DIPOLES, TWISTS,
NONCOMMUTATIVE GEOMETRY AND PINNED BRANES

December 2000

Ori Ganor

Princeton University

BASED ON:

- "Vector Deformations of $\mathcal{N}=4$ SYM, Pinned Branes and Arched Strings," [hep-th/0010072], K. Dasgupta, G. Rajesh and OG
- "Pinned Branes and New Non-Lorenz Invariant Theories," [hep-th/0002175], S. Chakravarty, K. Dasgupta, G. Rajesh and OG
- "Dipoles, Twists and Noncommutative Geometry," [hep-th/0008030],
A. Bergman and OG

GENERAL

Nowadays, a lot of effort is devoted by stringtheorists to noncommutative-geometry and fieldtheories on noncommutative-spaces. These are field-theories with higher-derivative interactions that break Lorentz-invariance.

In the framework of string-theory, can we find other simple theories that break Lorentz-invariance?

We studied theories that contain fundamental dipoles.

THREE QUESTIONS

- The transverse fluctuations of N D-branes are described by scalar fields in the adjoint representation $N \otimes \bar{N}$ of a $U(N)$ gaugetheory.

Can we construct examples in which the quanta of the transverse fluctuations are (N, \bar{N}) dipoles of the $U(N)$ gauge group?

- Noncommutative $\mathcal{N}=4 U(N)$ SYM is a deformation of the ordinary $\mathcal{N}=4$ SYM by a tensor operator of conformal dimension6. The theory also has a vector operator of conformal dimension-5. Can we find a simple theory that at low-energies is described by the vector deformation?

THREE QUESTIONS (cont.)

- Field-theories on a noncommutative T^{2} have a T-duality that acts as $\rho \rightarrow 1 / \rho$, where ρ is a dimensionless parameter that measures the area of the T^{2} in units of the noncommutativity length-scale.

Here all the fields are assumed to have periodic boundary conditions. What happens if we introduce phases such as

$$
\phi\left(x_{1}, 2 \pi R_{1}\right)=e^{i \alpha} \phi\left(x_{1}, 0\right)
$$

How do the phases affect the T-duality?

OUTLINE

- Noncommutative geometry - brief review.
- Deformations of $\mathcal{N}=4$ SYM - brief review.
- Definition of dipole theories.
- Applications:
- NonCommutative Geometry: T-duality.
- M(atrix)-Theory: Twists.
- Realization in String-Theory: Pinned Branes.
- Open Questions.

OUTLINE (cont.)

* Generalizations TO (2,0) - THEORY
* GRAVITY DUAL

NCG AND STRING THEORY - i

- N coincident p-dimensional D-branes are described at low energies $E \ll M_{s}$ by ($p+$ 1)-dimensional Supersymmetric Yang-Mills theory (Witten)
- The scalar fields are: a $U(N)$ gauge field A_{μ} and $(9-p)$ scalars Φ^{I} that are $N \times N$ matrices in the adjoint representation.
- The scalars have a potential $\operatorname{tr}\left\{\sum_{I<J}\left[\Phi^{I}, \Phi^{J}\right]^{2}\right\}$ that attains a minimum of 0 when all $(9-p)$ $N \times N$ matrices are diagonal.
- The N eigenvalues of Φ^{I} at the minimum of the potential describe the $I^{t h}$ transverse coordinates of the N branes.

NCG AND STRING THEORY - ii

- The description in terms of a $U(N)$ gauge theory with Lagrangian:
$\begin{aligned} \mathcal{L}_{Y M} \equiv & \frac{1}{4 g^{2}} \operatorname{tr}\left\{F_{\mu \nu} F^{\mu \nu}\right\}+\frac{1}{2 g^{2}} \operatorname{tr}\left\{\sum_{I} D_{\mu} \Phi^{I} D^{\mu} \Phi^{I}\right\} \\ & +\frac{1}{2 g^{2}} \operatorname{tr}\left\{\sum_{I<J}\left[\Phi^{I}, \Phi^{J}\right]^{2}+\cdots\right\},\end{aligned}$
is valid when $\left|F_{\mu \nu}\right| \ll M_{s}^{2}=\alpha^{\prime-1}$ and $|\Phi| \ll$ M_{s} and $\left|\partial_{\mu} \Phi\right| \ll M_{s}^{2}$.
- When $\alpha^{\prime} F \sim 1$ and $\left|\partial_{\mu} \Phi\right| \sim M_{s}$ but $\partial_{\mu} F$ and $\partial_{\mu} \partial_{\nu} \Phi$ can be neglected $\left(\left|\partial_{\mu} F\right| \ll M_{s}|F|\right)$, the correct Lagrangian is the Dirac-BornInfeld (DBI). For $U(1)$ it is:

$$
\mathcal{L}_{D B I} \equiv \frac{M_{s}^{(p+1)}}{g^{2}}
$$

$$
\sqrt{\operatorname{det}\left(\eta_{\mu \nu}+M_{s}^{-2} F_{\mu \nu}+M_{s}^{-4} \sum_{I} \partial_{\mu} \Phi^{I} \partial_{\nu} \Phi^{I}\right)} .
$$

NCG AND STRING THEORY - iii

Noncommutative geometry is related to the region $\left|F_{\mu \nu}\right| \gg M_{s}^{2}$ and the derivatives $\left|\partial_{\mu} F\right|$ are not small (i.e. $\left|\partial_{\mu} F\right|^{2} \sim|F|^{3}$).

