Entanglement Entropy and RG Flow

Tatsuma Nishioka

(IAS)

1204.4160, 1207.3360 with I. Klebanov, S. Pufu, B. Safdi (Princeton)
1301.0336 with C. Herzog (Stony Brook)
1306.2958 with I. Yaakov (Princeton)

Motivation

Entanglement entropy as a measure of degrees of freedom

F-theorem in three-dimensions

> An order parameter for various phase transitions

Difficulties in analytical computations

- QFT on a singular space
- IR divergences

4 2 5 4 2 5

Motivation

- Entanglement entropy as a measure of degrees of freedom
 - F-theorem in three-dimensions
- An order parameter for various phase transitions
- Difficulties in analytical computations
 - QFT on a singular space
 - IR divergences

(B)

Motivation

- Entanglement entropy as a measure of degrees of freedom
 - F-theorem in three-dimensions
- An order parameter for various phase transitions
- Difficulties in analytical computations
 - QFT on a singular space
 - IR divergences

Outline

1 Review of Entanglement Entropy

Replica trick Strong subadditivity

Entanglement Entropy in Two-dimensions Entropic c-function

IR divergence

Sentanglement Entropy in Three-dimensions Renormalized EE and F-theorem

REE of free massive fields

4 Supersymmetric Rényi entropy

Summary

Outline

Review of Entanglement Entropy Replica trick Strong subadditivity

2 Entanglement Entropy in Two-dimensions

③ Entanglement Entropy in Three-dimensions

Osupersymmetric Rényi entropy

6 Summary

4 2 5 4 2 5

• Divide a system to A and $B = \overline{A}$: $\mathcal{H}_{tot} = \mathcal{H}_A \otimes \mathcal{H}_B$

Definition

$$S_A = -\mathrm{tr}_A \rho_A \log \rho_A$$

3

< □ > < □ > < □ > < □ > < □ > < □ >

• Divide a system to A and $B = \overline{A}$: $\mathcal{H}_{tot} = \mathcal{H}_A \otimes \mathcal{H}_B$

Definition

$$S_A = -\mathrm{tr}_A \rho_A \log \rho_A$$

T Michieles /	
I INISHIOKA I	IADI

3

A B A A B A

< 47 ▶

Definition

$$S_A = -\mathrm{tr}_A \rho_A \log \rho_A$$

• $|\Psi\rangle$: wave function of a ground state

$$\rho_{tot} = \frac{1}{\langle \Psi | \Psi \rangle} | \Psi \rangle \langle \Psi |$$

T.Nishioka (IAS)

Mar 6, 2014 @UNC-CH 5 / 34

3

A B A A B A

Definition

$$S_A = -\mathrm{tr}_A \rho_A \log \rho_A$$

 $\blacktriangleright ~|\Psi\rangle:$ wave function of a ground state

$$\rho_{tot} = \frac{1}{\langle \Psi | \Psi \rangle} | \Psi \rangle \langle \Psi |$$

Reduced density matrix:

$$\rho_A = \mathrm{tr}_B \rho_{tot} = \sum_i \langle \psi_B^i | \rho_{tot} | \psi_B^i \rangle$$

 $\mathcal{H}_B = \{ |\psi^1_B
angle, |\psi^2_B
angle, \cdots \}$ orthonormal basis

A B M A B M

• Hilbert spaces: $\mathcal{H}_A = \{|\uparrow\rangle_A, |\downarrow\rangle_A\}, \mathcal{H}_B = \{|\uparrow\rangle_B, |\downarrow\rangle_B\}$

T.Nishioka (IAS)

EE and RG flow

Mar 6, 2014 @UNC-CH 6 / 34

3

A B A A B A

< □ > < @ >

• Given a ground state ($\langle \Psi | \Psi \rangle = 1$):

$$|\Psi\rangle = \cos\theta |\uparrow\rangle_A |\downarrow\rangle_B + \sin\theta |\downarrow\rangle_A |\uparrow\rangle_B$$

イロト 不得 トイヨト イヨト 二日

• Given a ground state ($\langle \Psi | \Psi \rangle = 1$):

$$|\Psi\rangle = \cos\theta |\uparrow\rangle_A |\downarrow\rangle_B + \sin\theta |\downarrow\rangle_A |\uparrow\rangle_B$$

Reduce density matrix:

$$\rho_A = {}_B \langle \downarrow |\Psi \rangle \langle \Psi | \downarrow \rangle_B + {}_B \langle \uparrow |\Psi \rangle \langle \Psi | \uparrow \rangle_B \\ = \cos^2 \theta |\uparrow \rangle_A {}_A \langle \uparrow | + \sin^2 \theta |\downarrow \rangle_A {}_A \langle \downarrow |$$

T.Nishioka (IAS)

