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GENERAL

Nowadays, a lot of e�ort is devoted by string-

theorists to noncommutative-geometry and �eld-

theories on noncommutative-spaces. These

are �eld-theories with higher-derivative inter-

actions that break Lorentz-invariance.

In the framework of string-theory, can we �nd

other simple theories that break Lorentz-invariance?

We studied theories that contain fundamental

dipoles.
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THREE QUESTIONS

� The transverse uctuations of N D-branes

are described by scalar �elds in the adjoint

representation N 
 N of a U(N) gauge-

theory.

Can we construct examples in which the

quanta of the transverse uctuations are

(N;N) dipoles of the U(N) gauge group?

� Noncommutative N = 4 U(N) SYM is a

deformation of the ordinary N = 4 SYM by

a tensor operator of conformal dimension-

6. The theory also has a vector operator of

conformal dimension-5. Can we �nd a sim-

ple theory that at low-energies is described

by the vector deformation?
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THREE QUESTIONS (cont.)

� Field-theories on a noncommutative T2 have

a T-duality that acts as � ! 1=�, where �

is a dimensionless parameter that measures

the area of the T2 in units of the noncom-

mutativity length-scale.

Here all the �elds are assumed to have pe-

riodic boundary conditions. What happens

if we introduce phases such as

�(x1;2�R1) = ei��(x1;0):

How do the phases a�ect the T-duality?

-
6

x2
x1

�(x1;0)

�(x1;2�R2)
6

?

2�R2
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OUTLINE

� Noncommutative geometry { brief review.

� Deformations of N = 4 SYM { brief review.

� De�nition of dipole theories.

� Applications:

{ NonCommutative Geometry: T-duality.

{ M(atrix)-Theory: Twists.

� Realization in String-Theory: Pinned Branes.

� Open Questions.
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NCG AND STRING THEORY { i

� N coincident p-dimensional D-branes are

described at low energies E � Ms by (p+

1)-dimensional Supersymmetric Yang-Mills

theory (Witten)

� The scalar �elds are: a U(N) gauge �eld

A� and (9 � p) scalars �I that are N � N

matrices in the adjoint representation.

� The scalars have a potential trf
P
I<J[�

I ;�J ]2g

that attains a minimum of 0 when all (9�p)

N �N matrices are diagonal.

� The N eigenvalues of �I at the minimum

of the potential describe the Ith transverse

coordinates of the N branes.
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NCG AND STRING THEORY { ii

� The description in terms of a U(N) gauge

theory with Lagrangian:

LYM �
1

4g2
trfF��F

��
g+

1

2g2
trf
X
I

D��
ID��I

g

+
1

2g2
trf
X
I<J

[�I ;�J]
2
+ � � �g;

is valid when jF��j �M2
s = �0�1 and j�j �

Ms and j@��j �M2
s .

� When �0F � 1 and j@��j �Ms but @�F and

@�@�� can be neglected (j@�F j � MsjF j),

the correct Lagrangian is the Dirac-Born-

Infeld (DBI). For U(1) it is:

LDBI �
M

(p+1)
s

g2s
det(��� +M�2

s F�� +M�4
s

X
I

@��
I@��

I):
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NCG AND STRING THEORY { iii

Noncommutative geometry is related to the re-

gion jF��j � M
2
s and the derivatives j@�F j are

not small (i.e. j@�F j2 � jF j3).

We turn on a strong magnetic �eld Fij � M
2
s

and examine the dynamics on a length scale

of the order of jF j�1=2 � M
�1
s . (Douglas&Hull,

Connes&Douglas&Schwarz, Seiberg&Witten, : : :)

THIS IS WHAT WE SEE:
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NCG AND STRING THEORY { iv

D-brane

Fij �M2
s
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Every particle with momentum p becomes an

extended dipole of length �ijpj.

�ij = (F�1)ij:

(Bigatti& Susskind [hep-th/9908056])
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D-BRANES AND GAUGE THEORY (table)

Description
jF j
M2

s

wave-length

SYM small �M�1
s

DBI any �M
�1
s

NCG large �M�1
s
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NCG

A �eld theory or gauge theory on a noncom-

mutative space is de�ned as follows:

� Take the Lagrangian of the ordinary �eld

theory and replace every product of �elds

with a noncommutative ?-product.