We turn on a strong magnetic field $F_{i j} \gg M_{s}^{2}$ and examine the dynamics on a length scale of the order of $|F|^{-1 / 2} \ll M_{s}^{-1}$. (Douglas\&Hull, Connes\&Douglas\&Schwarz, Seiberg\&Witten, ...)

THIS IS WHAT WE SEE:

NCG AND STRING THEORY - iv

Every particle with momentum p becomes an extended dipole of length $\theta^{i j} p_{j}$.

$$
\theta^{i j}=\left(F^{-1}\right)^{i j} .
$$

(Bigatti\& Susskind [hep-th/9908056])

D-BRANES AND GAUGE THEORY (table)

Description	$\frac{\|F\|}{M_{s}^{2}}$	wave-length
SYM	small	$\gg M_{s}^{-1}$
DBI	any	$\gg M_{s}^{-1}$
NCG	Iarge	$\ll M_{s}^{-1}$

NCG

A field theory or gauge theory on a noncommutative space is defined as follows:

- Take the Lagrangian of the ordinary field theory and replace every product of fields with a noncommutative \star-product.
- The \star-product is defined in momentum space as:

$$
\Phi_{1}(p) \star \Phi_{2}(q) \equiv \exp \left\{\frac{i}{2} \theta^{k l} p_{k} q_{l}\right\} \Phi_{1}(p) \Phi_{2}(q) .
$$

- Alternatively, the fields are functions of coordinates that are noncommutative. $\left[x_{k}, x_{l}\right]=$ $i \theta_{k l}$ and then:

$$
e^{i p \cdot x} \star e^{i q \cdot x} \equiv \exp \left\{\frac{i}{2} \theta^{k l} p_{k} q_{l}\right\} e^{i(p+q) \cdot x} .
$$

RESCALING OF METRIC - review

In the presence of a B-field (or F-field) distances become longer close to the D-brane. (Seiberg \& Witten)

A massless state with momentum p has energy $E=|p|$ far away from the D-brane but only $E=|p| / \operatorname{det}\left(I+M_{s}^{-2} B\right)^{\frac{1}{2}}$ on the D-brane.

$$
E=|p|
$$

DEFORMATIONS OF $\mathcal{N}=4$ SYM

From the list of (Ferrara\& Fronsdal\& Zaffaroni [hepth/9802203], Intriligator [hep-th/9811047]):

p	$S O(4)$	$S U(4)_{R}$	Dim	Realization
2	Scalar	1	4	δg_{YM}
2	Scalar	$10 \oplus \overline{10}$	3	Mass
3	Tensor	1	6	NCSYM
3	Vector	15	5	$? ? ?$
$:$	$:$	\vdots	\vdots	\vdots

$S O(4)$ Lorentz representation $\operatorname{SU}(4)_{R} \quad$ R-symmetry representation

Chiral primary is $\left.\operatorname{tr}\left\{\Phi^{\left(I_{1}\right.} \Phi^{I_{2}} \ldots \Phi^{I_{p}}\right)\right\}$ The conformal dimension

DEFORMATIONS OF $\mathcal{N}=4$ SYM (cont.)

$$
\begin{aligned}
\mathcal{L}= & \frac{1}{4 g^{2}} \operatorname{tr}\left\{F_{\mu \nu} F^{\mu \nu}\right\}+\frac{1}{2 g^{2}} \sum_{I=1}^{6} \operatorname{tr}\left\{D_{\mu} \Phi^{I} D^{\mu} \Phi^{I}\right\} \\
& +\frac{1}{2 g^{2}} \sum_{I<J}^{6} \operatorname{tr}\left\{\left[\Phi^{I}, \Phi^{J}\right]^{2}\right\}+\text { fermions }
\end{aligned}
$$

At low energies, the Lagrangian for the $N=4$ SYM on a noncommutative space looks like:

$$
\mathcal{L}_{N C}=\mathcal{L}+\theta^{\mu \nu} \mathcal{O}_{\mu \nu}+\cdots
$$

$\mathcal{O}_{\mu \nu}=\frac{1}{2 g^{2}} \operatorname{tr}\left\{F_{\nu \rho} F^{\rho \tau} F_{\tau \mu}-F_{\mu \nu} F^{\rho \tau} F_{\rho \tau}\right\}$

$$
+\frac{1}{g^{2}} \operatorname{tr}\left\{F_{\mu \rho} \sum_{I=1}^{6} \partial_{\nu} \phi^{I} \partial^{\rho} \phi^{I}-\frac{1}{4} F_{\mu \nu} \sum_{I=1}^{6} \partial_{\rho} \phi^{I} \partial^{\rho} \phi^{I}\right\}
$$ + fermions.

