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Abstract: In this talk the Seiberg-Witten map for a

time-dependent background related to a null-brane orb-

ifold is studied. The commutation relations of the co-

ordinates are linear, i.e. it is an example of the Lie alge-

bra type. The equivalence map between the Kontsevich

star product for this background and the Weyl-Moyal

star product for a background with constant noncom-

mutativity parameter is also studied. The method used

to solve the Seiberg-Witten equations is cohomologi-

cal, and is based on the determination of a coboundary

operator and then of the corresponding homotopy op-

erator.
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Noncommutative spaces

Manifold M

Gelfand Naimark
−→

Theorem Commutative Algebra
of continous functions

C(M)

↓ Deformation ↓

Noncommutative
?
−→ Noncommutative

“manifold” Algebra A

Space-time commutation relations

A associative algebra generated by the

coordinates {xi}, 1 ≤ i ≤ D,

D=space-time dimension,

with relations
[
xi, xj

]
= i θij

where θ is an antisymmetric tensor

θij = −θji

satisfying the Jacobi identity

∂iθkl + ∂kθli + ∂lθik = 0



Weyl quantization procedure

Provides a representation of A in C(M)

f(xi) ∈ C(M)→W (f)(x̂i) ∈ A

Starting from the Fourier transform f̃(k)

f̃(k) =
1

(2π)D/2

∫
dxe−ikjx

j
f(x)

the Weyl operator W (f) is defined by

W (f) =
1

(2π)D/2

∫
dkeikix̂

i
f̃(k)

with the substitution xi ∈ C(M)→ x̂i ∈ A.

The star product f ? g

f ? g =
1

(2π)D

∫
dk dp ei(kj+pj+gj(k,p))x

j
f̃(k) g̃(p)

is defined as the function corresponding to

W (f)W (g) =
1

(2π)D

∫
dk dpeikix̂

i
eipjx̂

j
f̃(k) g̃(p)

with gj(k, p) the expression obtained through

the Baker-Campbell-Hausdorff formula

eAeB = e(A+B+1
2[A,B]+ 1

12[A−B,[A,B]]+...)

applied to A = kix̂
i, B = pjx̂

j.



Main properties of the Weyl quantization:

• It automatically selects the most symmet-

ric ordering of the elements x̂i ∈ A.

• It naturally reproduces the Weyl-Moyal star

product for the case of constant θ

f ? g = fe
i
2θ
ij
←
∂i
→
∂jg

= fg+
1

2
iθij∂if∂jg

−
1

8
θijθkl∂i∂kf ∂j∂lg+O[θ3]

with ∂i ≡
∂
∂xi

.

• It coincides with Kontsevich quantization

procedure for nilpotent Lie algebras and it

is equivalent to it for the more general lin-

ear case. The difference with the Kontse-

vich star product in the linear case can be

expressed in terms of “loop graphs”.

(Kathotia, math.QA/9811174)



Relation between θ and the B-field in string theory

In string theory, a constant Poisson tensor θij

is related to the antisymmetric tensor Bij in

the Neveu-Schwarz sector by the formula

θij = 2πα′
(

1

g+ 2πα′B

)[ij]

where [ ] antisymmetric part, g metric,

α′ string tension

In the limit of a large B-field α′B >> g then

there is the simple relation

θij =
1

Bij



The null-brane orbifold

Liu, Moore, Seiberg, hep-th/0204168, hep-th/0206182

Generators: {xi}, i = 1, . . . ,4,

x1 = x+, x2 = x−, x3 = x, x4 = z

Orbifold identifications

z ∼ z+ 2π
R̃
, x+ ∼ x+, x ∼ x+ 2πx+

x− ∼ x−+ 2πx+ 1
2(2π)

2x+

The associated noncommutative algebra

Sethi, Hashimoto, hep-th/0208126

T-dualities and Twist

⇒ noncommutative algebra A

Relations: [xi, xj] = i θij,

Noncommutativity parameter

θxz = −θzx = R̃x+, θx
−z = −θzx

−
= R̃x,

θij = 0 otherwise, R̃ = const,



Main properties of A

• It is linear in the coordinates, i.e. it is of

the Lie algebra type.