� The ?-product is de�ned in momentum space

as:

�1(p) ?�2(q) � exp

�
i

2
�
kl
pkql

�
�1(p)�2(q):

� Alternatively, the �elds are functions of co-

ordinates that are noncommutative. [xk; xl] =

i�kl and then:

e
ip�x

? e
iq�x

� exp

�
i

2
�
kl
pkql

�
e
i(p+q)�x

:
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RESCALING OF METRIC - review

In the presence of a B-�eld (or F -�eld) dis-

tances become longer close to the D-brane.

(Seiberg & Witten)

A massless state with momentum p has energy

E = jpj far away from the D-brane but only

E = jpj=det(I +M�2
s B)

1

2 on the D-brane.

-��
B12�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��

��
-

��

��
-

E =
jpjr
1+B

2

M
4
s

E = jpj

D-brane
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DEFORMATIONS OF N = 4 SYM

From the list of ( Ferrara& Fronsdal& Za�aroni [hep-

th/9802203], Intriligator [hep-th/9811047]):

p SO(4) SU(4)R Dim Realization

2 Scalar 1 4 �g
YM

2 Scalar 10� 10 3 Mass

3 Tensor 1 6 NCSYM

3 Vector 15 5 ???
... ... ... ... ...

SO(4) Lorentz representation

SU(4)R R-symmetry representation

p Chiral primary is trf�(I1�I2 � � ��Ip)g
Dim The conformal dimension
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DEFORMATIONS OF N = 4 SYM (cont.)

L =
1

4g2
trfF��F

��g+
1

2g2

6X

I=1

trfD��
I
D
��Ig

+
1

2g2

6X

I<J

trf[�I
;�J ]

2
g+ fermions

At low energies, the Lagrangian for the N = 4

SYM on a noncommutative space looks like:

LNC = L+ �
��O�� + � � � :

O�� =
1

2g2
trfF��F

��
F�� � F��F

��
F��g

+
1

g2
trfF��

6X

I=1

@��
I
@
�
�
I �

1

4
F��

6X

I=1

@��
I
@
�
�
Ig

+fermions.

(Ferrara & Lledo & Za�aroni [hep-th/9805082])
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VECTOR OPERATOR

The vector operator is given by:

O� = itrfF��(D
��I�J �D��J�I)g

Note that there is another vector operator with

the same quantum numbers where F is re-

placed by the dual eF�� �
1

2
���

��F�� .
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QUESTION

Can we �nd a simple theory that

at low-energies is described as

the deformation of SU(N) N =

4 SYM

by the vector operator?
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DEFINITION OF DIPOLE THEORIES

A generalization of �eld-theories on commuta-

tive or noncommutative spaces:

� To each �eld �(x) assign a dipole-vector

L
�.

� The complex conjugate �eld �(x)y is as-

signed �L�.

� De�ne the dipole-product to be:

(�1~?�2)(x) � �1(x�
L2

2
)�2(x+

L1

2
):

� Associativity requires that �1~?�2 is assigned

L1+ L2.
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DEFINITION OF DIPOLE THEORIES (cont.)

� To insure associativity, we can pick a global

additive charge and a global vector ~L. A

�eld �a with charge Qa will have a dipole-

vector Qa
~L.

� More generally, in D-dimensions, we can

pick n global charges, and a D � n ma-

trix ��I (� = 1 : : : D) and (I = 1 : : : n). A

�eld �a with charges QIa will be assigned

a dipole-vector L� =
P
I�

�IQIa.

� Ordinary noncommutative geometry is a

special case with QI � pI, the momentum,

and � anti-symmetric.
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DEFINITION OF DIPOLE THEORIES (cont.)

Gauge �elds are assigned dipole-vector 0.