(Ferrara \& Lledo \& Zaffaroni [hep-th/9805082])

VECTOR OPERATOR

The vector operator is given by:

$$
\mathcal{O}_{\mu}=i \operatorname{tr}\left\{F_{\mu \nu}\left(D^{\nu} \phi^{I} \phi^{J}-D^{\nu} \phi^{J} \phi^{I}\right)\right\}
$$

Note that there is another vector operator with the same quantum numbers where F is replaced by the dual $\widetilde{F}_{\mu \nu} \equiv \frac{1}{2} \epsilon_{\mu \nu}{ }^{\rho \tau} F_{\rho \tau}$.

QUESTION

Can we find a simple theory that

at low-energies is described as
the deformation of $\operatorname{SU}(N) N=$ 4 SYM
by the vector operator?

DEFINITION OF DIPOLE THEORIES

A generalization of field-theories on commutative or noncommutative spaces:

- To each field $\Phi(x)$ assign a dipole-vector L^{μ}.
- The complex conjugate field $\Phi(x)^{\dagger}$ is assigned $-L^{\mu}$.
- Define the dipole-product to be:

$$
\left(\Phi_{1} \tilde{\star} \Phi_{2}\right)_{(x)} \equiv \Phi_{1}\left(x-\frac{L_{2}}{2}\right) \Phi_{2}\left(x+\frac{L_{1}}{2}\right) .
$$

- Associativity requires that $\Phi_{1} \tilde{\star} \Phi_{2}$ is assigned $L_{1}+L_{2}$.

DEFINITION OF DIPOLE THEORIES (cont.)

- To insure associativity, we can pick a global additive charge and a global vector \vec{L}. A field Φ_{a} with charge Q_{a} will have a dipolevector $Q_{a} \vec{L}$.
- More generally, in D-dimensions, we can pick n global charges, and a $D \times n$ matrix $\Theta^{\mu I}(\mu=1 \ldots D)$ and $(I=1 \ldots n)$. A field Φ_{a} with charges $Q_{I a}$ will be assigned a dipole-vector $L^{\mu}=\sum_{I} \Theta^{\mu I} Q_{I a}$.
- Ordinary noncommutative geometry is a special case with $Q_{I} \equiv p_{I}$, the momentum, and Θ anti-symmetric.

DEFINITION OF DIPOLE THEORIES (cont.)

Gauge fields are assigned dipole-vector 0.

The covariant derivative becomes:

$$
\begin{aligned}
D_{\mu} \Phi(x) & =\partial_{\mu} \Phi(x)-i A_{\mu}(x) \tilde{\star} \Phi(x)+i \Phi(x) \tilde{\star} A_{\mu}(x) \\
& =\partial_{\mu} \Phi(x) \\
& -i A_{\mu}\left(x-\frac{L}{2}\right) \Phi(x)+i \Phi(x) A_{\mu}\left(x+\frac{L}{2}\right) .
\end{aligned}
$$

Φ represents a dipole that is charged under $U(N)_{x-\frac{L}{2}} \times U(N)_{x+\frac{L}{2}}$.
$\underset{\sim}{x-\frac{L}{2}} \quad \underset{0}{x}-\frac{L}{2}$

COMPARISON WITH NCYM

Several properties of NCYM have simpler analogs for dipole-theories. The dipole-theories have:

- A map to "local" variables (analogous to Seiberg-Witten map for NCYM):

$$
\widetilde{\Phi}(x) \equiv P e^{i \int_{x-\frac{L}{2}}^{x} A_{\mu} d x^{\mu}} \Phi(x) P e^{i \int_{x+\frac{L}{2}}^{x} A_{\mu} d x^{\mu}} .
$$

- Compactification on S^{1} with "rational" $L=$ $\frac{2 \pi p}{q}$ Radius is equivalent to a local $U(N)^{q}$ theory. (Analogous to compactification of NCYM on T^{2} with rational $\theta^{12}=\frac{p}{q}$ Area, Bigatti [hep-th/9804120], Seiberg \& Witten [hepth/9908142].)

T-DUALITY IN NCG

On a noncommutative T^{2} of size $\left(2 \pi R_{1}\right) \times$ ($2 \pi R_{2}$), with:

$$
\left[x_{1}, x_{2}\right]=i \theta,
$$

define $\rho \equiv \frac{2 \pi R_{1} R_{2}}{\theta}$.
$U(n)$ gauge theory on a noncommutative T^{2} with parameter ρ and with m units of magnetic flux is equivalent to $U(m)$ gauge theory on a noncommutative T^{2} with parameter $-1 / \rho$ and n units of magnetic flux.

The area and Yang-Mills coupling constant transform as:

$$
A \rightarrow \rho^{-2} A, \quad g_{\mathrm{YM}} \rightarrow \rho^{-1 / 2} g_{\mathrm{YM}}
$$

(Connes\&Douglas\&Schwarz, Rieffel\&Schwarz, Brace\&Morariu\&Zumino, ..., Seiberg\&Witten, ...)