• θij satisfies the Jacobi identity.

• It is a nilpotent algebra, i.e. the third com-

mutator of any four elements vanishes.

[xi, [xj, [xk, xl]]] = 0 ∀xi ∈ A

• It is noncommutative only in the xz and

x−z directions.



The Kontsevich star product for A

The Weyl quantization procedure gives

f ? g = fe

i
2θ
ij
←
∂i
→
∂j−

1
12θ

ij∂jθ
kl

(
←
∂i
←
∂k
→
∂l−

←
∂k
→
∂i
→
∂l

)

g

Properties

• To the second order in θ it becomes

f ? g = f g+
i

2
θij∂if∂jg −

1

8
θijθkl∂i∂kf∂j∂lg

−
1

12
θij∂jθ

kl (∂i∂kf∂lg − ∂kf∂i∂lg) + ...

which coincides with the expression given

by Kontsevich (Kontsevich, q-alg/9709040).

• It is different than the Weyl-Moyal star prod-

uct and generalizes it.

• It is an associative product.



The coordinate transformation

Liu, Moore, Seiberg, hep-th/0204168, hep-th/0206182

Through the coordinate transformation σ

x+ = y+; x = y+
(
ỹ+ R̃z

)
;

x− = y−+ 1
2y

+
(
ỹ+ R̃z

)2

the algebra A can be rewritten as the algebra

generated by the elements {y+, y, y−, z}
with relations

[yi, yj] = i θ̃ij

where y1 = y+, y2 = y, y3 = y−, y4 = z and

θ̃ỹz = −θ̃zỹ = R̃, θ̃ij = 0 otherwise,

and the orbifold identification becomes

y+ ∼ y+; ỹ ∼ ỹ+ 2π; y− ∼ y−; z ∼ z +
2π

R̃
.

This coordinate transformation is not linear

and it is singular for x+ = y+ = 0. How-

ever, the orbifold identification is simpler and

the noncommutativity parameter is constant.



The equivalence map

Two star products ? and ?′ are equivalent if

there exists an equivalence map, i.e. a differ-

ential operator R, such that

f ?′ g = R−1 (R(f) ? R(g))

Kontsevich’s formality theorem:

two star products related by a coordinate trans-

formation are equivalent in the above sense.

⇒ ? and ?′ = σ(?̃) equivalent for x+ 6= 0.

Expand ?, R in powers of θ

f ? g = fg +B(1)(f, g) +B(2)(f, g) + ...

R(f) = f +R(1)(f) +R(2)(f) + ...

⇒ B′
(1)

(f, g) = B(1)(f, g) +R(1)(f) g

+f R(1)(g)−R(1)(f g)

To the fourth order in θ,R is found to be

R(1)(f) = R(3)(f) = 0,

R(2)(f) = 1
24θ

zx∂xθx
−z∂x−, R

(4)(f) = R(2)2(f)



Main properties of the equivalence map

• To the fourth order R is generated by the

flow of R(2), i.e. it is of the form:

R f = e−
1
24R̃

2x+∂x−∂
2
z f

• As expected, R is singular for y+ = x+ = 0,

where the coordinate transformation σ is

singular.

• The star product ? is equivalent up to σ to

the Weyl-Moyal product ?̃ for a constant

θ̃ij

⇒ ? is associative.

• In principle R allows to map the results for

a constant θ̃ij to the algebra A, e.g. the

differential calculus, the SW map, instan-

ton computations, at least outside of the

singularity.



