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In recent years there’s been renewed interest in string
compactifications as approaches to real-world
phenomenology (KKLT, landscapes...). Much of the interest
has revolved around type II compactifications with fluxes
and (anti-)branes.

At the same time, there’s been a smaller community
interested in understanding analogous issues in heterotic
string compactifications. To compactify a heterotic string,
one needs to specify not only an underlying space (possibly
with B field fluxes), but also a nonabelian gauge field over
that space, satisfying certain conditions.

Historically that nonabelian gauge field has made heterotic
strings complicated to understand.
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For one example, for a susy heterotic string
compactification, the nonabelian gauge field must define a
holomorphic vector bundle, and furthermore must satisfy
the “Donaldson-Uhlenbeck-Yau” PDE

gi Fi = 0

(close to large radius), descending ultimately from
demanding that the susy variation of the 10D gaugino
vanish.
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Metric dependence of the DUY PDE:

On a Kähler manifold, the Kähler cone splits into a finite
number of subcones, with different moduli space in
each subcone

Over a cpx nonKähler mfld, either
no gauge fields satisfying the DUY PDE,
the Gauduchon cone (replacing the Kähler cone)
breaks into infinitely many subcones, such that even
infinitesimal metric variations will break the DUY
PDE.

(D term constraints)
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Nonperturbative corrections to spacetime superpotentials:

(This will be the subject of today’s talk.)
Roughly, two sources:

Gauge instantons – sometimes a ’t Hooft effective
action will correct a tree-level superpotential. (See e.g.
Dine-Seiberg’s old work on N = 1 susy in 4d.)

Worldsheet instantons – these arise from strings
wrapping minimal-area 2-cycles in the spacetime,
known as “holomorphic curves.”

I’ll concentrate on the latter class.
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In type II strings, worldsheet instanton corrections have a
long history and are well-understood nowadays.
(Gromov-Witten, etc)

However, the heterotic analogues of these computations,
for the most part, have not been developed.
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Classes of superpotential terms

To be specific, imagine that we have compactified a
heterotic string on a CY 3-fold with a rank 3 vector bundle,
breaking an E8 to E6, and so the low-energy theory
contains 27’s and 27’s in addition to singlets.

Charged matter couplings e.g. 27
3
. When the gauge bundle

= tangent bundle, these are computed by the “A model
topological field theory,” and correspond to
Gromov-Witten invariants, essentially. For more general
gauge bundles, no tech exists.

(cont’d ....)
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Classes of superpotential terms

Charged matter couplings e.g. 27
3. When the gauge bundle

= tangent bundle, these are computed by the “B model
topological field theory,” and are purely classical – no
nonperturbative (in α′) corrections. For more general
gauge bundles, no tech exists.

Gauge singlet matter couplings. When the gauge bundle =
tangent bundle, the previous two classes could be
computed by well-known math tricks, but no such tricks
exist for gauge singlets. Turns out that in “many” cases,
individual worldsheet instanton contributions are
nonzero but cancel out when you add them all up,
resulting in no net nonperturbative correction.
(Dine-Seiberg-Wen-Witten, Silverstein-Witten,
Candelas et al, Beasley-Witten)
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What I’m going to talk about today are nonperturbative

corrections to e.g. 27
3 and, later, 27

3 couplings.

(Why only nonperturbative? Why no perturbative
corrections in α′? Answer: forbidden by Kähler axion.)
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There’s another, more formal, motivation for what I’ll
describe today, namely: (0,2) mirror symmetry.

Ordinary mirror symmetry: X1 ↔ X2, X1, X2 CY’s

(0,2) mirror symmetry: (X1, E1) ↔ (X2, E2) where E1, E2 are
bundles on X1, X2

(0,2) mirror symmetry is poorly understood at present.
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Recently, Adams-Basu-Sethi studied (0,2) mirrors. They
applied old work of Morrison-Plesser, more recently
explained by Hori-Vafa, to (0,2) GLSM’s, to make some
predictions for (0,2) mirrors in some relatively simple cases.

They also made some predictions for analogues of 27
3

superpotential terms, or equivalently product structures in
heterotic chiral rings, which we verified, and is part of the
subject of today’s talk.