- 3

A B < A B </p>

Image: A matrix

Reduce density matrix:

$$\rho_A = {}_B \langle \downarrow | \Psi \rangle \langle \Psi | \downarrow \rangle_B + {}_B \langle \uparrow | \Psi \rangle \langle \Psi | \uparrow \rangle_B = \cos^2 \theta | \uparrow \rangle_A {}_A \langle \uparrow | + \sin^2 \theta | \downarrow \rangle_A {}_A \langle \downarrow |$$

Matrix notation:

$$\rho_A = \left(\begin{array}{cc} \cos^2\theta & 0\\ 0 & \sin^2\theta \end{array}\right)$$

э

Matrix notation:

$$\rho_A = \left(\begin{array}{cc} \cos^2\theta & 0\\ 0 & \sin^2\theta \end{array}\right)$$

\blacktriangleright EE as a function of θ

$$S_A = -\operatorname{tr}_A \rho_A \log \rho_A$$

= $-\cos^2 \theta \log(\cos^2 \theta) - \sin^2 \theta \log(\sin^2 \theta)$

T.Nishioka (IAS)

4 E b Mar 6, 2014 @UNC-CH 6 / 34

3

• EE as a function of θ

$$S_A = -\operatorname{tr}_A \rho_A \log \rho_A$$

= $-\cos^2 \theta \log(\cos^2 \theta) - \sin^2 \theta \log(\sin^2 \theta)$

QFTs and replica trick

• Not easy to compute ρ_A in QFT

► Useful trick:

$$S_A = -\partial_n \log \operatorname{tr}_A \rho_A^n \Big|_{n=1} \qquad (\operatorname{tr}_A \rho_A = 1)$$

▶ Z_n : partition function on *n*-covering space

$$\operatorname{tr}_A \rho_A^n = \frac{Z_n}{(Z_1)^n}$$

T.Nishioka (IAS)

Mar 6, 2014 @UNC-CH 7 / 34

3

イロト イポト イヨト イヨト

QFTs and replica trick

• Not easy to compute ρ_A in QFT

Useful trick:

$$S_A = -\partial_n \log \operatorname{tr}_A \rho_A^n \big|_{n=1} \qquad (\operatorname{tr}_A \rho_A = 1)$$

▶ Z_n : partition function on *n*-covering space

$$\operatorname{tr}_A \rho_A^n = \frac{Z_n}{(Z_1)^n}$$

T.Nishioka (IAS)

Mar 6, 2014 @UNC-CH 7 / 34

- 3

イロト イポト イヨト イヨト

QFTs and replica trick

• Not easy to compute ρ_A in QFT

Useful trick:

$$S_A = -\partial_n \log \operatorname{tr}_A \rho_A^n \big|_{n=1} \qquad (\operatorname{tr}_A \rho_A = 1)$$

• Z_n : partition function on *n*-covering space

$$\operatorname{tr}_A \rho_A^n = \frac{Z_n}{(Z_1)^n}$$

T.Nishioka (IAS)

Mar 6, 2014 @UNC-CH 7 / 34

3

A B M A B M

Image: A matrix

T.Nishioka (IAS)

EE and RG flow

Mar 6, 2014 @UNC-CH 8 / 34

э

T.Nishioka (IAS)

∃ → Mar 6, 2014 @UNC-CH 8 / 34

э

T.Nishioka (IAS)

EE and RG flow

Mar 6, 2014 @UNC-CH 8 / 34

3

A B A A B A

< □ > < @ >

$$\operatorname{Tr}(\rho_A)^n =$$

Entanglement entropy

$$S_A = -\left(\partial_n - 1\right) \log Z_n\big|_{n=1}$$

I Nishioka (IASI

★ E ► ★ E ► E Mar 6, 2014 @UNC-CH 8 / 34

< (T) >

Properties of entanglement entropy

► At zero temperature, for pure ground state

$$S_A = S_B$$

Strong subadditivity [Lieb-Ruskai '73]:

$$S_{A+B+C} + S_B \le S_{A+B} + S_{B+C}$$
$$S_A + S_C \le S_{A+B} + S_{B+C}$$

for any three disjoint regions $A,\,B$ and C

Properties of entanglement entropy

► At zero temperature, for pure ground state

$$S_A = S_B$$

Strong subadditivity [Lieb-Ruskai '73]:

$$S_{A+B+C} + S_B \le S_{A+B} + S_{B+C}$$
$$S_A + S_C \le S_{A+B} + S_{B+C}$$

for any three disjoint regions $A,\,B$ and C

Outline

Review of Entanglement Entropy

Entanglement Entropy in Two-dimensions Entropic *c*-function IR divergence

8 Entanglement Entropy in Three-dimensions

Ø Supersymmetric Rényi entropy

6 Summary

A B A A B A

Entanglement entropy in CFT₂

T.Nishioka (IAS)

