A Heterotic Standard Model

Volker Braun

November 3, 2005

Overview

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

hep-th/0410055: Elliptic Calabi-Yau Threefolds with $\mathbb{Z}_3 \times \mathbb{Z}_3$ Wilson Lines

hep-th/0501070: A Heterotic Standard Model

hep-th/0502155: A Standard Model from the $E_8 \times E_8$ Heterotic Superstring

hep-th/0505041: Vector Bundle Extensions, Sheaf Cohomology, and the Heterotic Standard Model

hep-th/0509051: Heterotic Standard Model Moduli

hep-th/0510142: Moduli Dependent μ -Terms in a Heterotic Standard Model

- **❖** Introduction
- ❖ An Organizational Principle
- ❖ Wilson Line Breaking
- ❖ More Group Theory
- ❖ Yet More Group Theory
- **❖** Wish List

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Introduction

Introduction

❖ Introduction

- ❖ An Organizational Principle
- ❖ Wilson Line Breaking
- ❖ More Group Theory
- ❖ Yet More Group Theory
- **❖** Wish List

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

• Geometric compactification of the $E_8 \times E_8$ heterotic string.

Introduction

❖ Introduction

- ❖ An Organizational Principle
- ❖ Wilson Line Breaking
- ❖ More Group Theory
- ❖ Yet More Group Theory
- ❖ Wish List

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

- Geometric compactification of the $E_8 \times E_8$ heterotic string.
- d = 4, $\mathcal{N} = 1$ \Rightarrow stable background.

Introduction

❖ Introduction

- ❖ An Organizational Principle
- ❖ Wilson Line Breaking
- ❖ More Group Theory
- ❖ Yet More Group Theory
- ❖ Wish List

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

- Geometric compactification of the $E_8 \times E_8$ heterotic string.
- d = 4, $\mathcal{N} = 1$ \Rightarrow stable background.
- $SU(3)_C \times SU(2)_L \times U(1)_Y$.

Introduction

❖ Introduction

- ❖ An Organizational Principle
- ❖ Wilson Line Breaking
- ❖ More Group Theory
- ❖ Yet More Group Theory
- ❖ Wish List

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

- Geometric compactification of the $E_8 \times E_8$ heterotic string.
- d = 4, $\mathcal{N} = 1$ \Rightarrow stable background.

Introduction

❖ Introduction

- ❖ An Organizational Principle
- ❖ Wilson Line Breaking
- ❖ More Group Theory
- ❖ Yet More Group Theory
- ❖ Wish List

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

- Geometric compactification of the $E_8 \times E_8$ heterotic string.
- d = 4, $\mathcal{N} = 1$ \Rightarrow stable background.
- BNUXBY&/BNUX2Y&/K/NUXXX.
- $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$ \Rightarrow proton decay suppressed.

Introduction

❖ Introduction

- ❖ An Organizational Principle
- ❖ Wilson Line Breaking
- ❖ More Group Theory
- ❖ Yet More Group Theory
- ❖ Wish List

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

- Geometric compactification of the $E_8 \times E_8$ heterotic string.
- d = 4, $\mathcal{N} = 1$ \Rightarrow stable background.
- $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$ \Rightarrow proton decay suppressed.
- No exotic matter.

Introduction

❖ Introduction

- ❖ An Organizational Principle
- ❖ Wilson Line Breaking
- ❖ More Group Theory
- ❖ Yet More Group Theory
- ❖ Wish List

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

- Geometric compactification of the $E_8 \times E_8$ heterotic string.
- d = 4, $\mathcal{N} = 1$ \Rightarrow stable background.
- $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$ \Rightarrow proton decay suppressed.
- No exotic matter.
- All of the ordinary matter fields (including right-handed Neutrino).

An Organizational Principle

Introduction

❖ Introduction

❖ An Organizational Principle

- **❖** Wilson Line Breaking
- ❖ More Group Theory
- ❖ Yet More Group Theory
- ❖ Wish List

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Ancient Lore: Spin(10) GUT with $\mathbb{Z}_3 \times \mathbb{Z}_3$ Wilson lines "works":

16 of Spin(10): Breaks into one family of quarks and leptons including a right-handed Neutrino.