The covariant derivative becomes:

D��(x) = @��(x)� iA�(x)~?�(x) + i�(x)~?A�(x)

= @��(x)

� iA�(x�
L

2
)�(x) + i�(x)A�(x+

L

2
):

� represents a dipole that is charged under

U(N)
x�

L

2

� U(N)
x+L

2

.

i i
x�

L

2
x�

L

2
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COMPARISON WITH NCYM

Several properties of NCYM have simpler analogs

for dipole-theories. The dipole-theories have:

� A map to \local" variables (analogous to

Seiberg-Witten map for NCYM):

f�(x) � Pe

i
R
x

x�
L

2

A�dx
�

�(x)Pe
i
R
x

x+L

2

A�dx
�

:

� Compacti�cation on S1 with \rational" L =
2�p
q
Radius is equivalent to a local U(N)q

theory. (Analogous to compacti�cation of

NCYM on T
2 with rational �12 =

p
q
Area,

Bigatti [hep-th/9804120], Seiberg & Witten [hep-

th/9908142].)
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T-DUALITY IN NCG

On a noncommutative T2 of size (2�R1) �

(2�R2), with:

[x1; x2] = i�;

de�ne � �
2�R1R2

�
.

U(n) gauge theory on a noncommutative T2

with parameter � and with m units of magnetic

ux is equivalent to U(m) gauge theory on a

noncommutative T2 with parameter �1=� and

n units of magnetic ux.

The area and Yang-Mills coupling constant trans-

form as:

A! ��2A; g
YM
! ��1=2g

YM

(Connes&Douglas&Schwarz, Rie�el&Schwarz,

Brace&Morariu&Zumino, : : :, Seiberg&Witten, : : :)
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T-DUALITY (drawing)

@
@

�
�

U(n)

m units

U(m)

n units

�

1

��
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T-DUALITY (cont)

We introduce scalar �elds with twisted bound-

ary conditions:

�(x1;2�R2) = ei��(x1;0):

After T-duality � is periodic:

�(x1;2�R2) = �(x1;0);

but becomes a dipole along the 1st direction

with dipole-length: L = �R1 .

@
@

�
�

U(n)

m units

U(m)

n units

�

1

�
�

6
ei�

- L
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APPLICATION TO MATRIX-THEORY

� M(atrix)-theory is a (conjectured) formal-

ism for calculating amplitudes in various

theories of supergravity.

(Banks&Fischler&Shenker&Susskind)

� A supergravity background is associated with

a gauge �eld-theory and scattering ampli-

tudes in supergravity are calculated from

a large N limit of amplitudes in the �eld

theory.

� For 11D M-theory the gauge theory is 0+1D

SYM with 16 supersymmetries.

(Claudson&Halpern, Baake&Reinicke&Rittenberg,

Flume, deWitt&Hoppe&Nicolai, Witten)
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APPLICATION TOMATRIX-THEORY (cont)

� For 11D M-theory the gauge theory is 0+1D

SYM with 16 supersymmetries.

L =
1

2g2
trf

9X

I=0

_X2
I +
X

I<J

[XI ; XJ ]
2
g

+ fermions:

� For M-theory on T3 the M(atrix)-model is

N = 4 SYM compacti�ed on a dual T3.

DO DIPOLE-THEORIES PROVIDE ANY USE-

FULL MATRIX MODELS?
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APPLICATION TOMATRIX-THEORY (cont)

Compactify on a circle with a twist:

(x1; x2+ ix3) � (x1+2�R; ei�(x2+ ix3)):

The M(atrix)-model is 1+1D SYM with N =

16 compacti�ed on a circle of radius r (such

that g
YM

r = 1
MpR

) and two scalar �elds become

dipoles of length �R.

&%
'$

&%
'$

���

-

�

6

?

2�R

(Witten [hep-th/9710065], Cheung & Krogh & Mikhailov

& OJG [hep-th/9812172])
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TWISTED COMPACTIFICATIONS

� We can generalize this twisted compacti�-

cation of type-II string-theory for any em-

bedding of U(1) � Spin(8). The boundary

conditions are twisted by a Spin(8) rota-

tion of the transverse directions.