Mar 6, 2014 @UNC-CH 11 / 34

- 20

イロト イポト イヨト イヨト

Entanglement entropy in CFT₂

• CFT₂: $(\sigma_n : \text{twist fields of } \Delta_n = \overline{\Delta}_n = c(n - \frac{1}{n})/24)$

$$Z_n = \langle \sigma_n(0)\sigma_{-n}(r) \rangle = \left(\frac{r}{\epsilon}\right)^{-\frac{c}{6}(n-\frac{1}{n})}$$

T.Nishioka (IAS)

Mar 6, 2014 @UNC-CH 11 / 34

3

< □ > < □ > < □ > < □ > < □ > < □ >

Entanglement entropy in CFT₂

• CFT₂: (σ_n : twist fields of $\Delta_n = \overline{\Delta}_n = c(n - \frac{1}{n})/24$)

$$Z_n = \langle \sigma_n(0)\sigma_{-n}(r) \rangle = \left(\frac{r}{\epsilon}\right)^{-\frac{c}{6}(n-\frac{1}{n})}$$

• Rényi entropy: (EE in $n \rightarrow 1$ limit)

$$S_n = \frac{\log Z_n - n \log Z_1}{1 - n} = \frac{c}{6} \left(1 + \frac{1}{n} \right) \log \left(\frac{r}{\epsilon} \right)$$
$$\rightarrow \frac{c}{3} \log \left(\frac{r}{\epsilon} \right) \quad (n \to 1)$$

c: central charge

T.Nishioka (IAS)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

RG flow and *c*-function

イロト イヨト イヨト イヨト

2

RG flow and *c*-function

 → 12 / 34 Mar 6, 2014 @UNC-CH

э

Entropic *c*-theorem

► 2d entropic *c*-function:

$$c(r) \equiv 3r \frac{dS_A(r)}{dr}$$

Interpolate two fixed points

$$c(r) \to c_{\mathrm{UV}} \quad (r \to 0) , \qquad c(r) \to c_{\mathrm{IR}} \quad (r \to \infty)$$

▶ SSA + Lorentz invariance \Rightarrow monotonicity [Casini-Huerta 04] $c'(r) \leq 0$

T.Nishioka (IAS)

• • = • • = •

Entropic *c*-theorem

► 2d entropic *c*-function:

$$c(r) \equiv 3r \frac{dS_A(r)}{dr}$$

Interpolate two fixed points

$$c(r) \to c_{\mathrm{UV}} \quad (r \to 0) , \qquad c(r) \to c_{\mathrm{IR}} \quad (r \to \infty)$$

▶ SSA + Lorentz invariance \Rightarrow monotonicity [Casini-Huerta 04] $c'(r) \leq 0$

T.Nishioka (IAS)

Mar 6, 2014 @UNC-CH 13 / 34

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Entropic *c*-theorem

► 2d entropic *c*-function:

$$c(r) \equiv 3r \frac{dS_A(r)}{dr}$$

Interpolate two fixed points

$$c(r) \to c_{\mathrm{UV}} \quad (r \to 0) , \qquad c(r) \to c_{\mathrm{IR}} \quad (r \to \infty)$$

▶ SSA + Lorentz invariance \Rightarrow monotonicity [Casini-Huerta 04] $c'(r) \leq 0$

T.Nishioka (IAS)

Mar 6, 2014 @UNC-CH 13 / 34

3

A B M A B M

EE of free massive fields

• Massless scalar field and Dirac fermion: c = 1

Not stationary at UV fixed point [Casini-Huerta 06]

4 12 16 14 12 16

EE of free massive fields

• Massless scalar field and Dirac fermion: c = 1

Not stationary at UV fixed point [Casini-Huerta 06]

EE of free massive fields

• Massless scalar field and Dirac fermion: c = 1

Not stationary at UV fixed point [Casini-Huerta 06]

Massive Dirac fermion and sine-Gordon model

Dirac fermion	sine-Gordon
fermion: ψ	scalar: ϕ

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Massive Dirac fermion and sine-Gordon model

Dirac fermion	sine-Gordon
fermion: ψ	scalar: ϕ
mass: $m ar{\psi} \psi$	potential: $\lambda\cos\phi$

イロト イポト イヨト イヨト

3

Massive Dirac fermion and sine-Gordon model

Mass expansions

• One interval $(\lambda \propto m)$:

$$Z_n = \langle V_n(0) V_{-n}(r) \rangle$$

(日) (四) (日) (日) (日)

æ

Mass expansions

• One interval $(\lambda \propto m)$:

$$Z_{n} = \langle V_{n}(0)V_{-n}(r) \rangle + \frac{\lambda^{2}}{2} \int d^{2}x d^{2}y \langle \cos \phi(x) \cos \phi(y)V_{n}(0)V_{-n}(r) \rangle + \mathcal{O}(\lambda^{4})$$