Gauge theory on noncommutative spaces and
covariant coordinates

Wess et al., hep-th/0104153, hep-th/0001203,

Seiberg, hep-th/0008013

On commutative spaces

ψ gauge field, λ gauge parameter, ai gauge potential

δai = ∂iλ− i[ai, λ]

δψ = i λ ψ, δxi = 0⇒ δ(xiψ) = iλxiψ

On noncommutative spaces
Ψ gauge field, Λ gauge parameter, Ai gauge potential

δΨ = iΛ ?Ψ

⇒ δ(xi ?Ψ) = i xi ? Λ ?Ψ 6= iΛ ? xi ?Ψ

⇒ Introduce covariant coordinates X i

Xi = xi +Ai

such that

δXi = i[Λ ?, Xi]

⇒ δ(Xi ?Ψ) = i ? Λ ? Xi ?Ψ

This requires the noncommutative gauge trans-
formation

δAi = i[Λ ?, xi] + i[Λ ?, Ai]



The SW map

Seiberg and Witten, JHEP09(1999)032

It expresses the noncommutative gauge field

and parameter in terms of the commutative

ones:

Ai = Ai( θ, a, ∂a, ∂2a, · · ·),
Λ = Λ( θ, λ, ∂λ, · · · , a, ∂a, · · ·)

The functional dependence is determined by

the SW equation

δAi = i[Λ ?, xi] + i[Λ ?, Ai]

For constant θij, it is possible to identify

[xi ?, f ] = iθij∂jf for all f(xi)

and rewrite

δAi = θij∂jΛ + i[Λ ?, Ai]

The index of the derivative is raised with θij.
It is a non-trivial result that this is consistent

also for a θij of the Lie algebra type, like the

example we are studying here.



Properties of the SW map

• Usually the algebra of the gauge fields does

not close in the noncommutative case and

the fields are elements of the envelopping

algebra. The SW map allows us to ex-

press an infinite number of noncommuta-

tive fields in terms of a finite number of

commutative ones.

• In string theory the existence of the SW

map follows from the fact that two differ-

ent regularization techniques (Pauli-Villars

and point-splitting) lead either to a com-

mutative or a noncommutative theory and

therefore the two theories are supposed to

be physically equivalent.



• An interaction which is complicated when

expressed in terms of the commutative vari-

ables becomes a simple free theory in the

noncommutative coordinates. The inter-

action is encoded in the noncommutative

structure of the space, i.e. in the geome-

try.

• There are different types of ambiguities in

the solutions of the Seiberg-Witten equa-

tion, as a consequence of field redefinitions

and the dependence on the choice of the

path in θ-space.

(Asakawa and Kishimoto, hep-th/9909139)

• From the physical point of view, the xi are

regarded as classical solutions, nontrivial

vacuum expectation values, for coordinates

on a D-brane, and the potential Ai is seen

as a fluctuation around this value

(Seiberg, hep-th/0008013).



Introduction of the ghost fields and

of the coboundary operator

Instead of the gauge parameter λ use an odd

ghost field v and define the BRST operator δ

δv = iv2, δai = ∂iv − i[ai, v] ≡ Div

with the properties

δ2 = 0, [δ, ∂i] = 0

δ(f1f2) = (δf1)f2 + (−1)deg(f1)f1(δf2)

Moreover, define the coboundary operator

∆ =

{
δ − i{v, ·} on odd quantities
δ − i[v, ·] on even quantities

so that

∆v = −iv2, ∆ai = ∂iv

∆2 = 0, [∆, Di] = 0

∆(f1f2) = (∆f1)f2 + (−1)deg(f1)f1(∆f2)

Seiberg-Witten equation

δΨ = iΛ ?Ψ, δΛ = iΛ ? Λ

δAi = i[Λ ?, xi]− i[Ai ?, Λ]

The equation for Λ follows from the nilpotency

of δ and the associativity of the star product.



Expansion in θij

Gauge parameter and gauge field

Λ = Λ(0) + Λ(1) + ..., Λ(0) = v

Ai = Ai
(1)

+Ai
(2)

+ ..., Ai
(1)

= θijaj
The index of the gauge potential is raised
with θij ⇒ Ai starts at first order already.