� We can compactify on T d with twists in a

U(1) subgroup of Spin(9 � d). They are

parameterized by d phases �1 : : : �d.

� T-duality compels us to add an option for

d dual twists: �1 : : : �d.

� A state with charge Q under U(1) has frac-

tional Kaluza-Klein momentum, related to

�i. It also has fractional string winding

number, related to �i!
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TWISTED COMPACTIFICATIONS-cont

� What is the low-energy description of N

Dd-brane probes for large T d?

� What is the generalization to M-theory with

U- instead of T-duality and M5-brane probes?

The answer to the �rst question is (d + 1)-

dimensional U(N) SYM with (9 � d) scalars.

They decompose into charged scalars under

the U(1) � Spin(9�d). A scalar � with charge

Q has boundary condions twisted by:

�(xk+2�Rk) = eiQ�k�(xk):

It also has a dipole-vector:

L = (Q�1R1; Q�2R2; : : : ; Q�dRd):
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PINNED-BRANES

� Can we �nd a background where transverse

uctuations of D-branes are described by

dipole-�elds?

� Backgrounds where D-branes are pinned

and transverse uctuations of D-branes are

massive �elds?

� Generalize to M5-branes and M2-branes?

�
�
�
�
�
�

��

��
�
�
�
�
�
�

��

��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
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PINNED-BRANES (cont.)

We would like to see what happens when we

turn on:

� BIi with one component transverse to the

brane, or

� BIJ with both components transverse to

the brane.

�
�
�
�
�
�

��

��
�
�
�
�
�
�

��

��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

6

I

- i

But such components can be completely gauged

away!
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Taub-NUT SPACE

A Taub-NUT space is a 4D manifold with met-

ric:

ds2 = R2U (dy�Aidx
i)2+U�1 d~x2; i= 1 : : :3;

where,

U =

 
1+

R

j~xj

!
�1

;

and Ai is the gauge �eld of a monopole cen-

tered at the origin.
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Taub-NUT SPACE (drawing)

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

R3

�
�
H

H ii ��
��

��
��

��

��

��

��
6

?
2R

���

origin

Taub-NUT space is a circle �bration with a

base R3 (only R2 is shown in the picture).
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Taub-NUT SPACE (properties)

This metric has a few properties that we will

utilize.

� It is a circle �bration over R3 when the

origin is excluded.

� The radius of the �ber shrinks to zero as

we approach the origin and becomes a con-

stant R as we approach in�nity.

� If we restrict to j~xj = r with constant r > 0.

the circle �bration is equivalent to the Hopf

�bration of S1 over S2.

� There is a U(1) isometry y ! y+ �. It has

one �xed point at the origin.

� The U(1) isometry acts nontrivially on the

tangent space to the point at the origin.
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TURNING ON B-FLUX

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

(7;8;9)

�
�
H

H ii ��
��

��
��

��

��

��

��
6

?
2R6

D3-brane
directions

�
�
�
�
��

3
6

2

A
A
A
A
AK

1

d

We put D3-branes at the center of the Taub-

NUT space and turn on a B16-ux at 1.
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SUPERGRAVITY SOLUTION - TAUB-NUT

WITH FLUX

Without the D3-branes the solution of a Taub-

NUT with B-�eld is:

B =
b

1 +
R6

(1+b2)r

dx5 ^ (dx6+
9X

7

Aidx
i);

e���0 =

vuuut 1+
R6

r

1+
R6

(1+b2)r

;

The metric is:

ds2 = dx20+ � � � dx22+ � � � dx25

+
1+

R6

r

1+
R6

(1+b2)r

dx21

+
1

1+
R6

(1+b2)r

(dx6 �
9X
7

Aidxi)
2

+

�
1+

R6

r

�
(dx27+ dx28+ dx29):
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SUPERGRAVITY SOLUTION (cont)

Note that near the origin the good coordinates

are
p
rdx6 and 1p

r

dx
i
(i = 7;8;9).