(日) (四) (日) (日) (日)

æ

Mass expansions

• One interval $(\lambda \propto m)$:

$$Z_{n} = \langle V_{n}(0)V_{-n}(r)\rangle + \frac{\lambda^{2}}{2} \int d^{2}x d^{2}y \left\langle \cos \phi(x) \cos \phi(y)V_{n}(0)V_{-n}(r) \right\rangle + \mathcal{O}(\lambda^{4})$$

 Higher order terms are given by correlation functions of the vertex operators

3

∃ ► < ∃ ►</p>

 \blacktriangleright EE of a massive Dirac fermion on a torus of size $\Lambda \gg r$ [Herzog-TN 13]

$$c_D(t) = 1 - t^2 \log^2 \Lambda + \cdots$$

- \blacktriangleright The IR cutoff Λ would be identified with 1/t=1/(mr)
- Reproduce the result in the flat space limit
- Perturbative expansion may be possible on a compact space

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 \blacktriangleright EE of a massive Dirac fermion on a torus of size $\Lambda \gg r$ [Herzog-TN 13]

$$c_D(t) = 1 - t^2 \log^2 \Lambda + \cdots$$

- ▶ The IR cutoff Λ would be identified with 1/t = 1/(mr)
- Reproduce the result in the flat space limit
- Perturbative expansion may be possible on a compact space

・ 何 ト ・ ヨ ト ・ ヨ ト

 \blacktriangleright EE of a massive Dirac fermion on a torus of size $\Lambda \gg r$ [Herzog-TN 13]

$$c_D(t) = 1 - t^2 \log^2 \Lambda + \cdots$$

- The IR cutoff Λ would be identified with 1/t = 1/(mr)
- Reproduce the result in the flat space limit

Perturbative expansion may be possible on a compact space

< □ > < □ > < □ > < □ > < □ > < □ >

 \blacktriangleright EE of a massive Dirac fermion on a torus of size $\Lambda \gg r$ [Herzog-TN 13]

$$c_D(t) = 1 - t^2 \log^2 \Lambda + \cdots$$

- The IR cutoff Λ would be identified with 1/t = 1/(mr)
- Reproduce the result in the flat space limit
- Perturbative expansion may be possible on a compact space

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Entropic c-function (not stationary at a fixed point)

$$c(t) = c$$
 for CFT , $c'(t) \le 0$

Zamolodchikov's c-function (stationary at a fixed point)

$$c'(t) = -\frac{3}{2}G_{ij}\beta^i\beta^j \le 0$$
, $\frac{\partial c}{\partial g^i} = G_{ij}\beta^j$

► Thermal *c*-function

$$F_{\rm Therm} \sim c \, T^2$$

▶ Every *c*-function coincides at a conformal fixed point

4 1 1 1 4 1 1 1

Entropic c-function (not stationary at a fixed point)

$$c(t) = c$$
 for CFT , $c'(t) \le 0$

Zamolodchikov's c-function (stationary at a fixed point)

$$c'(t) = -\frac{3}{2}G_{ij}\beta^i\beta^j \le 0$$
, $\frac{\partial c}{\partial g^i} = G_{ij}\beta^j$

► Thermal *c*-function

$$F_{\rm Therm} \sim c \, T^2$$

▶ Every *c*-function coincides at a conformal fixed point

4 1 1 1 4 1 1 1

Entropic c-function (not stationary at a fixed point)

$$c(t) = c$$
 for CFT , $c'(t) \le 0$

Zamolodchikov's c-function (stationary at a fixed point)

$$c'(t) = -\frac{3}{2}G_{ij}\beta^i\beta^j \le 0$$
, $\frac{\partial c}{\partial g^i} = G_{ij}\beta^j$

► Thermal *c*-function

$$F_{\rm Therm} \sim c \, T^2$$

▶ Every *c*-function coincides at a conformal fixed point

4 2 5 4 2 5

• Entropic *c*-function (not stationary at a fixed point)

$$c(t) = c$$
 for CFT , $c'(t) \le 0$

Zamolodchikov's c-function (stationary at a fixed point)

$$c'(t) = -\frac{3}{2}G_{ij}\beta^i\beta^j \le 0 \ , \qquad \frac{\partial c}{\partial g^i} = G_{ij}\beta^j$$

► Thermal *c*-function

$$F_{\rm Therm} \sim c \, T^2$$

Every c-function coincides at a conformal fixed point

Outline

1 Review of Entanglement Entropy

2 Entanglement Entropy in Two-dimensions

 S Entanglement Entropy in Three-dimensions Renormalized EE and F-theorem REE of free massive fields