T-DUALITY (drawing)

ρ
$U(n)$
m units
:---:
$U(m)$ n units

T-DUALITY (cont)

We introduce scalar fields with twisted boundary conditions:

$$
\phi\left(x_{1}, 2 \pi R_{2}\right)=e^{i \alpha} \phi\left(x_{1}, 0\right)
$$

After T-duality ϕ is periodic:

$$
\phi\left(x_{1}, 2 \pi R_{2}\right)=\phi\left(x_{1}, 0\right)
$$

but becomes a dipole along the $1^{\text {st }}$ direction with dipole-length: $L=\alpha R_{1}$.

APPLICATION TO MATRIX-THEORY

- M(atrix)-theory is a (conjectured) formalism for calculating amplitudes in various theories of supergravity.
(Banks\&Fischler\&Shenker\&Susskind)
- A supergravity background is associated with a gauge field-theory and scattering amplitudes in supergravity are calculated from a large N limit of amplitudes in the field theory.
- For 11D M-theory the gauge theory is 0+1D SYM with 16 supersymmetries.
(Claudson\&Halpern, Baake\&Reinicke\&Rittenberg, Flume, deWitt\&Hoppe\&Nicolai, Witten)

APPLICATION TO MATRIX-THEORY (cont)

- For 11D M-theory the gauge theory is 0+1D SYM with 16 supersymmetries.

$$
L=\frac{1}{2 g^{2}} \operatorname{tr}\left\{\sum_{I=0}^{9} \dot{X}_{I}^{2}+\sum_{I<J}\left[X_{I}, X_{J}\right]^{2}\right\}
$$

+ fermions.
- For M-theory on T^{3} the M (atrix)-model is $N=4$ SYM compactified on a dual T^{3}.

DO DIPOLE-THEORIES PROVIDE ANY USEFULL MATRIX MODELS?

APPLICATION TO MATRIX-THEORY (cont)

Compactify on a circle with a twist:

$$
\left(x_{1}, x_{2}+i x_{3}\right) \sim\left(x_{1}+2 \pi R, e^{i \alpha}\left(x_{2}+i x_{3}\right)\right) .
$$

The M(atrix)-model is $1+1 \mathrm{D}$ SYM with $N=$ 16 compactified on a circle of radius r (such that $g_{\mathrm{YM}} r=\frac{1}{M_{p} R}$) and two scalar fields become dipoles of length αR.

(Witten [hep-th/9710065], Cheung \& Krogh \& Mikhailov \& OJG [hep-th/9812172])

TWISTED COMPACTIFICATIONS

- We can generalize this twisted compactification of type-II string-theory for any embedding of $U(1) \subset \operatorname{Spin}(8)$. The boundary conditions are twisted by a $\operatorname{Spin}(8)$ rotation of the transverse directions.
- We can compactify on T^{d} with twists in a $U(1)$ subgroup of $\operatorname{Spin}(9-d)$. They are parameterized by d phases $\alpha_{1} \ldots \alpha_{d}$.
- T-duality compels us to add an option for d dual twists: $\beta_{1} \ldots \beta_{d}$.
- A state with charge Q under $U(1)$ has fractional Kaluza-Klein momentum, related to α_{i}. It also has fractional string winding number, related to β_{i} !

TWISTED COMPACTIFICATIONS-cont

- What is the low-energy description of N Dd-brane probes for large T^{d} ?
- What is the generalization to M-theory with U- instead of T-duality and M5-brane probes?

The answer to the first question is $(d+1)$ dimensional $U(N)$ SYM with $(9-d)$ scalars. They decompose into charged scalars under the $U(1) \subset \operatorname{Spin}(9-d)$. A scalar Φ with charge Q has boundary condions twisted by:

$$
\Phi\left(x_{k}+2 \pi R_{k}\right)=e^{i Q \alpha_{k}} \Phi\left(x_{k}\right)
$$

It also has a dipole-vector:

$$
L=\left(Q \beta_{1} R_{1}, Q \beta_{2} R_{2}, \ldots, Q \beta_{d} R_{d}\right)
$$

PINNED-BRANES

- Can we find a background where transverse fluctuations of D-branes are described by dipole-fields?
- Backgrounds where D-branes are pinned and transverse fluctuations of D-branes are massive fields?
- Generalize to M5-branes and M2-branes?

PINNED-BRANES (cont.)
We would like to see what happens when we turn on:

- $B_{I i}$ with one component transverse to the brane, or
- $B_{I J}$ with both components transverse to the brane.

But such components can be completely gauged away!

Taub-NUT SPACE

A Taub-NUT space is a 4D manifold with metric:
$d s^{2}=R^{2} U\left(d y-A_{i} d x^{i}\right)^{2}+U^{-1} d \vec{x}^{2}$,
$i=1 \ldots 3$,
where,

$$
U=\left(1+\frac{R}{|\vec{x}|}\right)^{-1}
$$

and A_{i} is the gauge field of a monopole centered at the origin.

Taub-NUT SPACE (drawing)

Taub-NUT space is a circle fibration with a base R^{3} (only R^{2} is shown in the picture).

Taub-NUT SPACE (properties)

This metric has a few properties that we will utilize.

