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What is indecomposability?

Indecomposability ⇔ Jordan cells

D =

(
λ1 0
0 λ2

)
D =

(
λ1 1
0 λ1

)

A simple example of an indecomposable CFT: symplectic
fermions

S =
1

4π

∫
d2z εab ∂χ

a ∂̄χb

gives the OPE χaχb ∼ −εab log |z − w |2

In CFT: indecomposable dilatation operator ⇒ logarithmic
correlation functions



A little bit of history

The origins

1992: study of the Alexander Conway polynomial
[Rozansky & Saleur]

1992-93: work on dense polymers exhibited logarithmic features
at c = −2 [Saleur, Kausch]

1993: crucial observation by Gurarie: non-trivial theories at
c = 0 must exhibit logarithmic features.

Developments

algebraic developments in the late 1990s (for example [Nahm,
Gaberdiel & Kausch])

. . . not much progress

Modern perspectives

progress comes from concrete models: conformal supersigma
models and/or scaling limit of concrete lattice models

and modern indecomposable algebra.



Motivations

High energy community:
supersigma models, AdS/CFT, . . . ?

Condensed matter community:

geometrical aspects of 2D phase transitions, polymers,
percolation
statistical models with quenched disorder (e.g random bond
Ising model)
spin quantum Hall effect
transitions between integer quantum Hall effects
. . .



Lattice Loop Models

We are particularly interested in c = 0 loop models

dilute polymers (i.e. critical O(n) model in the n→ 0 limit)

critical percolation (i.e. Potts model in the Q → 1 limit)



What is a lattice loop model?

−→

Bond percolation ↔ loops

Z =
∑
conf.

p# filled bonds (1− p)# empty bonds = 1

Critical point corresponds to p = 1/2.



What is a lattice loop model?

Boltzmann weight of a configuration

x# links n# loops

Dilute polymers correspond to

n→ 0 x = xc (critical coupling)



The O(n) loop model −2 < n ≤ 2

Massive Dilute Dense

RG flow:
xxc

Dilute phase Dense phaseMassive phase



Temperley-Lieb algebra

TLN : algebra of diagrams with a parameter n

1 N

= n

1 N

Transfer matrix for the dense loop model

TN = + + +

+ + + +

∈ TLN



A little bit of representation theory

For generic values of n, the standard modules are irreducible

Standard modules over TL

V0 = V2 = V4 =

We are interested in non-generic cases. For example, for n = 1:

− ∼

so there is a inclusion V0 ← V4. In general (for n = 1)

0 ← Vk ← V4−k ← V6+k ← V10−k ← . . .

Irreducible modules are quotients: 〈k〉 = Vk/Im (V4−k)



Transfer matrix TL
(∈ Temperley-Lieb)

acts on a module
Vk (TL)

boundary operator Φ

Dilatation L0

“Scaling limit”
+

mapping to the
half-plane

acts on a module
VΦ (Virasoro)

Temperley-Lieb ↔ Virasoro correspondance . . .

In particular, Vk −→ V1,1+k/V1,−1−k in the scaling limit.

〈k〉: 0← V1,1+k/V1,−1−k ← V1,1+4−k/V1,−1−4+k ← . . .

〈k〉 is a Feigin-Fuchs (Rocha-Caridi) module!



TL / Virasoro correspondance

Some aspects of the TL/Virasoro correspondance in
lattice/continuum loop models:

Spectrum generating Temperley-Lieb Virasoro
algebra

Parameter n c

Non generic n = q + q−1 c = 1− 6(p−q)2

pq

cases q root of unity p, q integers

Modules Vk Vφ
Adjoint e†i = ei L†n = L−n

(scalar product)

Determinants Gram det. Kac det.

Restrictions RSOS models Minimal models



Relation with spin chains

TL algebra in the spin 1
2 -XXZ spin chain

↑ ⊗ ↓ ⊗ ↓ ⊗ · · · ⊗ ↑ ⊗ ↓ ⊗ ↑︸ ︷︷ ︸
L

HXXZ = (1/2)⊗L

anisotropic Heisenberg coupling

H ∝
L−1∑
i=1

[
σx

i σ
x
i+1 + σy

i σ
y
i+1 +

q + q−1

2
σz

i σ
z
i+1

]
+

q − q−1

2
[σz

1 − σz
L]

quantum group symmetry [Uq(SU(2)), H] = 0



Relation with spin chains

TL algebra in the spin 1
2 -XXZ spin chain

↑ ⊗ ↓ ⊗ ↓ ⊗ · · · ⊗ ↑ ⊗ ↓ ⊗ ↑︸ ︷︷ ︸
L

HXXZ = (1/2)⊗L

The algebra of projectors over q-singlets is the Temperley-Lieb
algebra

Schur-Weyl duality (here L even)

HXXZ =

L/2⊕
j=0

(2j + 1)V2j [module overTL]

=

L/2⊕
j=0

dj (j) [module overUq(SU(2))]



Relation with SUSY models

A simple example: a gl(1|1) chain (�⊗ �̄)⊗L

�⊗ �̄⊗ · · · ⊗�⊗ �̄︸ ︷︷ ︸
2L

formed by the fundamental rep. � and its adjoint �̄. Represented
by fermionic operators

{fi , fj} = 0
{

fi , f
†
j

}
= (−1)iδij

Coupling between nearest neighbours

ei = (f †i + f †i+1)(fi + fi+1)

which obey (with n = 0)

ei
2 = n ei

eiei±1ei = ei

eiej = ejei (|i − j | > 1)

This is again the TL algebra.