Ostation Supersymmetric Rényi entropy

6 Summary

4 2 5 4 2 5

► Thermal *c*-theorem:

$$F_{\mathsf{Therm}} \sim c_{\mathsf{Therm}} T^3$$

► C_T-theorem: [Petkou 94]

$$C_T|_{UV} \ge C_T|_{IR}$$
, $\langle T_{\mu\nu}(x)T_{\rho\sigma}(0)\rangle = C_T \frac{I_{\mu\nu,\rho\sigma}(x)}{x^6}$

▶ *F*-theorem: [Jafferis-Klebanov-Pufu-Safdi 11, Klebanov-Pufu-Safdi 11]

$$F_{\rm UV}(S^3) \ge F_{\rm IR}(S^3)$$
, $F = -\log Z(S^3)$

3

イロト イポト イヨト イヨト

▶ Thermal *c*-theorem: Counter example by [Sachdev 93]

 $F_{\text{Therm}} \sim c_{\text{Therm}} T^3$

► C_T-theorem: [Petkou 94]

$$C_T|_{UV} \ge C_T|_{IR}$$
, $\langle T_{\mu\nu}(x)T_{\rho\sigma}(0)\rangle = C_T \frac{I_{\mu\nu,\rho\sigma}(x)}{x^6}$

F-theorem: [Jafferis-Klebanov-Pufu-Safdi 11, Klebanov-Pufu-Safdi 11]

$$F_{\rm UV}(S^3) \ge F_{\rm IR}(S^3)$$
, $F = -\log Z(S^3)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

► Thermal *c*-theorem: Counter example by [Sachdev 93]

 $F_{\rm Therm} \sim c_{\rm Therm} T^3$

► C_T-theorem: [Petkou 94]

$$C_T|_{UV} \ge C_T|_{IR}$$
, $\langle T_{\mu\nu}(x)T_{\rho\sigma}(0)\rangle = C_T \frac{I_{\mu\nu,\rho\sigma}(x)}{x^6}$

F-theorem: [Jafferis-Klebanov-Pufu-Safdi 11, Klebanov-Pufu-Safdi 11]

$$F_{\rm UV}(S^3) \ge F_{\rm IR}(S^3)$$
, $F = -\log Z(S^3)$

< ロ > < 同 > < 回 > < 回 > < 回 > <

► Thermal *c*-theorem: Counter example by [Sachdev 93]

 $F_{\mathsf{Therm}} \sim c_{\mathsf{Therm}} T^3$

▶ C_T-theorem: [Petkou 94] Counter example by [TN-Yonekura 13]

$$C_T|_{UV} \ge C_T|_{IR}$$
, $\langle T_{\mu\nu}(x)T_{\rho\sigma}(0)\rangle = C_T \frac{I_{\mu\nu,\rho\sigma}(x)}{x^6}$

▶ *F*-theorem: [Jafferis-Klebanov-Pufu-Safdi 11, Klebanov-Pufu-Safdi 11]

$$F_{\rm UV}(S^3) \ge F_{\rm IR}(S^3)$$
, $F = -\log Z(S^3)$

< □ > < □ > < □ > < □ > < □ > < □ >

► Thermal *c*-theorem: Counter example by [Sachdev 93]

 $F_{\rm Therm} \sim c_{\rm Therm} T^3$

▶ C_T-theorem: [Petkou 94] Counter example by [TN-Yonekura 13]

$$C_T|_{UV} \ge C_T|_{IR}$$
, $\langle T_{\mu\nu}(x)T_{\rho\sigma}(0)\rangle = C_T \frac{I_{\mu\nu,\rho\sigma}(x)}{x^6}$

► F-theorem: [Jafferis-Klebanov-Pufu-Safdi 11, Klebanov-Pufu-Safdi 11] $F_{IIV}(S^3) > F_{IR}(S^3)$, $F = -\log Z(S^3)$

< 回 > < 三 > < 三 >

EE in CFT_3 and F-theorem

 $\partial A = S^1$ of radius R in CFT₃

Mar 6, 2014 @UNC-CH 21 / 34

э

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

up to a UV divergence

3

A B A A B A

up to a UV divergence

Proof of *F*-theorem by using entanglement entropy?

T.Nishioka (IAS)

Mar 6, 2014 @UNC-CH 21 / 34

A B A A B A

 \blacktriangleright Interpolating function between $F_{\rm UV}$ and $F_{\rm IR}$

3

- \blacktriangleright Interpolating function between $F_{\rm UV}$ and $F_{\rm IR}$
- Monotonically decreasing under RG flow

- \blacktriangleright Interpolating function between $F_{\rm UV}$ and $F_{\rm IR}$
- Monotonically decreasing under RG flow

Renormalized entanglement entropy [Liu-Mezei 12]
$$\mathcal{F}(R) \equiv (R\partial_R - 1)S_A(R)$$

4 1 1 1 4 1 1 1

Renormalized entanglement entropy [Liu-Mezei 12] $\mathcal{F}(R) \equiv (R\partial_R - 1)S_A(R)$