- It is a circle fibration over R^{3} when the origin is excluded.
- The radius of the fiber shrinks to zero as we approach the origin and becomes a constant R as we approach infinity.
- If we restrict to $|\vec{x}|=r$ with constant $r>0$. the circle fibration is equivalent to the Hopf fibration of S^{1} over S^{2}.
- There is a $U(1)$ isometry $y \rightarrow y+\epsilon$. It has one fixed point at the origin.
- The $U(1)$ isometry acts nontrivially on the tangent space to the point at the origin.

TURNING ON B-FLUX

We put D3-branes at the center of the TaubNUT space and turn on a B_{16}-flux at ∞.

SUPERGRAVITY SOLUTION - TAUB-NUT WITH FLUX

Without the D3-branes the solution of a TaubNUT with B-field is:

$$
\begin{aligned}
B & =\frac{b}{1+\frac{R_{6}}{\left(1+b^{2}\right) r}} d x^{5} \wedge\left(d x^{6}+\sum_{7}^{9} A_{i} d x^{i}\right), \\
e^{\phi-\phi_{0}} & =\sqrt{\frac{1+\frac{R_{6}}{r}}{1+\frac{R_{6}}{\left(1+b^{2}\right) r}}},
\end{aligned}
$$

The metric is:

$$
\begin{aligned}
d s^{2}= & d x_{0}^{2}+\cdots d x_{2}^{2}+\cdots d x_{5}^{2} \\
& +\frac{1+\frac{R_{6}}{r}}{1+\frac{R_{6}}{\left(1+b^{2}\right) r}} d x_{1}^{2} \\
& +\frac{1}{1+\frac{R_{6}}{\left(1+b^{2}\right) r}}\left(d x_{6}-\sum_{7}^{9} A_{i} d x_{i}\right)^{2} \\
& +\left(1+\frac{R_{6}}{r}\right)\left(d x_{7}^{2}+d x_{8}^{2}+d x_{9}^{2}\right) .
\end{aligned}
$$

SUPERGRAVITY SOLUTION (cont)

Note that near the origin the good coordinates are $\sqrt{r} d x_{6}$ and $\frac{1}{\sqrt{r}} d x_{i}(i=7,8,9)$.

The origin is smooth with a finite $H=d B$ field-strength and a finite curvature.

EFFECT OF B-FLUX ON BRANES

In general, a strong B-flux with one direction along the Taub-NUT circle (direction $6^{\text {th }}$) can have two kinds of effects on the branes at the center of the Taub-NUT space, according to the direction of the other index in B at ∞ :

- Transverse to the brane (e.g. B_{56}) - pinning.
- Parallel to the brane (e.g. B_{16}) - dipoletheory.

In the last case we have to rescale the direction along the brane that is parallel to the B-field by $\sqrt{1+\frac{B^{2}}{M_{p}^{4}}}$.

EFFECT OF B-FLUX - PINNING

1. The D3-branes are pinned to the origin by a gravitational potential.
2. The transverse fluctuations are described by massive fields.
3. The low-energy description is $U(n)$ SYM with $\mathcal{N}=2$ supersymmetry and a massive adjoint hypermultiplet.

EFFECT OF B-FLUX - DIPOLES

1. The D3-branes are not pinned to the origin and are free to move.
2. The transverse fluctuations are described by dipole-fields.
3. The low-energy description is $S U(n)$ SYM with $\mathcal{N}=2$ supersymmetry and a massless dipole hypermultiplet.

THE OVERALL $U(1)$
The $U(1)$ factor probably becomes massive
Recall that for the quiver-theories on D3-branes at A_{q} singularities the gauge group is at first sight:

$$
U(N) \times U(N) \times \cdots \times U(N)
$$

But the relative $U(1)$ factors become massive through an interaction with an RR 2-form (Douglas \& Moore, [hep-th/9603167]):
$\frac{1}{2} \int\left|d C^{(R R)}\right|^{2}+\int C^{(R R)} \wedge F \Longrightarrow \int\left(A_{\mu}+\partial_{\mu} \widetilde{C}\right)^{2}$. We expect a similar effect in our case. There is probably an interaction of the form:

$$
\int \epsilon^{\mu \nu \sigma \tau}\left(C_{\mu \nu}^{(R R)} \tilde{\star} F_{\sigma \tau}-F_{\sigma \tau} \tilde{\star} C_{\mu \nu}^{(R R)}\right) .
$$

which leads to:

$$
\int d^{4} x\left(A_{\mu}(x+L)-A_{\mu}(x)+\partial_{\mu} C\right)^{2}
$$

where C is the dual of an RR 2-form.

EFFECT OF B-FLUX ON BRANES (table)

Dir	Effect	SUSY	symmetry
B_{56}	pinning	$N=2$	$S U(2) \times U(1)$
B_{16}	dipoles	$N=2$	$U(1) \times S U(2) \times U(1)$
B_{12}	NCG	$N=4$	$S U(4)$
B_{15}	no effect	$N=4$	$S U(4)$
B_{45}	no effect	$N=4$	$S U(4)$

Dir \equiv Direction.
symmetry \equiv Unbroken symmetry $\subset S U(4)_{R}$

BPS FORMULAS

In this setting, it is easy to calculate the mass of BPS objects from BPS formulas of string theory on T^{6}.