Relation with SUSY models

Important observation: alternating � and �̄ ⇒ interpretation as
edges with a fixed orientation

This is the lattice of the Chalker-Coddington model (plateau
transition in the IQHE).



CFT at c = 0

Gurarie’s argument and b parameter



Gurarie’s b

Conformal invariance requires the OPE

Φh(z)Φh(0) ∼ 1

z2h

[
1 +

2h

c
z2 T (0) + . . .

]
+ other primaries

which is ill-defined when c → 0.

Solution: combine one primary field with descendants of the
identity

Φh(z)Φh(0) ∼ 1

z2h

[
1 +

2h

c
z2 T (0) + z h̃Φh̃ + . . .

]
+ . . .

such that h̃→ 2 when c → 0



Gurarie’s b

Φh̃ is not an eigenstate of L0 in the limit c →, it can cancel the
divergence. The OPE becomes

Φh(z)Φh(0) ∼ 1

z2h

[
1 +

h

b
z2 (log z T (0) + t(0)) + . . .

]
+. . .

where t(z) is a combination of T (z) and Φh̃(z), and

b = −
(

2∂h̃
∂c

)−1
.

L0 is not diagonalizable any more

L0 |T 〉 = 2 |T 〉 L0 |t〉 = 2 |t〉+ |T 〉

b appears in correlation functions

〈T (z)T (0)〉 = 0

〈T (z)t(0)〉 =
b

z4

〈t(z)t(0)〉 =
−b log z + cst

z4



Gurarie’s b parameter:

how does it appear in physical quantities?

Who knows. . . ??
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Gurarie’s b parameter:

at least, can one compute it in some more concrete models?

Yes we can.
→ [JD, Jacobsen, Saleur 10]
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The measure of b in lattice loop models

b = 〈t|T 〉

where is the Jordan cell of |T 〉 and |t〉 in the lattice model?

how do we normalize |T 〉 and |t〉?
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Jordan cells in the lattice model

TL algebra at n = 1

V =

y

e1 =


1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 1 1
0 0 0 0 0 0


e2 =


0 0 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 1 1 1 y
0 0 0 0 0 0
0 0 0 0 0 0


e3 =


1 1 0 0 1 0
0 0 0 0 0 0
0 0 1 1 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





Jordan cells in the lattice model

TL algebra at n = 1

V =

y

Py =



1 0 1 −1 0 −1
−1 1 0 0 −1 0
0 0 −1 1 0 0

0 0 y−2
y−1 0 1 0

0 0 −1 0 0 1
0 0 1

y−1 0 0 0





Jordan cells in the lattice model

TL algebra at n = 1

V =

y

P−1
y e1Py =


0 1

1
0

0 0 0
0 0 0
0 1 1


P−1

y e2Py =


0

1 1
0

0 0 0
1 1 1
0 0 0


P−1

y e3Py =


0 1

1
0

1 1 0
0 0 0
0 0 0





Jordan cells in the lattice model

TL algebra at n = 1

V =

y

V ' 〈0〉 ⊕ 〈1〉

〈2〉

〈2〉



Jordan cells in the lattice model

TL algebra at n = 1

V =

y
for larger sizes

V ' 〈0〉 ⊕ 〈1〉〈3〉

〈2〉

〈2〉



This is of course what is expected in the XXZ/SUSY rep.TL

Uq(sl2)

3

2

1

0
0 1 2 3

Structure of the XXZ spin chain at q = e iπ/3 on L = 6 sites
[Read & Saleur 07]



Jordan cells in the lattice model

V =

y

Hamiltonian H = −
∑

i ei

can be put in Jordan form

H =



E0

E1 1
E1

E2

E3

E5



V ' 〈0〉 ⊕ 〈1〉〈3〉

〈2〉

〈2〉



Jordan cells in the lattice model

Hamiltonian H = −
∑

i ei

can be put in Jordan form

H =



E0

E1 1
E1

E2

E3

E5


Look at |1〉 and

∣∣1̃〉 such that

H |1〉 = E1 |1〉
H
∣∣1̃〉 = E1

∣∣1̃〉 + |1〉

. . . analogous to

L0 |T 〉 = 2 |T 〉
L0 |t〉 = 2 |t〉 + |T 〉
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The lattice/continuum identification

|1〉 ↔ |T 〉∣∣1̃〉 ↔ |t〉

makes sense because

H − E0 '
L→∞

πvF

L
L0

Great! Let’s measure
〈
1̃|1
〉

then. . .

