some more concrete models?

Yes we can.
— [JD, Jacobsen, Saleur 10]



The measure of b in lattice loop models



The measure of b in lattice loop models

b= (¢[T)

@ where is the Jordan cell of | T) and |t) in the lattice model?

@ how do we normalize | T) and |t)?
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TL algebra at n=1
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TL algebra at n=1
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TL algebra at n=1
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Jordan cells in the lattice model

TL algebra at n=1
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Jordan cells in the lattice model

TL algebra at n=1
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This is of course what is expected in the XXZ/SUSY rep.

TL

Uq(slz)

0 1 2 3

Structure of the XXZ spin chain at g = e™/3 on L = 6 sites
[Read & Saleur 07]



Jordan cells in the lattice model

Hamiltonian H = —) . ¢
can be put in Jordan form

Eo
VAV, E 1
\&J H = 2!

L, |1y -
| U | Es
(VAN
1] (2)

y




Jordan cells in the lattice model

Hamiltonian H=—) . ¢
can be put in Jordan form

Eo

E>
Es

Look at |1) and |I) such that
H|1) = £ 1)
HII) = E|I)+ 1)



Jordan cells in the lattice model

Hamiltonian H=—) . ¢
can be put in Jordan form

Eo

E>
Es

Look at |1) and |I) such that
H|1) = £ 1)
HII) = E|I)+ 1)

...analogous to
Lo [T) = 2][T)
Lo |t) = 2ty +|T)



The lattice/continuum identification

1) < [T)
1) < o)
makes sense because
TVF
H-F = Tl

Great! Let's measure <1|1> then. ..



The lattice/continuum identification

1) < [T)
1) < o)
makes sense because
TVF
H-F = Tl

Great! Let's measure <1|1> then. ..

... but the Jordan cell is invariant under global rescaling
|1) — «]1) and |1> — |1> There is no obvious way of fixing the
normalization because (1|1) = (T|T) = 0.



Normalization and the trousers trick

An idea from SLE/CFT work (Cardy, Bauer & Bernard, ...): let's
play with the shape of the boundary.
Conformal mapping z — g(z)

g(2)




Normalization and the trousers trick

An idea from SLE/CFT work (Cardy, Bauer & Bernard, ...): let's
play with the shape of the boundary.
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Normalization and the trousers trick

An idea from SLE/CFT work (Cardy, Bauer & Bernard, ...): let's
play with the shape of the boundary.
Conformal mapping z — g(z)

G10)

When the mapping g is infinitesimal, G € Virasoro™.



Normalization and the trousers trick

An idea from SLE/CFT work (Cardy, Bauer & Bernard, ...): let's
play with the shape of the boundary.
Question: when g(z) = vz? + 1, what is G?

G0)

gi(z) = dgodgo---odgodg(z)

with each dg infinitesimal, corresponding to dG = —%L_z.



Normalization and the trousers trick

An idea from SLE/CFT work (Cardy, Bauer & Bernard, ...): let's
play with the shape of the boundary.
Question: when g(z) = vz2 + 1, what is G?

24+t
_—

G |0) 0)

One finds

1
Gl0) = e 22[0) = [0) ~ 5L-2[0) + ...



Normalization and the trousers trick

One can extend the trick to the case g(z) = z + 1

el




Sequence of conformal mappings
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Sequence of conformal mappings

When the number k = 2" — 1 of branches goes to infinity

k—o0

or in other words

1
lim \/2-|—\/2+ 2+z2"—z+—
n—oo

for |z| > 1.



Sequence of conformal mappings

Vz2+2 Wt +2
—Y —)
e Lz e_i L4

32,/732 4 2 16,/716 4 2
(—
e 16L e_EL*m

etc.



Sequence of conformal mappings

|B0undary> = lim (e_an—lL*T7 . e_%L—4e—L_2> ‘O>

n—oo

= [0) — L2[0) + ...



Normalization and the trousers trick

Mapping those two geometries onto the infinite strip, we get

| Trousers) |Boundary)

1
|Trousers) = |0) — 5 |T)+ ... |Boundary) = 10) — |T) + ...



Normalization and the trousers trick

The states |Trousers) and |Boundary) can be built on the lattice

| Trousers)

[Trousers) = [0), , ® [0),,

K
o
| s

|Boundary)

|Boundary) = [V V...V V)




Normalization and the trousers trick

Now one can build the quantities

5 B (Trous.|I) (I|Trous.) B (Bound.|1) (I|Bound.)
Trous. — <1|i> Bound. — <1’i>

which are both invariant under global rescaling

b~ aly
1) = ali)

and are both expected to converge to b in the thermodynamic limit.



Schematic plot of the results

Lattice b
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Dilute polymers

Basically, the same story.
e Transfer matrix (x = xc)
ESER SRS B SIS oS S
1 X x> x> x*  x?

X X2

o Temperley-Lieb algebra at n =0

Virasoro (TL)
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Dilute polymers

Basically, the same story.
e Transfer matrix (x = xc)

TR RS

@ Temperley-Lieb algebra at n =10
e Trousers/Boundary tricks

/20| 12(0]

TL/ZJ

a

J T2




Schematic plot of the results

Lattice b T Py . b]¥(,)1111(l.
[
5/6 2 __° o e
° e e ¢ ¢
° b’l'rmla.
° Polymers

System size

?

Percolation b
Bound.

—5/8 ¢ hd d (] ) ()

o bTrous.




Conclusion

o First lattice realization and measure of indecomposability b
parameters [JD, JJ, HS 10].

@ Somehow, not satisfying because relies on particular tricks —
generalization not obvious

@ Generalization and systematic study to appear soon
[R. Vasseur, J. Jacobsen, H. Saleur 11]

e What about the periodic case? How does it mix Vir and Vir?



Conclusion

o First lattice realization and measure of indecomposability b
parameters [JD, JJ, HS 10].

@ Somehow, not satisfying because relies on particular tricks —
generalization not obvious

@ Generalization and systematic study to appear soon
[R. Vasseur, J. Jacobsen, H. Saleur 11]

e What about the periodic case? How does it mix Vir and Vir?

...and what is the physics hidden behind these parameters?
Which kind of (interesting) observables are they related to?




Thank you.
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