We compactify all the directions along the D3branes so that they become particles.

The BPS formulas give us the mass of a particle as a function of the charges and the fundamental masses of the objects:

$$
\begin{aligned}
M_{T N} & =\frac{1}{g_{s}^{2}} M_{s}^{8} R_{1} R_{2} R_{3} R_{4} R_{5} R_{6}^{2} \\
M_{D 3} & =\frac{N}{g_{s}} M_{s}^{4} R_{1} R_{2} R_{3} .
\end{aligned}
$$

and the B-flux.

We will always take the limit $R_{5} \rightarrow \infty$.

TRANSVERSE FLUCTUATIONS

We can also look for objects with nontrivial Rsymmetry quantum numbers. These would be the quanta of fluctuations of the D3-branes in the transverse directions.

They transform nontrivially under rotations in the directions 4... 9 transverse to the D3-branes.

Since translations of the coordinate of the $6^{t h}$ circle at ∞ get mapped to rotations at the origin of the Taub-NUT space, we can simply look for states with Kaluza-Klein momentum in the $6^{t h}$ direction!

PINNING

For a B-flux transverse to the D3-branes, we set $b \equiv M_{s}^{-2} B_{56}$ and

$$
M=M_{T N}+\frac{1}{\sqrt{1+b^{2}}} M_{D 3} .
$$

The tension of the D3-brane is smaller at the center of the Taub-NUT space and it is attracted to the origin.
\Longrightarrow Confirmed from the supergravity solution!

4 out of the 6 modes of the transverse fluctuations are massive with a mass:

$$
M=\frac{b}{\sqrt{1+b^{2}} R_{6}}
$$

DIPOLES

For a B-flux with one direction along the D3branes, we set $b \equiv M_{s}^{-2} B_{16}$ and

$$
M=M_{T N}+M_{D 3}, \quad \text { NO PINNING }
$$

The transverse fluctuations have no mass but 4 out of 6 modes are dipoles (as we shall soon confirm).

A Kaluza-Klein excitation along the $1^{\text {st }}$ direction has mass:

$$
M_{K K}=\frac{1}{\sqrt{1+b^{2}} R_{1}}
$$

\Longrightarrow Requires rescaling:

$$
\widetilde{R}_{1} \equiv \sqrt{1+b^{2}} R_{1}
$$

ELECTRIC FIELDS - THE SETTING

The electric flux \mathcal{E}_{1} and the dipole \vec{L} are in the same direction.

ELECTRIC FIELDS

How do the dipoles behave in an electric field?
$U(N) \mathcal{N}=4$ supersymmetric gauge-theory in a box of size $\left(2 \pi R_{1}\right) \times\left(2 \pi R_{2}\right) \times\left(2 \pi R_{3}\right)$ has BPS sectors of different electric fluxes.

With k units of electric flux along the $1^{\text {st }}$ direction, the energy is:

$$
E_{\text {flux }}=\frac{g^{2} k^{2} R_{1}}{4 \pi N R_{2} R_{3}} .
$$

For $U(1)$ this would correspond to an electric field of

$$
\mathcal{E}_{1}=\frac{k}{4 \pi^{2} R_{2} R_{3}} .
$$

The BPS mass formula for d dipoles in a sector of k units of electric flux is:

$$
\begin{aligned}
E & =\frac{g^{2}\left(k R_{1}+\frac{L}{2 \pi}\right)^{2}}{4 \pi N R_{1} R_{2} R_{3}} \\
& =E_{\text {flux }}+g^{2} \mathcal{E}_{1} L+\frac{g^{2} L^{2}}{8 \pi^{3} R_{1} R_{2} R_{3}} .
\end{aligned}
$$

ELECTRIC FIELDS - DETAILS

In the context of string-theory we set:

$$
\begin{aligned}
x & =\frac{1}{g_{s}^{2}} M_{s}^{8} R_{1} R_{2} R_{3} R_{4} R_{5} R_{6}^{2}, \\
y & =\frac{N}{g_{s}} M_{s}^{4} R_{1} R_{2} R_{3}, \\
w & =\frac{d}{R_{6}}, u=M_{s}^{2} R_{1}, b \equiv M_{s}^{-2} B_{16} .
\end{aligned}
$$

The BPS mass formula is:

$$
\begin{aligned}
m^{2}= & \left(1+b^{2}\right) x^{2}+u^{2}+w^{2} \\
& +2 \sqrt{\left(1+b^{2}\right) x^{2} y^{2}+(u+b w)^{2} x^{2}} .
\end{aligned}
$$

For $R_{4}, R_{5} \rightarrow \infty$ and $M_{s} R_{i} \rightarrow \infty$ (for $i=1,2,3$) this becomes:

$$
\begin{aligned}
M= & \frac{M_{s}^{8} R_{1} R_{2} R_{3} R_{4} R_{5} R_{6}^{2}}{g_{s}^{2}}+\frac{N M_{s}^{4} R_{1} R_{2} R_{3}}{g_{s}} \\
& +\frac{g_{s}}{N\left(1+b^{2}\right) R_{1} R_{2} R_{3}}\left(k R_{1}+\frac{b d}{R_{6}}\right)^{2}
\end{aligned}
$$

ELECTRIC FIELDS - DETAILS (cont.)