The origin is smooth with a �nite H = dB

�eld-strength and a �nite curvature.
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EFFECT OF B-FLUX ON BRANES

In general, a strong B-ux with one direction

along the Taub-NUT circle (direction 6th) can

have two kinds of e�ects on the branes at the

center of the Taub-NUT space, according to

the direction of the other index in B at 1:

� Transverse to the brane (e.g. B56) { pin-

ning.

� Parallel to the brane (e.g. B16) { dipole-

theory.

In the last case we have to rescale the direction

along the brane that is parallel to the B-�eld

by

r
1+ B

2

M4
p

.
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EFFECT OF B-FLUX - PINNING

1. The D3-branes are pinned to the origin by

a gravitational potential.

2. The transverse uctuations are described

by massive �elds.

3. The low-energy description is U(n) SYM

with N = 2 supersymmetry and a massive

adjoint hypermultiplet.
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EFFECT OF B-FLUX - DIPOLES

1. The D3-branes are not pinned to the origin

and are free to move.

2. The transverse uctuations are described

by dipole-�elds.

3. The low-energy description is SU(n) SYM

with N = 2 supersymmetry and a massless

dipole hypermultiplet.
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THE OVERALL U(1)

The U(1) factor probably becomes massive

Recall that for the quiver-theories on D3-branes

at Aq singularities the gauge group is at �rst

sight:

U(N)� U(N)� � � � � U(N)

But the relative U(1) factors become massive

through an interaction with an RR 2-form (Dou-

glas & Moore, [hep-th/9603167]):

1

2

Z
jdC(RR)

j
2+

Z
C(RR)

^F =)

Z
(A�+@� eC)2:

We expect a similar e�ect in our case. There

is probably an interaction of the form:Z
�����(C

(RR)
�� ~?F�� � F��~?C

(RR)
�� ):

which leads to:Z
d4x(A�(x+ L)�A�(x) + @�C)

2;

where C is the dual of an RR 2-form.
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EFFECT OF B-FLUX ON BRANES (table)

Dir E�ect SUSY symmetry

B56 pinning N = 2 SU(2)� U(1)

B16 dipoles N = 2 U(1)� SU(2)� U(1)

B12 NCG N = 4 SU(4)

B15 no e�ect N = 4 SU(4)

B45 no e�ect N = 4 SU(4)

Dir � Direction.

symmetry � Unbroken symmetry � SU(4)R
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BPS FORMULAS

In this setting, it is easy to calculate the mass

of BPS objects from BPS formulas of string

theory on T6.

We compactify all the directions along the D3-

branes so that they become particles.

The BPS formulas give us the mass of a par-

ticle as a function of the charges and the fun-

damental masses of the objects:

MTN =
1

g2s
M8
s R1R2R3R4R5R

2
6;

MD3 =
N

gs
M4
sR1R2R3:

and the B-ux.

We will always take the limit R5 !1.
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TRANSVERSE FLUCTUATIONS

We can also look for objects with nontrivial R-

symmetry quantum numbers. These would be

the quanta of uctuations of the D3-branes in

the transverse directions.

They transform nontrivially under rotations in

the directions 4 : : :9 transverse to the D3-branes.

Since translations of the coordinate of the 6th

circle at 1 get mapped to rotations at the

origin of the Taub-NUT space, we can simply

look for states with Kaluza-Klein momentum

in the 6th direction!
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PINNING

For a B-ux transverse to the D3-branes, we

set b �M
�2
s

B56 and

M =M
TN

+
1q

1 + b
2
M
D3:

The tension of the D3-brane is smaller at the

center of the Taub-NUT space and it is at-

tracted to the origin.

=)Con�rmed from the supergravity solution!

4 out of the 6 modes of the transverse uctu-

ations are massive with a mass:

M = bp
1+b2R6
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DIPOLES

For a B-ux with one direction along the D3-

branes, we set b �M�2
s
B16 and

M =M
TN

+M
D3; NO PINNING

The transverse uctuations have no mass but

4 out of 6 modes are dipoles (as we shall soon

con�rm).