. . . but the Jordan cell is invariant under global rescaling
|1〉 7→ α |1〉 and

∣∣1̃〉 7→ α
∣∣1̃〉. There is no obvious way of fixing the

normalization because 〈1|1〉 = 〈T |T 〉 = 0.
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Normalization and the trousers trick

An idea from SLE/CFT work (Cardy, Bauer & Bernard, . . . ): let’s
play with the shape of the boundary.
Conformal mapping z 7→ g(z)

0

g(z)

0
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Normalization and the trousers trick

An idea from SLE/CFT work (Cardy, Bauer & Bernard, . . . ): let’s
play with the shape of the boundary.
Conformal mapping z 7→ g(z)

G |0〉

g(z)

G
|0〉

When the mapping g is infinitesimal, G ∈ Virasoro−.



Normalization and the trousers trick

An idea from SLE/CFT work (Cardy, Bauer & Bernard, . . . ): let’s
play with the shape of the boundary.
Question: when g(z) =

√
z2 + 1, what is G?

G |0〉

√
z2 + t

G ?
|0〉

gt(z) = dg ◦ dg ◦ · · · ◦ dg ◦ dg(z)

with each dg infinitesimal, corresponding to dG = −dt
2 L−2.



Normalization and the trousers trick

An idea from SLE/CFT work (Cardy, Bauer & Bernard, . . . ): let’s
play with the shape of the boundary.
Question: when g(z) =

√
z2 + 1, what is G?

G |0〉

√
z2 + t

G ?
|0〉

One finds

G |0〉 = e−
1
2
L−2 |0〉 = |0〉 − 1

2
L−2 |0〉 + . . .



Normalization and the trousers trick

One can extend the trick to the case g(z) = z + 1
z

0 G |0〉

z + 1
z

G ?



Sequence of conformal mappings

√
z2 + 2 4

√
z4 + 2

8
√

z8 + 2

32
√

z32 + 2

etc.

16
√

z16 + 2



Sequence of conformal mappings

When the number k = 2n − 1 of branches goes to infinity

−→
k→∞

or in other words

lim
n→∞

√
2 +

√
2 + . . .

√
2 + z2n = z +

1

z

for |z | > 1.



Sequence of conformal mappings

|0〉

√
z2 + 2

e−L−2

. . .

4
√

z4 + 2

e−
1
2
L−4

. . .

8
√

z8 + 2
e−

1
4
L−8

. . .

32
√

z32 + 2

e−
1

16
L−32

etc.

. . .

16
√

z16 + 2

e−
1
8
L−16

. . .



Sequence of conformal mappings

|B〉

|Boundary〉 = lim
n→∞

(
e−

1
2n−1 L−2n . . . e−

1
2
L−4e−L−2

)
|0〉

= |0〉 − L−2 |0〉 + . . .



Normalization and the trousers trick

Mapping those two geometries onto the infinite strip, we get

L0

|Trousers〉

|Trousers〉 = |0〉 − 1

2
|T 〉+ . . .

L0

|Boundary〉

|Boundary〉 = |0〉 − |T 〉+ . . .



Normalization and the trousers trick

The states |Trousers〉 and |Boundary〉 can be built on the lattice

HL

|Trousers〉

|Trousers〉 = |0〉L/2 ⊗ |0〉L/2

L0

|Boundary〉

|Boundary〉 =
∣∣ . . .

〉



Normalization and the trousers trick

Now one can build the quantities

bTrous. = 4

〈
Trous.|1̃

〉 〈
1̃|Trous.

〉〈
1|1̃
〉 bBound. =

〈
Bound.|1̃

〉 〈
1̃|Bound.

〉〈
1|1̃
〉

which are both invariant under global rescaling

|1〉 7→ α |1〉∣∣1̃〉 7→ α
∣∣1̃〉

and are both expected to converge to b in the thermodynamic limit.



Results

Schematic plot of the results
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bBound.

System size



Dilute polymers

Basically, the same story.

Transfer matrix (x = xc)

1 x x x2 x2 x2 x2 x2

Temperley-Lieb algebra at n = 0Virasoro (TL)

Uq(sl2)

...
4

3

2

1

0
0 1 2 3 4 . . .



Dilute polymers

Basically, the same story.

Transfer matrix (x = xc)

1 x x x2 x2 x2 x2 x2

Temperley-Lieb algebra at n = 0

Trousers/Boundary tricks

TL

TL/2 TL/2

∣∣1̃〉
L

L/2〈0| L/2〈0|



Results

Schematic plot of the results

−5/8
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Lattice b

bTrous.

bBound.
Percolation

System size

bTrous.

bBound.

Polymers



Conclusion

First lattice realization and measure of indecomposability b
parameters [JD, JJ, HS 10].

Somehow, not satisfying because relies on particular tricks →
generalization not obvious

Generalization and systematic study to appear soon
[R. Vasseur, J. Jacobsen, H. Saleur 11]

What about the periodic case? How does it mix Vir and V̄ir?

. . . and what is the physics hidden behind these parameters?

Which kind of (interesting) observables are they related to?
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Thank you.
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