General structure of the Seiberg-Witten equa-

tion to order n :

∆Λ(n) = M(n), ∆Ai
(n)

= U i
(n)

Introduce the useful notation bi ≡ ∂iv.
Then for the gauge parameter

∆Λ(0) = iv2, ∆Λ(1) = −1
2θ
ijbibj

∆Λ(2) = − i
8θ
ijθkl∂ibk∂jbl −

1
2θ
ij[bi, ∂jΛ

(1)]

+iΛ(1)Λ(1) − 1
12θ

ij∂jθ
kl{iDibk − [ai, bk], bl}

and for the gauge potential

∆Ai
(1)

= θijbj,

∆Ai
(2)

= θijDjΛ
(1) −

1

2
θkl{bk, ∂l(θ

ijaj)}



The part of the SW equations which does not

depend on derivatives of θij decouples from

the part which does and they can be solved

separately.

M(n) = M ′(θ)(n) +M ′′(θ, ∂θ)(n),

U i
(n)

= U i
′
(θ)(n) + U i

′′
(θ, ∂θ)(n)

Consistency conditions following from ∆2 = 0:

∆M(n) = 0, ∆U i
(n)

= 0

M ′(n) and M ′′(n), as well as U i
′(n)

and U i
′′(n)

have to satisfy the consistency condition sep-

arately. M ′′(n) and U i
′′(n)

satisfy it due to the

Jacobi identity.



Ambiguities in the solutions

If Λ and Ai are solutions so are

Λ̃(n) = Λ(n) + ∆S(n),

Ãi
(n)

= A
(n)
i +DiS

(n) + S′i
(n)

for arbitrary S(n), S′i
(n) of ghost number 0 and

∆S′i = 0 (Asakawa and Kishimoto, hep-th/9909139)

The ambiguity due to S is of a gauge type, the

one due to S′ is of a covariant type.

The Seiberg-Witten equations are invariant un-

der the noncommutative finite gauge transfor-

mations (Stora)

Λ → G−1ΛG+ iG−1δvG

Ai → G−1AiG+ iG−1∂iG

Ψ → G−1 Ψ

where all products are star products,

G is an arbitrary element of ghost number 0.

The gauge ambiguities at the infinitesimal level

can be recovered by choosing

G = 1− iS(n)

To first order

S(1) = −iθij[ai, aj]



The homotopy operator

The consistency condition for the SW map

suggests an analogy with the cohomology of

chiral anomalies (Zumino, Les Houches lecture).

It is not possible to invert ∆, because it is

nilpotent, but it is possible to construct the

homotopy operator K satisfying

∆K +K∆ = 1

Then

∆KM +K∆M = ∆KM = M

and therefore Λ = KM is a solution.

Only bi and its derivatives enter in the equa-

tions, and never v itself. K is defined only on

bi.



Construction of K proceeds in two steps.

Basic variables: ai, bi
First, define infinitesimal version L

Action of L:

Lai = 0, Lbi = ai, [L,Di] = 0

L(f1f2) = (Lf1)f2 + (−1)deg(f1)f1(Lf2)

L is odd and nilpotent: L2 = 0 .

Introduce d = total order(monomial in a, b)

Then the homotopy operator K is defined:

K = D−1L

with D−1 linear operator, which on monomials

multiplies by 1
d

K is nilpotent: K2 = 0.

K is odd and has negative ghost number -1.

Example:

Λ(1) = K(−
1

2
θijbibj) = −

1

2
θijD−1L(bibj)

= −
1

2
θijD−1(aibj − biaj)

=
1

4
θij

{
bi, aj

}



The constraints

The variables ai and bi are not free, because

from bi ≡ ∂iv it follows

∂ibj − ∂jbi = 0

which is equivalent to

∆Fij = Dibj −Djbi + i[bi, aj] + i[ai, bj] = 0

Analogously, the covariant derivatives have to

satisfy the constraint
[
Fij, ·

]
− i[Di, Dj](·) = 0

Solution: Symmetrization procedure

Separate the symmetric part of Dka or Dkb
and substitute the constraints recursively for

the antisymmetric pieces. For example:

Diaj →
1

2
(Diaj +Djai + Fij − i[ai, aj])

Then treat F and its derivatives as scalars.