► For CFT₃

$$S_A(R) = \alpha \frac{2\pi R}{\epsilon} - F(S^3) \qquad \Rightarrow \qquad \mathcal{F}(R) = F(S^3)$$

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Renormalized entanglement entropy [Liu-Mezei 12] $\mathcal{F}(R) \equiv (R\partial_R - 1)S_A(R)$

► For CFT₃

$$S_A(R) = \alpha \frac{2\pi R}{\epsilon} - F(S^3) \qquad \Rightarrow \qquad \mathcal{F}(R) = F(S^3)$$

Proof of monotonicity [Casini-Huerta 12]

 $SSA + Lorentz invariance \Rightarrow \mathcal{F}'(R) = R S''(R) \le 0$

A B A B A B A B A B A
B
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B

EE in gapped phase

Large *m* expansion: [cf. Grover-Turner-Vishwanath 11]

$$S_A(R) = \alpha \frac{\ell_{\Sigma}}{\epsilon} + \beta \, m \, \ell_{\Sigma} - \gamma + \sum_{l=0}^{\infty} \frac{c_{-1-2l}^{\Sigma}}{m^{2l+1}}$$

• ℓ_{Σ} : length of $\Sigma = \partial A$

 γ: topological entanglement entropy [Kitaev-Preskill 05, Levin-Wen 05]

▶ Dimensional reduction: $\mathbb{R}^{2,1} \times S^1 \to \mathbb{R}^{2,1}$ [Huerta 11, Klebanov-TN-Pufu-Safdi 12]

• Entangling surface: $\Sigma \times S^1 \to \Sigma$

EE in gapped phase

Large *m* expansion: [cf. Grover-Turner-Vishwanath 11]

$$S_A(R) = \alpha \frac{\ell_{\Sigma}}{\epsilon} + \beta \, m \, \ell_{\Sigma} - \gamma + \sum_{l=0}^{\infty} \frac{c_{-1-2l}^{\Sigma}}{m^{2l+1}}$$

• ℓ_{Σ} : length of $\Sigma = \partial A$

 γ: topological entanglement entropy [Kitaev-Preskill 05, Levin-Wen 05]

▶ Dimensional reduction: $\mathbb{R}^{2,1} \times S^1 \to \mathbb{R}^{2,1}$ [Huerta 11, Klebanov-TN-Pufu-Safdi 12]

 \blacktriangleright Entangling surface: $\Sigma \times S^1 \to \Sigma$

EE in gapped phase

Large *m* expansion: [cf. Grover-Turner-Vishwanath 11]

$$S_A(R) = \alpha \frac{\ell_{\Sigma}}{\epsilon} + \beta \, m \, \ell_{\Sigma} - \gamma + \sum_{l=0}^{\infty} \frac{c_{-1-2l}^{\Sigma}}{m^{2l+1}}$$

• ℓ_{Σ} : length of $\Sigma = \partial A$

 γ: topological entanglement entropy [Kitaev-Preskill 05, Levin-Wen 05]

▶ Dimensional reduction: $\mathbb{R}^{2,1} \times S^1 \to \mathbb{R}^{2,1}$ [Huerta 11, Klebanov-TN-Pufu-Safdi 12]

• Entangling surface: $\Sigma \times S^1 \to \Sigma$

4d EE from 3d EE

$$S_{\Sigma \times S^1}^{(3+1)} = \sum_{n \in \mathbb{Z}} S_{\Sigma}^{(2+1)} \left(m = \left| \frac{2\pi n}{L} \right| \right)$$

T.Nishioka (IAS)

Mar 6, 2014 @UNC-CH 24 / 34

3

A B A A B A

4d EE from 3d EE

$$S_{\Sigma \times S^1}^{(3+1)} = \sum_{n \in \mathbb{Z}} S_{\Sigma}^{(2+1)} \left(m = \left| \frac{2\pi n}{L} \right| \right)$$

• $L \to \infty$ limit:

$$S_{\Sigma \times S^1}^{(3+1)} \sim \int^{1/\epsilon} dp \, S_{\Sigma}^{(2+1)}(p)$$

T.Nishioka (IAS)

Mar 6, 2014 @UNC-CH 24 / 34

3

(日) (四) (日) (日) (日)

• $L \to \infty$ limit:

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

• $L \to \infty$ limit:

 $S_{\Sigma \times S^1}^{(3+1)} \sim \int^{1/\epsilon} dp \, S_{\Sigma}^{(2+1)}(p)$ $\left(c_{-1}^{\Sigma} = \frac{1}{480}(n_0 + 3n_{1/2}) \oint_{\Sigma} ds \,\kappa^2\right)$ $(n_0: \# \text{ of scalars, } n_{1/2}: \# \text{ of fermions})$
• REE: $\Sigma = a$ circle of radius $R \Rightarrow \kappa = \frac{1}{R}$