Stringy corrections to superpotentials – p.12/75



Outline

review A model TFT, half-twisted (0,2) TFT

review correlation f’n computations in A model, describe
analogue for (0,2) models

formal structure similar; (0,2) generalizes A model
compactification issues; not only M, but bundles on
M

apply GLSM’s; not only naturally compactify M, but
also naturally extend the bundles

Adams-Basu-Sethi prediction

Analogue for B model

Consistency conditions in closed string B model
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As outlined before, when the gauge bundle = tangent

bundle, the 27
3 and analogous couplings are computed by

a 2d TFT called the “A model.”

What I’ll be describing amounts to a (0,2) analogue or
generalization of the ordinary A model.

First: what is the A model?
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The 2D TFT’s are obtained by changing the worldsheet
fermions: worldsheet spinors 7→ worldsheet scalars &
vectors.

Concretely, that means if we start with the nonlinear sigma
model

gi∂φ
i∂φ + igiψ


−Dzψ

i
− + igiψ


+Dzψ

i
+ + Riklψ

i
+ψ


+ψ

k
−ψ

l
−

then we deform the Dψ’s by changing the spin connection
term. Since J ∼ ψψ, this amounts to making the
modification

L 7→ L ±
1

2
ωJ ⇐⇒ T 7→ T ±

1

2
∂J
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More formally (useful for computation), A model:

gi∂φ
i∂φ + igiψ


−Dzψ

i
− + igiψ


+Dzψ

i
+ + Riklψ

i
+ψ


+ψ

k
−ψ

l
−

ψi
−(≡ χi) ∈ Γ((φ∗T 0,1X)∨) ψi

+(≡ ψi
z) ∈ Γ(K ⊗ φ∗T 1,0X)

ψı
−(≡ ψı

z) ∈ Γ(K ⊗ φ∗T 0,1X) ψı
+(≡ χı) ∈ Γ((φ∗T 1,0X)∨)
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Massless states

Since we no longer have worldsheet spinors, we no longer
sum over spin sectors. In effect, the only surviving sector in
this field theory is the RR sector of the original theory.

So, part of the 2D TFT story is that we’re only considering
RR sectors (consistent b/c no worldsheet spinors).

So, massless spectrum computations are done in RR
sector only. Otherwise, proceed much as usual – states are
built as Q-invariant objects, where Q is a subset of susy,
which in fact corresponds to the scalar fields.
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Massless states

Under the scalar supercharge,

δφi ∝ χi, δφı ∝ χı

δχi = 0, δχı = 0

δψi
z 6= 0, δψı

z = 0

States (Q-cohomology):

O ∼ bi1···ipı1···ıqχ
ı1 · · ·χıqχi1 · · ·χip ↔ Hp,q(X)

Q ↔ d
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The A model TFT is, first and foremost, still a QFT.

But, if you only consider correlation functions between
Q-invariant massless states, then the correlation functions
reduce to purely zero-mode computations – (usually) no
meaningful contribution from Feynman propagators or
loops, and the correlators are independent of insertion
positions.

Some of this you’ve seen elsewhere – eg in 4d N = 1 susy
models, correlation functions involving, roughly, products of
chiral operators, are independent of insertion position
(Cachazo-Douglas-Seiberg-Witten). (Basic pt: worldsheet

deriv ∝ Q
α̇

commutators, which vanish; same idea in 2d.)
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More generally, TFT’s are special kinds of QFT’s which
contain a “topological subsector” of correlators whose
correlation functions reduce to purely zero mode
calculations. Since they reduce to zero mode calculations,
we can get the exact answer (instead of merely some
asymptotic expansion) for the correlation function merely by
doing a bit of math.