By studying KK excitations we learned that we need to rescale:

$$
\widetilde{R}_{1} \equiv \sqrt{1+b^{2}} R_{1}, \quad \widetilde{g}_{s} \equiv \frac{g_{s}}{\sqrt{1+b^{2}}}
$$

Therefore, the dipole length is:

$$
L=\frac{b}{\sqrt{1+b^{2}} M_{s}^{2} R_{6}} .
$$

ELECTRIC FIELDS - CONCLUSION

The dipole length is given by:

$$
L=\frac{b}{\sqrt{1+b^{2}} M_{s}^{2} R_{6}} .
$$

Note that $L \gg M_{s}^{-1}$ requires $R_{6} \gg M_{S}^{-1}$.
The T-dual picture would then be more suitable. (It is an NS5-brane with a transverse circle and D4-branes that wrap around it with a shift reminiscent of the "elliptic" brane configurations of Witten, [hep-th/9703166].)

MAGNETIC FIELDS - THE SETTING

The magnetic flux \mathcal{B}_{3} is orthogonal to the dipole \vec{L} direction.

MAGNETIC FIELDS

How do the dipoles behave in a magnetic field?
$U(N) N=4$ supersymmetric gauge-theory in a box of size $\left(2 \pi R_{1}\right) \times\left(2 \pi R_{2}\right) \times\left(2 \pi R_{3}\right)$ has BPS sectors of different magnetic fluxes.

With k units of magnetic flux along the $3^{\text {rd }}$ direction, the energy is:

$$
E_{\text {flux }}=\frac{\pi k^{2} R_{3}}{g^{2} N R_{1} R_{2}} .
$$

For $U(1)$ this would correspond to a magnetic field of:

$$
\mathcal{B}_{3}=\frac{k}{4 \pi^{2} R_{1} R_{2}} .
$$

The boundary conditions for $x_{2} \rightarrow x_{2}+2 \pi R_{2}$ contain an extra gauge transformation with $\Lambda=e^{\frac{i k}{N R_{1}} x_{1} \tau}(\tau$ is a generator of $U(N))$.

MAGNETIC FIELDS (cont.)

In the presence of a magnetic flux the dipolefields are no-longer periodic. They acquire an extra phase:

$$
\begin{aligned}
\Phi\left(x_{1}, x_{2}+2 \pi R_{2}\right) & =e^{\frac{i k}{N R_{1}}\left(x_{1}+L\right)} \Phi\left(x_{1}, x_{2}\right) e^{-\frac{i k}{N R_{1}} x_{1}} \\
& =e^{\frac{i k L}{N R_{1}}} \Phi\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

There will be BPS states corresponding to KaluzaKlein excitations with mass:

$$
M=\frac{k L}{2 \pi N R_{1} R_{2}} .
$$

We have also confirmed that this is the case with:

$$
L=\frac{b}{\sqrt{1+b^{2}} M_{s}^{2} R_{6}} .
$$

DIPOLES AS ARCHED STRINGS

A large R-symmetry charge \Longrightarrow Classical angular momentum in the transverse directions.

The dipole on a D3-brane is a string that arches out into the 4-6 dimensions. The D3-brane is stretched along the $1^{\text {st }}$ direction (and directions 2,3 that are not shown) and is at the origin of the 4-6 plane. The generalized magnetic force F is perpendicular to the velocity and the string.

ARCHED STRINGS - ASSUMPTIONS

We have verified that the strings emerge perpendicular to the D-brane.

We have neglected:

- Attraction between the end-points.
- Gravitational radiation to the bulk.
- Other relativistic effects.

This can be justified by:

- A large rescaling factor $\sqrt{1+b^{2}}$.
- Small g_{s}.

GRAVITY DUAL - NOTATION

What is the gravity dual of the dipole theories at $N \rightarrow \infty$?
$\vec{n}=$ parameterizes S^{5} and $\|\vec{n}\|^{2}=1$,
$\hat{M} \in s o(6), \quad$ the dipole-vectors.
We expect that in the IR limit, $r \rightarrow \infty$, a deformation of $A d S_{5} \times S^{5}$ by a dimension-5 operator.

GRAVITY DUAL - SOLUTION

What is the gravity dual of the dipole-theories? To get the gravity dual, we probe with D2branes the dual of the twisted geometry. We find the supergravity solution:

$$
\begin{aligned}
\frac{d s^{2}}{\sqrt{4 \pi g^{2} N}}= & \frac{1}{r^{2}}\left(d r^{2}+d x_{0}^{2}+d x_{1}^{2}+d x_{2}^{2}\right) \\
& +\frac{1}{r^{2}+\lambda \vec{n}^{T} \hat{M}^{T} \hat{M} \vec{n}} d x_{3}^{2}+d \vec{n}^{T} d \vec{n} .
\end{aligned}
$$