A Kaluza-Klein excitation along the 1st direc-

tion has mass:

M
KK

=
1q

1+ b2R1

=)Requires rescaling:

eR1 �
q
1+ b2R1
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ELECTRIC FIELDS - THE SETTING
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2�R3

-�

2�R2

6

?

2�R1

6
E1

6

L

The electric ux E1 and the dipole ~L are in the

same direction.
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ELECTRIC FIELDS

How do the dipoles behave in an electric �eld?

U(N) N = 4 supersymmetric gauge-theory in

a box of size (2�R1) � (2�R2) � (2�R3) has

BPS sectors of di�erent electric uxes.

With k units of electric ux along the 1st di-

rection, the energy is:

Eux =
g2k2R1

4�NR2R3
:

For U(1) this would correspond to an electric

�eld of

E1 =
k

4�2R2R3
:

The BPS mass formula for d dipoles in a sector

of k units of electric ux is:

E =
g2(kR1+

L

2�
)2

4�NR1R2R3

= Eux + g2E1L+
g2L2

8�3R1R2R3
:
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ELECTRIC FIELDS - DETAILS

In the context of string-theory we set:

x =
1

g2
s

M
8
s
R1R2R3R4R5R

2
6;

y =
N

gs

M
4
s
R1R2R3;

w =
d

R6

; u=M
2
s
R1; b �M

�2
s

B16:

The BPS mass formula is:

m
2 = (1+ b

2)x2+ u
2+ w

2

+2

q
(1 + b

2)x2y2+ (u+ bw)2x2:

For R4; R5 !1 and MsRi
!1 (for i= 1;2;3)

this becomes:

M =
M

8
s
R1R2R3R4R5R

2
6

g2
s

+
NM

4
s
R1R2R3

gs

+
gs

N(1 + b2)R1R2R3

 
kR1+

bd

R6

!
2

:
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ELECTRIC FIELDS - DETAILS (cont.)

By studying KK excitations we learned that we

need to rescale:

eR1 �

q
1+ b2R1; egs � gsq

1+ b2
:

Therefore, the dipole length is:

L =
bq

1 + b2M2
s
R6

:
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ELECTRIC FIELDS - CONCLUSION

The dipole length is given by:

L =
bq

1 + b
2
M2

s
R6

:

Note that L�M
�1
s

requires R6 �M
�1
S

.

The T-dual picture would then be more suit-

able. (It is an NS5-brane with a transverse

circle and D4-branes that wrap around it with

a shift reminiscent of the \elliptic" brane con-

�gurations of Witten, [hep-th/9703166].)
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MAGNETIC FIELDS - THE SETTING
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The magnetic ux B3 is orthogonal to the dipole

~L direction.
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MAGNETIC FIELDS

How do the dipoles behave in a magnetic �eld?

U(N) N = 4 supersymmetric gauge-theory in a

box of size (2�R1)� (2�R2)� (2�R3) has BPS

sectors of di�erent magnetic uxes.

With k units of magnetic ux along the 3rd

direction, the energy is:

Eux =
�k2R3

g2NR1R2
:

For U(1) this would correspond to a magnetic

�eld of:

B3 =
k

4�2R1R2
:

The boundary conditions for x2 ! x2 + 2�R2

contain an extra gauge transformation with

� = e
ik

NR1
x1�

(� is a generator of U(N)).
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MAGNETIC FIELDS (cont.)

In the presence of a magnetic ux the dipole-

�elds are no-longer periodic. They acquire an

extra phase:

�(x1; x2+2�R2) = e

ik

NR1
(x1+L)

�(x1; x2)e
�

ik

NR1
x1

= e

ikL

NR1�(x1; x2):

There will be BPS states corresponding to Kaluza-

Klein excitations with mass:

M =
kL

2�NR1R2

:

We have also con�rmed that this is the case

with:

L =
bq

1 + b
2
M2

s
R6

:
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DIPOLES AS ARCHED STRINGS

A large R-symmetry charge =) Classical an-

gular momentum in the transverse directions.