Put more simply still, TFT’s allow us to reduce a priori
computationally difficult physics problems to easy math
problems.
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“Half-twisted” (0,2) model:

gi∂φ
i∂φ + ihabλ

b
−Dzλ

a
− + igiψ


+Dzψ

i
+ + Fiabψ

i
+ψ


+λ

a
−λ

b
−

λa
− ∈ Γ(φ∗E) ψi

+ ∈ Γ(K ⊗ φ∗T 1,0X)

λb
− ∈ Γ(K ⊗ φ∗E) ψı

+ ∈ Γ((φ∗T 1,0X)∨)

RR states (Q cohomology):

O ∼ bı1···ına1···ap
ψı1

+ · · ·ψın
+λ

a1

− · · · λ
ap

− ↔ Hn(X,ΛpE∨)

When E = TX, reduces to the A model above, since
Hp,q(X) = Hq(X,Λq(TX)∨).
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Symmetry properties of states

A model:

Hp,q(X) ∼= Hn−p,n−q(X)∗ for compact n-dim’l X

(0,2) model:

Hq(X,ΛpE∨) ∼= Hn−q(X, (Λr−pE∨) ⊗ (ΛtopE ⊗KX))∗

for compact n-dim’l X, rank r E
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We’ll assume ΛtopE∨ ∼= KX , in add’n to anomaly
cancellation ch2(E) = ch2(TX)

recovers symmetry property
Hq(X,ΛpE∨) ∼= Hn−q(X,Λr−pE∨)

makes path integral measure well-defined

essential for correlation functions

in CY compactification, guarantees a left-moving U(1)
that is essential for spacetime gauge symmetry
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Anomaly cancellation

We just outlined why we’ll assume ΛtopE∨ ∼= KX .

We’ll also assume ch2(E) = ch2(TX).

This is the “anomaly cancellation” condition arising from the
Green-Schwarz mechanism

dH = tr F ∧ F − tr R ∧R

This condition also manifests itself in the worldsheet theory,
and can be derived (as we’ll see later) for massive 2D
QFT’s w/ non-CY targets.
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Why work with the A model, or this “half-twisted” theory?
Why not work directly in physical untwisted theories?

Reason: the twisted theories give same answer, with less
work.

Consider 3-point functions.

A model:
It’s an old story that

< ψψφ >phys,II =< ψψψ >A

b/c the spectral flow operator encoding φ↔ ψ is equivalent
to twisting the theory.
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Why is including the spectral flow operator equivalent to
twisting?

Very briefly, one twists by adding
∫

(1/2)ωψψ =
∫

(1/2)ωJ to
action. If bosonize J ∼ ∂φ, then the term ∼

∫

Rφ. By
concentrating curvature at points, so R ∼ δ2(z − z0), we see
that twisting ∼ inserting exp(φ) ∼ spectral flow.
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3-point functions, cont’d
(0,2) model:
No longer have left-moving N = 2 susy, but do have a
left-moving U(1) that becomes U(1)R on the (2,2) locus, and
is crucial for gauge properties.

Ex: E is rank 3, breaking E8 to E6. E6 is built from
SO(10) × U(1).

27 = 10−1 ⊕ 161/2 ⊕ 12

so 27
3 calculated as < ψ

16
ψ

16
φ10 >phys,het

For same reasons as for the A model,

< ψ
16
ψ

16
φ10 >phys,het =< ψψψ >half−twisted
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Classical correlation functions

A model:
For X compact, n-dim’l, have n χi zero modes and n χı zero
modes, plus bosonic zero modes ∼ X, so

< O1 · · · Om >=

∫

X
Hp1,q1(X) ∧ · · · ∧Hpm,qm(X)

Selection rule from left-, right-moving U(1)’s:
∑

i pi =
∑

i qi = n. Thus

< O1 · · · Om >∼

∫

X
(top-form)
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Classical correlation functions

(0,2) model:
Here we have n ψı

+ zero modes and r λa zero modes, so

< O1 · · · Om >=

∫

X
Hq1(X,Λp1E∨) ∧ · · · ∧Hqm(X,ΛpmE∨)

Selection rule from left-, right-moving U(1)’s:
∑

i qi = n,
∑

i pi = r. Thus

< O1 · · · Om >∼

∫

X
Htop(X,ΛtopE∨)

When ΛtopE∨ ∼= KX , then the integrand is a top-form.

Next: worldsheet instantons
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Worldsheet instantons

A model:

Here, moduli space of bosonic zero modes = moduli space
of worldsheet instantons, M.