The NSNS B-field is:

$$
\sum_{a=1}^{6} B_{3 a} d \hat{n}_{a}=\frac{\vec{n}^{T} \hat{M} d \vec{n}}{r^{2}+\lambda \vec{n}^{T} \hat{M}^{T} \hat{M} \vec{n}},
$$

and the dilaton is:

$$
e^{\varphi}=\frac{g}{\sqrt{1+\frac{\lambda}{r^{2}} \vec{n}^{T} \hat{M}^{T} \hat{M} \vec{n}}}, \quad \lambda \equiv 4 \pi g^{2} N .
$$

THE (2, 0)-THEORY

- There exists a 5+1D mysterious superconformal field theory that is inherently strongly coupled. (Witten)
- Its existence sheds light on S-duality of $N=4$ SYM. (Witten)
- The $U(1)$ version of the theory has, instead of a gauge field, A_{i}, a tensor field, $\widetilde{B}_{i j}$. Its field strength $H_{i j k}$ is required to be anti-self-dual:

$$
H_{i j k}=-\frac{1}{6} \epsilon_{i j k l m n} H^{l m n}
$$

(2, 0)-THEORY (cont)

- The $U(1)$ version also has 5 real scalars.
- It is the low-energy description of coincident M5-branes. The scalars correspond to transverse fluctuations of the M5-branes.
(Strominger)

GENERALIZATION TO (2,0)-THEORY

- There exists a generalization of the dipoletheories to a deformation of the $(2,0)$-theory.
- The theory is parameterized by a tensor $L_{I J}$ with dimensions of area.
- If we set $L_{12} \neq 0$, The quanta of the transverse fluctuations are described not by dipoles but by "discpoles" - objects that have fixed area L_{12} in the $1-2$ plane.
- It can be realized by placing M5-branes at the origin of a Taub-NUT space with a large $C \equiv M_{p}^{-3} C_{126}$ turned on.
- The discpole tensor will then be (after the necessary rescalings) $L_{12}=\frac{C}{M_{p}^{3} R_{6}}$

DISCPOLES (drawing)

- The boundary of the "discpole" is charged under the tensor-field $\widetilde{B}_{i j}$.
- The boundary of the "discpole" is probably dynamical.

Discpoles in different shapes and different momenta. They all have the same area, though.

GENERALIZED TWISTS
IN A U(1) GAUGE THEORY T WITH GAUGE FIELD A :

* if we have a global

CHARGE $Q \Rightarrow$ WITH NOE THAR
CuRRENt J J
WE CAN ATTEMPT TO CORRELATE THE FRACTIONAL PART OF THE $V(1)$ CHARGE
WITH Q BY ADDNG A TWIST

$$
\begin{aligned}
& \Rightarrow U(1) \text { CHARGE } \in Z+Q \alpha \\
& \Rightarrow \mathcal{L} \rightarrow \mathcal{L}+\alpha A_{\mu} J^{r}+\cdots
\end{aligned}
$$

GENERALIZED TWISTS:
EXAMPLES

$$
\begin{aligned}
& * T^{\prime}=\frac{M-\text { THEORY }}{T^{R} \times R^{10-n, 1}} \\
& \text { geo } \text { inicd }\left\{\begin{array}{l}
U(1)=\text { TRANSLATION }
\end{array}\right. \\
& \text { trust }\left\{\begin{array}{l}
Q=S O(10-R) \text { ANGULAR } \\
\text { MOMENTUM }
\end{array}\right. \\
& \text { * } \tau=M-\text { THEORY } / T^{2} \times R^{10-2,1}
\end{aligned}
$$

$$
\begin{aligned}
& *\left\{\begin{aligned}
\tau= & M-T H E J R Y / M A N I F O L D W \\
& =(1) \\
& \text { ONE OF Ht H }
\end{aligned}\right.
\end{aligned}
$$

MORE ON DISCPOLES M- THEORY ON NDD
AN M2-BRANE TWIST:

$\binom{12-$ WRAPPED }{ M2- BRANE }$\in 2 \vec{\theta}_{2}$
m2- brang charge ez+Q α

PROBE WITH
M5-BRANES:
EI THER
$v(1)$ C $50(4)$ \uparrow
Rotation in 3,4,5,6

* WRAPPED $1,2,7,8,9 \Rightarrow$ Discpoh (TENSOM L 12
* PARTIALLY $1,7,8,9,10$.
\Rightarrow Pinned Massive Tleory (VECTOR) L_{1}

CONCLUSIONS

- Non Lorentz invariant theories with fundamental dipole-fields naturally appear in string-theory, M(atrix)-theory and noncommutative geometry.
- They break Lorentz invariance stronger than field-theories on Noncommutative spaces (linearly in energy rather than quadratically).
- There is a generalization to a 6D theory with disc-like objects. (Let's call them discpoles.)
- There is another extension of the $(2,0)$ theory that is a deformation by a relevant vector operator of dimension-5.

OPEN QUESTIONS

- What is the S-dual of the 4D $S U(N)$ dipoletheories?
- Time like dipole-vectors? Light-like dipolevectors?

Compare to Gomis \& Mehen [hep-th/0005129] and Aharony \& Gomis \& Mehen [hep-th/0006236].

- Dynamics of the boundary of the disc-poles?
- Extensions to probes of other U-duals of twisted geometries.