イロト イ団ト イヨト イヨト 二日

• REE: $\Sigma = a$ circle of radius $R \Rightarrow \kappa = \frac{1}{R}$

$$\begin{aligned} \mathcal{F}(R) &= -\frac{2c_{-1}^{\Sigma}}{m} + \mathcal{O}\left(\frac{1}{(mR)^3}\right) \\ c_{-1}^{\Sigma} &= -\frac{\pi}{240R} \end{aligned}$$

T.Nishioka (IAS)

EE and RG flow

Mar 6, 2014 @UNC-CH 25 / 34

イロト イポト イヨト イヨト 二日

• REE: $\Sigma = a$ circle of radius $R \Rightarrow \kappa = \frac{1}{R}$

$$\mathcal{F}(R) = -\frac{2c_{-1}^{\Sigma}}{m} + \mathcal{O}\left(\frac{1}{(mR)^3}\right)$$
$$c_{-1}^{\Sigma} = -\frac{\pi}{240R}$$

REE is monotonically decreasing to zero in IR!

T.Nishioka (IAS)

• REE: $\Sigma = a$ circle of radius $R \Rightarrow \kappa = \frac{1}{R}$

$$\begin{aligned} \mathcal{F}(R) &= -\frac{2c_{-1}^{\Sigma}}{m} + \mathcal{O}\left(\frac{1}{(mR)^3}\right) \\ c_{-1}^{\Sigma} &= -\frac{\pi}{240R} \end{aligned}$$

REE is monotonically decreasing to zero in IR!

[Klebanov-TN-Pufu-Safdi 12]

- Perturbation around m = 0 doesn't work
- ▶ Numerical method [Huerta 11]: $\mathcal{F}(0) \simeq 0.0638 = F_{UV}(S^3)$
- \mathcal{F} is not stationary at UV fixed point!
- $\partial_{(mR)^2} \mathcal{F} \neq 0$ IR divergence?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

[Klebanov-TN-Pufu-Safdi 12]

- Perturbation around m = 0 doesn't work
- ▶ Numerical method [Huerta 11]: $\mathcal{F}(0) \simeq 0.0638 = F_{UV}(S^3)$
- \mathcal{F} is not stationary at UV fixed point!
- $\partial_{(mR)^2} \mathcal{F} \neq$ IR divergence?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

[Klebanov-TN-Pufu-Safdi 12]

- Perturbation around m = 0 doesn't work
- ▶ Numerical method [Huerta 11]: $\mathcal{F}(0) \simeq 0.0638 = F_{UV}(S^3)$
- \mathcal{F} is not stationary at UV fixed point!

[Klebanov-TN-Pufu-Safdi 12]

- Perturbation around m = 0 doesn't work
- ▶ Numerical method [Huerta 11]: $\mathcal{F}(0) \simeq 0.0638 = F_{UV}(S^3)$
- ► *F* is not stationary at UV fixed point!

► IR divergence?

Outline

- Review of Entanglement Entropy
- 2 Entanglement Entropy in Two-dimensions
- 3 Entanglement Entropy in Three-dimensions
- 4 Supersymmetric Rényi entropy
- **6** Summary

4 1 1 1 4 1 1 1

Conformal map

 $ds^2 = dt^2 + d\rho^2 + \rho^2 d\phi^2$

$$ds^2 = d\theta^2 + \sin^2\theta d\tau^2 + \cos^2\theta d\phi^2$$

3

< □ > < □ > < □ > < □ > < □ >

Conformal map

$$ds^2 = dt^2 + d\rho^2 + \rho^2 d\phi^2 \qquad \qquad ds^2 = d\theta^2 + \sin^2\theta d\tau^2 + \cos^2\theta d\phi^2$$

For CFT

$$Z_n[\mathbb{R}^3] = Z[S_n^3]$$

$$S_n^3$$
: *n*-branched covering of S^3

T.Nishioka (IAS)

2

< □ > < □ > < □ > < □ > < □ >

Rényi entropy for CFT

The Rényi entropy of a disc for CFT

$$S_n = \frac{1}{1-n} \log \frac{Z[S_n^3]}{(Z[S^3])^n}$$

- ▶ For free fields, Z[S_n³]: one-loop determinant [Klebanov-Pufu-Sachdev-Safdi 11]
- ► For SUSY gauge theories, Z[S³] (n = 1) can be obtained by localization [Kapstin-Willet-Yaakov 09, Jafferis, Hama-Hosomichi-Lee 10]