We’ll assume M is smooth, and review its compactification
later.

Here again, correlation f’ns

< O1 · · · Om >∼

∫

M

(top form)
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Worldsheet instantons

(0,2) model:
In addition to M, the bundle E on X induces a bundle (of λ
zero modes) F on M:

F ≡ R0π∗α
∗E

where α : Σ ×M → X, and π : Σ ×M → M.
On the (2,2) locus, where E = TX, have F = TM (fixed cpx
structure on worldsheet)

When no excess zero modes (R1π∗α
∗E = 0 = R1π∗α

∗TX),

ΛtopE∨ ∼= KX

ch2(E) = ch2(TX)

}

GRR
=⇒ ΛtopF∨ ∼= KM
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Worldsheet instantons

(0,2) model, cont’d

Correlation functions look like

< O1 · · · Om >∼

∫

M

Htop(M,ΛtopF∨)

(no excess zero modes)

Classically, the integrand was a top-form b/c ΛtopE∨ ∼= KX .

Here, the integrand is a top form b/c (GRR) ΛtopF∨ ∼= KM.
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Cohomology onX 7→ cohomology onM

A model:

Each element of Hp,q(X) plus a point p on the worldsheet Σ
define an element of Hp,q(M),

by,

pullback along α|p×M, where α : Σ ×M → X.
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Cohomology onX 7→ cohomology onM

(0,2) model:
Each element of Hq(X,ΛpE∨) plus point p on worldsheet Σ
define an element of Hq(M,ΛpF∨):

1. first pullback along α|p×M to get an element of
Hq(M,Λp(α∗E)∨|p×M)

2. next use map

F (≡ π∗α
∗E) −→ α∗E|p×M

to define map

Λp (α∗E)∨ |p×M −→ ΛpF∨

When E = TX, this reduces to the A model map.
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Excess zero modes

A model:
Use 4-fermi term

∫

ΣRiklχ
iχψkψl.

For each cpx pair of ψ zero modes, bring down one copy of
4-fermi term above.
Result:

< O1 · · · Om >∼

∫

M

H
P

pi,
P

qi(M) ∧ ctop(Obs)

where

Obs = bundle over M defined by ψ zero modes

= R1π∗α
∗TX

= “obstruction bundle”
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Excess zero modes

A model, cont’d:

Selection rules:
∑

pi =
∑

qi = #χ− #ψ zero modes.

#ψ zero modes = rank Obs
#χ zero modes = dim M

∑

pi + (rank Obs) =
∑

qi + (rank Obs) = dim M

=⇒ integrand is a top form

Stringy corrections to superpotentials – p.36/75



Excess zero modes

(0,2) model:

Assume rk R1π∗α
∗E = rk R1π∗α

∗TX = n.

Use 4-fermi term
∫

Σ Fiabψ
i
+ψ


+λ

a
−λ

b
−.

ψ
+ ∼ TM = R0π∗α

∗TX λa
− ∼ F = R0π∗α

∗E

ψi
+ ∼ Obs = R1π∗α

∗TX λb
− ∼ F1 ≡ R1π∗α

∗E

Each 4-fermi ∼ H1(M,F∨ ⊗F1 ⊗ (Obs)∨).

< O1 · · · Om > ∼

∫

M

H
P

qi

(

M,Λ
P

piF∨
)

∧

Hn
(

M,ΛnF∨ ⊗ ΛnF1 ⊗ Λn(Obs)∨
)
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Excess zero modes

(0,2) model, cont’d:
Selection rules:

∑

qi + n = dim M
∑

pi + n = rank F

and by assumption, rk F1 = rk Obs = n.

ΛtopE∨ ∼= KX

ch2(E) = ch2(TX)

}

GRR
=⇒ ΛtopF∨ ⊗ ΛtopF1 ⊗ Λtop(Obs)∨ ∼= KM

Once again, integrand is a top-form.
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We just presented an ansatz for interpreting 4-fermi terms
in (0,2) models, and observed that GRR ⇒ integrand a
top-form, as needed.

But why does it reduce to (2,2) case when E = TX?