There are no independent constraints of higher

order.



Solutions to second order for constant θij

By applying the homotopy operator to the sym-

metrized M(2):

Λ(2) = −
1

2
θij{ai,

1

3
DjΛ

(1) +
i

4
[aj,Λ

(1)]}

+θijθkl(−
i

16
[Diak, Djbl]

+[[ai, ak],
1

24
Djbl +

i

32
[aj, bl]]

+
1

24
[Diak, [aj, bl]]

+
1

8
(ai(

1

3
Djak −

1

3
Dkaj +

i

2
[aj, ak])bl

−bi(
1

3
Djak −

1

3
Dkaj +

i

2
[aj, ak])al

+{
1

6
(Diak −Dkai) +

i

4
[ai, ak], {al, bj}})) .



Comparison between the solutions

A known solution (Munich group) is

Λ̃(2) =
1

32
θijθkl(− {bi, {ak, i[aj, al] + 4∂laj}}

−i{aj, {al, [bi, ak]}}+ 2i[[aj, al], [bi, ak]]

+2[[bi, ak] + i∂ibk, ∂jal])

As expected, the two solutions Λ(2) and Λ̃(2)

differ by an ambiguity ∆S(2) with

S(2) = K(Λ(2) − Λ̃(2))

= θijθkl[(
1

24
([aj, [Diak, al]]

+2(Diakajal + alajDiak)

+
1

16
[aiak,∆Fjl]] .

The same technique can be applied to com-

pute the gauge potential A
(2)
i and to higher

orders in θij. It can be done e.g. by computer.



Seiberg-Witten differential equation

For θij constant, let θij → t θij.

The star product depends on an evolution pa-

rameter t.

Define new operators at “time” t:

∆t =

{
δ − i{Λ ?, ·} on odd quantities
δ − i[Λ ?, ·] on even quantities

Covariant derivative Di,t

Di,t = ∂i − i[Ai ?, ·]

They have the properties

∆tAi = ∂iΛ, ∆2
t = 0, [∆t, Di,t] = 0

∆t(f1f2) = (∆tf1)f2 + (−1)deg(f1)f1(∆tf2)

Differentiate the Seiberg-Witten equations

∆t
·
Λ = −θkl∂kΛ ? ∂lΛ

∆t
·
Ai = ∆i

·
Λ +

1

2
θkl{∂kAi

?, ∂lΛ}

where
·
f= df

dt



Then a solution are the evolution equations

·
Λ =

1

4
θij

{
∂iΛ, Aj

}

·
Ai = −

1

4
θkl {Ak, ∂lAi + Fli}

By differentiating
·
Λ

··
Λ =

1

16
θijθkl(

{{
∂i∂kΛ

?, Aj
}
+
{
∂iΛ ?, ∂kAj

}
Al
}

−
{
∂iΛ ?,

{
Ak

?, ∂lAj + Flj
}}

+2i
[
∂i∂kΛ

?, ∂jAl
]
)

We can compute
dnΛ

dtn
. We can obtain solu-

tions Λ(n) as

Λ(n) =
1

n!

dnΛ

dtn

The solution to second order obtained from
··
Λ

again differs from Λ(2) by an ambiguity.

With this method the homotopy operator has

to be applied at most at first order: no prob-

lems with constraints.