D3-brane

' $
�

�	v

6

F

g
+

g
�

�	
6

-16
4

The dipole on a D3-brane is a string that arches

out into the 4 � 6 dimensions. The D3-brane

is stretched along the 1st direction (and di-

rections 2;3 that are not shown) and is at the

origin of the 4�6 plane. The generalized mag-

netic force F is perpendicular to the velocity

and the string.
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ARCHED STRINGS { ASSUMPTIONS

We have veri�ed that the strings emerge per-

pendicular to the D-brane.

We have neglected:

� Attraction between the end-points.

� Gravitational radiation to the bulk.

� Other relativistic e�ects.

This can be justi�ed by:

� A large rescaling factor

q
1+ b2.

� Small gs.
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GRAVITY DUAL - NOTATION

What is the gravity dual of the dipole theories

at N !1?

~n = parameterizes S5 and k~nk2 = 1;

M̂ 2 so(6); the dipole-vectors:

We expect that in the IR limit, r !1, a defor-

mation of AdS5�S
5 by a dimension-5 operator.
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GRAVITY DUAL { SOLUTION

What is the gravity dual of the dipole-theories?

To get the gravity dual, we probe with D2-

branes the dual of the twisted geometry. We

�nd the supergravity solution:

ds2q
4�g2N

=
1

r2
(dr2+ dx20+ dx21+ dx22)

+
1

r2+ �~nTM̂TM̂~n
dx23+ d~nTd~n:

The NSNS B-�eld is:

6X
a=1

B3adn̂a =
~nTM̂d~n

r2+ �~nTM̂TM̂~n
;

and the dilaton is:

e' =
gr

1+ �
r2
~nTM̂TM̂~n

; � � 4�g2N:
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THE (2;0)-THEORY

� There exists a 5+1D mysterious supercon-

formal �eld theory that is inherently strongly

coupled. (Witten)

� Its existence sheds light on S-duality of

N = 4 SYM. (Witten)

� The U(1) version of the theory has, instead

of a gauge �eld, Ai, a tensor �eld, e

Bij. Its

�eld strength Hijk is required to be anti-

self-dual:

Hijk = �

1

6
�ijklmnH

lmn
:
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(2;0)-THEORY (cont)

� The U(1) version also has 5 real scalars.

� It is the low-energy description of coinci-

dent M5-branes. The scalars correspond to

transverse uctuations of the M5-branes.

(Strominger)
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GENERALIZATION TO (2;0)-THEORY

� There exists a generalization of the dipole-

theories to a deformation of the (2;0)-theory.

� The theory is parameterized by a tensor

LIJ with dimensions of area.

� If we set L12 6= 0, The quanta of the

transverse uctuations are described not by

dipoles but by \discpoles" { objects that

have �xed area L12 in the 1� 2 plane.

� It can be realized by placing M5-branes at

the origin of a Taub-NUT space with a

large C �M
�3
p C126 turned on.

� The discpole tensor will then be (after the

necessary rescalings) L12 =
C

M3
pR6
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DISCPOLES (drawing)

� The boundary of the \discpole" is charged

under the tensor-�eld eBij.

� The boundary of the \discpole" is probably

dynamical.
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Discpoles in di�erent shapes and di�erent mo-

menta. They all have the same area, though.
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CONCLUSIONS

� Non Lorentz invariant theories with fun-

damental dipole-�elds naturally appear in

string-theory, M(atrix)-theory and noncom-

mutative geometry.

� They break Lorentz invariance stronger than

�eld-theories on Noncommutative spaces

(linearly in energy rather than quadratically).

� There is a generalization to a 6D theory

with disc-like objects. (Let's call them disc-

poles.)

� There is another extension of the (2;0)

theory that is a deformation by a relevant

vector operator of dimension-5.
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OPEN QUESTIONS

� What is the S-dual of the 4D SU(N) dipole-

theories?

� Time like dipole-vectors? Light-like dipole-

vectors?

Compare to Gomis & Mehen [hep-th/0005129]

and Aharony & Gomis & Mehen [hep-th/0006236].

� Dynamics of the boundary of the disc-poles?

� Extensions to probes of other U-duals of

twisted geometries.
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