Answer: Atiyah classes

Stringy corrections to superpotentials – p.39/75



Atiyah classes

Consider the curvature of a connection on a hol’ bundle E
on X:

Fiab

Bianchi: ∂F = 0, so [F ] ∈ H1
(

X,Ω1
X ⊗ E∨ ⊗ E

)

.

Since chr(E) ∝ tr F ∧ · · · ∧ F (r times), the Chern classes of
E are encoded in

H1
(

X,Ω1
X ⊗ E∨ ⊗ E

)

∧ · · · ∧H1
(

X,Ω1
X ⊗ E∨ ⊗ E

)

= Hr
(

X,Ωr
X ⊗ E∨ ⊗ E

)
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Let’s specialize for a moment to E = TX, so F = TM.
Each (0,2) 4-fermi term generates a factor of

H1
(

M,F∨ ⊗F1 ⊗ (Obs)∨
) E=TX

= H1
(

M,Ω1
M ⊗ (Obs)∨ ⊗ Obs

)

→ same gp that contains the Atiyah class of Obs bundle

Bringing down (n = rk Obs) factors generates

Hn
(

M,Ωn
M ⊗ Λtop(Obs)∨ ⊗ ΛtopObs

)

which contains ctop(Obs).

Thus, our (0,2) ansatz generalizes (2,2) obstruction bdles
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Compactifications of moduli spaces

In order to make sense of expressions such as
∫

M

(top form)

we need M to be compact.

Problem: spaces of honest holomorphic maps not compact

Ex: Degree 1 maps P
1 → P

1 = group manifold of SL(2,C)

How to solve? Regularize the 2d QFT: compactify M.
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Compactifications of moduli spaces

We just argued that to make sense of formal calculations,
must compactify M, i.e. add some measure-zero pieces
that make M compact.

Furthermore, in the (0,2) case, need to extend F , F1 over
the compactification, in a way consistent with symmetries.

How to compactify? One way (Morrison-Plesser; Givental)
uses gauged linear sigma models. We’ll follow their lead.
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Gauged linear sigma models

(2,2) case:
A chiral superfield in 2d contains

φ cpx boson
ψ+, ψ− cpx fermions
F auxiliary field

Ex: A GLSM describes P
N−1 as, N chiral superfields each

of charge 1 w.r.t. gauged U(1).

D-terms:
∑

|φi|
2 = r =⇒ φ’s span S2N−1

Gauge-invariants: S2N−1/U(1) = P
N−1
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Gauged linear sigma models

Can use GLSM’s to describe more general toric varieties;
look like, some chiral superfields + gauged U(1)’s
Can describe CY’s by adding superpotential; zero locus of
bosonic potential = CY

1. massive 2D QFT’s, not CFT’s

2. linear kinetic terms make analysis of some aspects of
QFT easier than in a NLσM

Today I’ll only consider (mostly massive) theories w/ toric
targets.
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(0,2) GLSM’s

(0,2) chiral superfield Φ (0,2) fermi superfield Λ

φ (cpx boson) ψ− (cpx fermion)
ψ+ (cpx fermion) F (aux field)

Together, form (2,2) chiral multiplet.

The fermi superfields have an important quirk: Although
D+Φ = 0 for Φ chiral, can permit D+Λ = E for nonzero E
obeying D+E = 0. This constrains the superpotential;
details soon....

Can describe a toric variety target as a collection of (0,2)
chiral superfields with some gauged U(1)’s.
The (left-moving) fermi multiplets define bundles.
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Bundles on toric varieties

Ex: Reducible case, E = ⊕aO(~na).

In GLSM have fermi superfields Λa w/ charges ~na under
some U(1)’s

Ex: Kernel,

0 −→ E −→ ⊕aO(~na)
F i

a−→ ⊕iO(~mi) −→ 0

Have fermi superfields Λa as above, plus chiral superfields
pi of charges ~mi, plus superpotential term piF

i
a(φ).

Resulting Yukawa couplings ψ+iF
i
aλ

a give mass to any λ not
in ker F , hence, E = ker F .
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Bundles on toric varieties

Ex: Cokernel,

0 −→ O⊕k Ei
a−→ ⊕aO(~na) −→ E −→ 0

Have fermi superfields Λa w/ charges ~na as above, plus k
neutral chiral superfields Σi, where D+Λa = ΣiE

i
a.