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Rényi entropy for CFT

The Rényi entropy of a disc for CFT

$$S_n = \frac{1}{1-n} \log \frac{Z[S_n^3]}{(Z[S^3])^n}$$

- ▶ For free fields, Z[S_n³]: one-loop determinant [Klebanov-Pufu-Sachdev-Safdi 11]
- ▶ For SUSY gauge theories, Z[S³] (n = 1) can be obtained by localization [Kapstin-Willet-Yaakov 09, Jafferis, Hama-Hosomichi-Lee 10]

・ 同 ト ・ ヨ ト ・ ヨ ト …

Rényi entropy for CFT

The Rényi entropy of a disc for CFT

$$S_n = \frac{1}{1-n} \log \frac{Z[S_n^3]}{(Z[S^3])^n}$$

- ▶ For free fields, Z[S_n³]: one-loop determinant [Klebanov-Pufu-Sachdev-Safdi 11]
- ▶ For SUSY gauge theories, Z[S³] (n = 1) can be obtained by localization [Kapstin-Willet-Yaakov 09, Jafferis, Hama-Hosomichi-Lee 10]

• SUSY is broken on the singular space S_n^3

- To recover SUSY, turn on the R-symmetry flux
- Supersymmetric Rényi entropy [TN-Yaakov 13]

$$S_n^{\text{susy}} = \frac{1}{1-n} \log \left| \frac{Z^{\text{susy}}[S_n^3]}{(Z^{\text{susy}}[S^3])^n} \right|$$

• SUSY is broken on the singular space S_n^3

► To recover SUSY, turn on the *R*-symmetry flux

Supersymmetric Rényi entropy [TN-Yaakov 13]

$$S_n^{\text{susy}} = \frac{1}{1-n} \log \left| \frac{Z^{\text{susy}}[S_n^3]}{(Z^{\text{susy}}[S^3])^n} \right|$$

• SUSY is broken on the singular space S_n^3

- ► To recover SUSY, turn on the *R*-symmetry flux
- Supersymmetric Rényi entropy [TN-Yaakov 13]

$$S_n^{\text{susy}} = \frac{1}{1-n} \log \left| \frac{Z^{\text{susy}}[S_n^3]}{(Z^{\text{susy}}[S^3])^n} \right|$$

• SUSY is broken on the singular space S_n^3

- ► To recover SUSY, turn on the *R*-symmetry flux
- Supersymmetric Rényi entropy [TN-Yaakov 13]

$$S_n^{\text{susy}} = \frac{1}{1-n} \log \left| \frac{Z^{\text{susy}}[S_n^3]}{(Z^{\text{susy}}[S^3])^n} \right|$$

Supersymmetric Rényi entropy

- SRE is not equal to RE due to the *R*-symmetry flux
- Expansion around n = 1:

$$S_n^{\text{susy}} = S_1 + \frac{\pi^2}{16} \tau_{rr}(n-1) + \cdots$$

- $\tau_{rr}:$ two-point function of the R-currents
- ► Large-*N* limit:

$$S_n^{\text{susy}} = \frac{3n+1}{4n} S_1$$

Agrees with the holographic result [Huang-Rey-Zhou 14, TN 14]

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Supersymmetric Rényi entropy

- SRE is not equal to RE due to the *R*-symmetry flux
- Expansion around n = 1:

$$S_n^{\text{susy}} = S_1 + \frac{\pi^2}{16} \tau_{rr}(n-1) + \cdots$$

- $\tau_{rr}:$ two-point function of the R-currents
- ► Large-*N* limit:

$$S_n^{\text{susy}} = \frac{3n+1}{4n} S_1$$

Agrees with the holographic result [Huang-Rey-Zhou 14, TN 14]

・ 同 ト ・ ヨ ト ・ ヨ ト

Supersymmetric Rényi entropy

- ▶ SRE is not equal to RE due to the *R*-symmetry flux
- Expansion around n = 1:

$$S_n^{\text{susy}} = S_1 + \frac{\pi^2}{16} \tau_{rr}(n-1) + \cdots$$

- τ_{rr} : two-point function of the R-currents
- ► Large-*N* limit:

$$S_n^{\text{susy}} = \frac{3n+1}{4n} S_1$$

Agrees with the holographic result [Huang-Rey-Zhou 14, TN 14]

4 E N 4 E N

Outline

- Review of Entanglement Entropy
- 2 Entanglement Entropy in Two-dimensions
- 3 Entanglement Entropy in Three-dimensions
- Ospersymmetric Rényi entropy
- Summary

4 3 5 4 3

Summary

- EE a useful measure of degrees of freedom defined in arbitrary dimensions
- ▶ Only the *F*-theorem in three-dimensions
- REE not a c-function in the Zamolodchikov's sense (non-stationarity ~ IR divergence)
- > A new observable, supersymmetric Rényi entropy

Future directions

- ► Can we define an entropic C-function which coincides with the Zamolodchikov's *c*-function in 2d?
- Is there a modified REE that is stationary at conformal fixed points?
- Proof of the *a*-theorem by using SSA of EE?