Deformation of the BRST operator

(Weinstein)

Start with the original BRST operator

δ0Λ = iΛ ? Λ

and deform it to

δ = δ0 + δ1 + δ2 + . . .

such that

δv = iv ? v, δ2 = 0

Introduce the deforming map D such that

Dv = Λ

and

Dδ = δ0D, [D, ∂] = 0

with the properties

D(fg) = D(f)D(g), D(f ? g) = D(f) ? D(g)



Expand in θij

D = 1 +D(1) +D(2) + . . .

where D(1) is a vector field

D(1)(fg) = D(1)(f)g + fD(1)(g)

Order by order in θij the equation

Dδ = δ0D

becomes

δ1 = δ0D
(1) −D(1)δ0

δ2 = δ0D
(2) −D(2)δ0 −D

(1)δ1

with

D(n)v = Λ(n), δnv = B(n)(v, v)

and we recover the equation ∆Λ(n) = M(n).

The equation Dδ = δ0D is nothing else than

the definition of an algebroid morphism.



Solution for the gauge parameter for linear θij

To the first order there is no correction due to

the fact that θij is not constant and we recover

the usual result

Λ(1) =
1

4
θkl{bk, al}

To the second order we recover the previous

result

Λ′(2) = −1
2θ
ij{ai,

1
3DjΛ

(1) + i
4[aj,Λ

(1)]}

+θijθkl(− i
16[Diak, Djbl] + [[ai, ak],

1
24Djbl

+ i
32[aj, bl]] +

1
24[Diak, [aj, bl]]

+1
8(ai(

1
3Djak −

1
3Dkaj + i

2[aj, ak])bl

−bi(
1
3Djak −

1
3Dkaj + i

2[aj, ak])al

+{16(Diak −Dkai) + i
4[ai, ak], {al, bj}}))

and we find the correction

Λ′′
(2)

= −1
4θ
ij∂jθ

kl
(
1
6({ai, {bk, al}}+ i[Diak, bl]

−i[Dibk, al]) + 1
9 ([[ai, bk], al]− [[ai, ak], bl])

)



Solution for the gauge potential

A′
i(2)

= −
1

4
θijθkl{ak, ∂laj + Flj}

A′′
i(2)

= −
1

4
θkl∂lθ

ij{ak, aj}

For the algebra A of Sethi and Hashimoto

A′′
i(2)

=





1
4R̃

2x+{az, az} for i = x−,

−1
4R̃

2x+{az, ax−} for i = z,

0 otherwise.

In the case of an abelian gauge theory

A′′i
(3)

= 1
6

(
−θij∂jθ

rsθklakar(∂las + ∂sal)

+θsj∂jθ
irθklakar (2∂las − ∂sal)

+θrj∂jθ
siθklarak (2∂sal − 4∂las)

)

+1
6θ
ijθkl∂lθ

rsakas
(
2∂jar − 3∂raj

)

+1
6θ
kl∂lθ

rs∂sθijakaraj



Conclusions and outlook

• With a cohomological approach the solu-

tions to the SW equations can be com-

puted for each gauge group and to each

order in θij.

• In some instances, as in the case of the

null-brane orbifold studied here, it can also

be used for a time-dependent background

or a more general non-constant θij.

• By using ghosts a connection with the Ba-

talin-Vilkoviskij formalism can be made.

The SW map could be formulated in terms

of a master equation (see Barnich, Grigoriev,

Henneaux, hep-th/0106188)

• This type of cohomology is related to an

algebroid structure, because it comes from

the action of Lie algebra on the fields. In

other words, it is possible to deform the

BRST operator δ itself rather than the

gauge parameter and the gauge potential.

It is an equivalent approach (Weinstein).



• It is also related to supermanifolds, so that

it could be used to formulate and study the

properties of the SW map for supersym-

metric theories.

• The Weyl-Moyal product appears in string

field theory, because it is related to the

Witten star product. Noncommutative ge-

ometry may prove relevant in this context

(see e.g. Bars, Deliduman, Pasqua, Zumino,

hep-th/0308107).

• Through the use of cohomology the renor-

malization properties of a noncommutative

gauge theory could be studied. Expanding

in θ is a way to get around the infrared-

ultraviolet mixing occurring in noncommu-

tative field theories (see Grosse with Vienna

group, hep-th/0104097)