Ex: Monad,

0 −→ O⊕k Ei′

a−→ ⊕aO(~na)
F i

a−→ ⊕iO(~mi) −→ 0

Have Σi′, Λa, pi as above, w/ superpotential and susy
transformation.
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Anomaly cancellation

Let ~na denote charges of left-moving fermions, ~qi denote
charges of right-moving fermions.

Anom’ cancellation implies
∑

a

nt
an

s
a =

∑

i

qtiq
s
i

for each s, t

This implies, but is slightly stronger than, ch2(E) = ch2(TX).

We’ll also assume
∑

a n
t
a =

∑

i q
t
i for each t, which implies,

but is slightly stronger than, c1(E) = c1(TX).
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Linear sigma model compactifications

Basic idea:

1. expand fields in a basis of zero modes; if xi has
charges ~qi, then zero modes are xi ∈ Γ(P1,O(~qi · ~d))

2. coefficients are homogeneous coordinates on M

3. build M like a Higgs moduli space (symplectic quotient)
(a) exclude those zero modes that force the xi to lie in

excluded set for all points on worldsheet
(b) the zero modes of xi have same U(1) charges as the

original xi
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Linear sigma model compactifications

Ex: P
N−1

Has N chiral superfields x1, · · · , xN , one gauged U(1), each
xi has charge 1.

The gauge instantons of the GLSM become the worldsheet
instantons of the NLσM.

Moduli space of degree d maps here:

xi ∈ Γ(O(1 · d))

= xi0u
d + xi1u

d−1v + · · · + xidv
d

where u, v are homogeneous coordinates on worldsheet
(P1).
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Linear sigma model compactifications

Ex, cont’d

The (xij) are homogeneous coord’s on M. Omit point
where all xi ≡ 0. The (xij) have same U(1) charges as xi for
each xi, thus

M = P
N(d+1)−1
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Induced bundles

The same ideas allow us to induce bundles on LSM moduli
spaces.

Just as worldsheet fields define line bundles on target,
expand in zero modes, and coefficients define line bundles
on M.

Next: examples....
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Induced bundles

Ex: completely reducible bundles, E = ⊕aO(~na)

The left-moving fermions are completely free (mod action of
the gauge group).

Expand each fermion in zero modes, take coeff’s to define
line bundles on M.
Here, λa

− has charges ~na. Expand

λa
− = λa0

− u
~na·~d+1 + λa1

− u
~na·~dv + · · ·

Each λai
− ∼ O(~na) on M. Thus,

F = ⊕aH
0
(

P
1,O(~na · ~d)

)

⊗C O(~na)
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Induced bundles

Ex (completely reducible bundles), cont’d

Similarly,

F1 = ⊕aH
1
(

P
1,O(~na · ~d)

)

⊗C O(~na)
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Induced bundles

Ex: Cokernel

0 −→ O⊕m −→ ⊕aO(~na) −→ E −→ 0

In add’n to fermi superfields Λa for the O(~na), recall have
chiral superfields Σj for the O’s. As before, expand fields in
basis of zero modes and interpret coefficients as line
bundles on M.

0 → ⊕m
1 H

0
(

O(0 · ~d)
)

⊗O → ⊕aH
0
(

O(~na · ~d)
)

⊗O(~na)

→ F

→ ⊕m
1 H

1
(

O(0 · ~d)
)

⊗O → ⊕aH
1
(

O(~na · ~d)
)

⊗O(~na)

→ F1 → 0
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Induced bundles

Ex: Cokernel, cont’d

Since H1(P1,O) = 0, this simplifies to

0 −→ O⊕m −→ ⊕aH
0
(

O(~na · ~d)
)

⊗O(~na) −→ F −→ 0

F1
∼= ⊕aH

1
(

P
1,O(~na · ~d)

)

⊗C O(~na)
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Check (2,2) locus

The tangent bundle of a (cpt, smooth) toric variety X can be
expressed in the form

0 −→ O⊕k −→ ⊕iO(~qi) −→ TX −→ 0

where the ~qi are the charges of the chiral superfields.

Applying previous ansatz,

0 −→ O⊕k −→ ⊕iH
0
(

P
1,O(~qi · ~d)

)

⊗C O(~qi) −→ F −→ 0

F1
∼= ⊕iH

1
(

P
1,O(~qi · ~d)

)

⊗C O(~qi)

but this F is automatically TM for M a LSM moduli space,
exactly as desired.
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Check (2,2) locus

Also, F1 =obstruction bundle.

Check:
ctop(F1) =

∏

~na·~d<0

c1(O(~na))
−~na·d−1
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Similar ideas hold for other bundles appearing in (0,2)
GLSM’s.

In all cases: so long as the original gauge bundle satisfied
GLSM anomaly cancellation, the induced bundles F , F1

have the desired symmetry properties.

Also, if a given bundle does not satisfy GLSM anomaly
cancellation, then the induced bundles F , F1 often won’t
have the desired symmetry properties.
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Presentation-dependence

Here’s an example of what can happen with GLSM anomaly
cancellation.
Consider the tangent bundle T of P

1 × P
1. This has (at

least) 3 presentations:

0 −→ O2 −→ O(1, 0)2 ⊕O(0, 1)2 −→ T −→ 0

0 −→ O(1, 0)2 ⊕O(0, 2) −→ T −→ 0

T ∼= O(2, 0) ⊕O(0, 2)

The same bundle, but only the first presentation satisfies
GLSM anomaly cancellation. Next: compute F ....
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Presentation-dependence

LSM M = P
2d1+1 × P

2d2+1

Induced bundles:

F ∼= TP
2d1+1 × P

2d2+1

F ∼= π∗1TP
2d1+1 ⊕⊕2d2+1

1 O(0, 2)

F ∼= ⊕2d1+1
1 O(2, 0) ⊕⊕2d2+1

1 O(0, 2)

These are isomorphic on the interior of M, on the honest
maps, but differ over the compactification.

Only in the first case (which was the only one to satisfy
GLSM anomaly cancellation) is ΛtopF∨ ∼= KM.
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Adams-Basu-Sethi prediction

Adams-Basu-Sethi studied a massive 2d theory describing
P

1 × P
1 with a bundle given by a deformation of the tangent

bundle.

From analysis of duality in the corresponding massive (0,2)
gauged linear sigma model, they made some conjectures
for correlation f’ns, which they expressed in terms of a
“heterotic quantum cohomology ring.”
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Chiral rings

The idea of a chiral ring should be familiar from 4d susy
gauge theories, e.g. Cachazo-Douglas-Seiberg-Witten.

4d N = 1 pure SU(N) SYM 2d susy CP
N−1 model

SN = Λ3N xN = q

W = S
(

1 + log(Λ3N/SN )
)

W = Σ
(

1 + log(ΛN/ΣN )
)

Konishi Konishi
etc etc

where for the CP
N model, the x is identified with a

generator of H2(CP
N ,Z), and so the physical ring relation

looks like a modification of the std cohomology ring
C[x]/(xN = 0), yielding “quantum cohomology” ring
C[x]/(xN = q).
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Quantum cohomology

More concretely, the quantum cohomology ring of CP
N tells

us that correlation functions are:

< xk >=

{

qm if k = mN +N − 1

0 else

Ordinarily use (2,2) worldsheet susy to argue for existence
of a quantum cohomology ring.

Adams-Basu-Sethi conjectured they might exist for (0,2)

ES-Katz checked correlation f’ns, found ring structure

Adams-Distler-Ernebjerg found gen’l argument for (0,2)
ring structure
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Adams-Basu-Sethi prediction

Adams-Basu-Sethi studied a massive 2d theory describing
P

1 × P
1 with a bundle given by a deformation of the tangent

bundle, with a deformation specified by two parameters ε1,
ε2.

From analysis of duality in the corresponding massive (0,2)
gauged linear sigma model, they conjectured that the
“quantum cohomology ring” should be a deformation of the
usual ring:

X̃2 = exp(it2)

X2 − (ε1 − ε2)XX̃ = exp(it1)

where the ti are Kähler parameters describing the sizes of
the P

1’s, and X, X̃ are the two generators.
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Adams-Basu-Sethi prediction

Conjectured relations:

X̃2 = exp(it2)

X2 − (ε1 − ε2)XX̃ = exp(it1)

What do those ring relations really mean? For ex:

< X̃4 > = < 1 > exp(2it2) = 0

< XX̃3 > = < (XX̃)X̃2 >

= < XX̃ > exp(it2) = exp(it2)

< X2X̃2 > = < X2 > exp(it2) = (ε1 − ε2) exp(it2)

< X3X̃ > = exp(it1) + (ε1 − ε2)
2 exp(it2)

< X4 > = 2(ε1 − ε2) exp(it1) + (ε1 − ε2)
3 exp(it2)
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Adams-Basu-Sethi prediction

To be brief, using exactly the methods described so far
(compute M, F , compute induced sheaf cohomology on M
in terms of Cech reps on toric cover, calculate ∧’s on M &
integrate), we precisely reproduced the results above.

(We calculated 4-pt interactions, and a grad student wrote a
computer program to calculate higher-pt interactions.)
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(0,2) B model analogue

So far I’ve outlined the (0,2) analogue of the A model. What
about the B model?

Recall they differ by the choice of left twist:

A model B model
ψi
− ∈ Γ((φ∗T 0,1X)∨) ψi

− ∈ Γ(K ⊗ (φ∗T 0,1X)∨)

ψı
− ∈ Γ(K ⊗ (φ∗T 0,1X)∨) ψı

− ∈ Γ((φ∗T 0,1X)∨)

One can define analogous (0,2) versions:

A analogue B analogue
λa
− ∈ Γ((φ∗E)∨) λa

− ∈ Γ(K ⊗ (φ∗E)∨)

λa
− ∈ Γ(K ⊗ φ∗E) λa

− ∈ Γ(φ∗E)
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(0,2) B model analogue

A analogue B analogue
λa
− ∈ Γ((φ∗E)∨) λa

− ∈ Γ(K ⊗ (φ∗E)∨)

λa
− ∈ Γ(K ⊗ φ∗E) λa

− ∈ Γ(φ∗E)

Note that in the (0,2) version, we can go A ↔ B by switching
E ↔ E∨.

So, once you know the (0,2) analogue of the A model, you
also know the (0,2) analogue of the B model – the same
model generalizes both simultaneously.
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Consistency conditions on (2,2) locus

Recall our (0,2) A model analogue had the following
constraint on the gauge bundle E :

ΛtopE∨ ∼= KX

To get the B model analogue, we replace E with E∨, and so
have another constraint:

ΛtopE ∼= KX

Put together, these constraints imply

K∨
X

∼= KX =⇒ K2
X

∼= O
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Consistency conditions on (2,2) locus

We’re used to saying the closed string B model is
well-defined only on Calabi-Yau’s (KX

∼= O), but we just
derived instead the condition that K2

X
∼= O.

And, in fact, it’s an obscure fact that consistency of the
closed string B model merely requires K2

X
∼= O, not actually

KX
∼= O.
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Consistency conditions on (2,2) locus

Implicit in old expressions for B model correlation f’ns,
Kodaira-Spencer.

Loop calculation yields ambiguous result, as it cannot
sense torsion, and K2

X
∼= O ⇒ c1 torsion

Careful analysis of anomaly cancellation yields the
desired result

Check: Serre duality correctly maps massless spectrum
into itself

Exs: Enriques surfaces, hyperelliptic surfaces

Open string B model requires stronger condition:
K ∼= O
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Summary

review A model TFT, half-twisted (0,2) TFT

review correlation f’n computations in A model, describe
analogue for (0,2) models

formal structure similar; (0,2) generalizes A model
compactification issues; not only M, but bundles on
M

apply GLSM’s; not only naturally compactify M, but
also naturally extend the bundles

Adams-Basu-Sethi prediction

Analogue for B model

Consistency conditions in closed string B model
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Thank you for your time!
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