 $\overline{16}$ of Spin(10): Anti-family.

 $\underline{10} = \overline{\underline{10}}$ of Spin(10): Higgs and color triplets.

An Organizational Principle

Introduction

❖ Introduction

❖ An Organizational Principle

- **❖** Wilson Line Breaking
- ❖ More Group Theory
- ❖ Yet More Group Theory
- ❖ Wish List

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Ancient Lore: Spin(10) GUT with $\mathbb{Z}_3 \times \mathbb{Z}_3$ Wilson lines "works":

16 of Spin(10): Breaks into one family of quarks and leptons including a right-handed Neutrino.

 $\overline{\mathbf{16}}$ of Spin(10): Anti-family.

 $\underline{10} = \overline{\underline{10}}$ of Spin(10): Higgs and color triplets.

Compactification scale \sim GUT scale ... but nice way to package representations.

Wilson Line Breaking

Introduction

- **❖** Introduction
- ❖ An Organizational Principle

❖ Wilson Line Breaking

- ❖ More Group Theory
- ❖ Yet More Group Theory
- ❖ Wish List

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

$$Spin(10) \supset SU(3) \times SU(2) \times U(1) \times U(1) \times \mathbb{Z}_3 \times \mathbb{Z}_3$$

$$\left\{ \begin{array}{c} \text{Standard Model} \\ \text{gauge group} \end{array} \right\} \times U(1)_{B-L} \times \left\{ \text{Wilson lines} \right\}$$

 $\mathbb{Z}_3 \times \mathbb{Z}_3$ is smallest Wilson line possible.

Wilson Line Breaking

Introduction

- **❖** Introduction
- ❖ An Organizational Principle

❖ Wilson Line Breaking

- ❖ More Group Theory
- ❖ Yet More Group Theory
- ❖ Wish List

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

$$Spin(10) \supset SU(3) \times SU(2) \times U(1) \times U(1) \times \mathbb{Z}_3 \times \mathbb{Z}_3$$

$$\underline{16} = \chi_1^2 \chi_2(\underline{3}, \underline{2}, 1, 1) \oplus \chi_1^2(\underline{1}, \underline{1}, 6, 3) \oplus \\
\oplus \chi_1^2 \chi_2^2(\overline{\underline{3}}, \underline{1}, -4, -1) \oplus \chi_2^2(\overline{\underline{3}}, \underline{1}, 2, -1) \oplus \\
\oplus (\underline{1}, \overline{\underline{2}}, -3, -3) \oplus \chi_1(\underline{1}, \underline{1}, 0, 3)$$

$$\underline{10} = \chi_1(\underline{1}, \underline{2}, 3, 0) \oplus \chi_1 \chi_2(\underline{3}, \underline{1}, -2, -2) \oplus \\
\oplus \chi_1^2(\underline{1}, \overline{\underline{2}}, -3, 0) \oplus \chi_1^2 \chi_2^2(\overline{\underline{3}}, \underline{1}, 2, 2)$$

Wilson Line Breaking

Introduction

- **❖** Introduction
- ❖ An Organizational Principle

❖ Wilson Line Breaking

- ❖ More Group Theory
- ❖ Yet More Group Theory
- ❖ Wish List

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

$$Spin(10) \supset SU(3) \times SU(2) \times U(1) \times U(1) \times \mathbb{Z}_3 \times \mathbb{Z}_3$$

$$\underline{\mathbf{16}} = \chi_1^2 \chi_2(\underline{\mathbf{3}}, \underline{\mathbf{2}}, 1, 1) \oplus \chi_1^2(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 6, 3) \oplus \\
\oplus \chi_1^2 \chi_2^2(\overline{\mathbf{3}}, \underline{\mathbf{1}}, -4, -1) \oplus \chi_2^2(\overline{\mathbf{3}}, \underline{\mathbf{1}}, 2, -1) \oplus \\
\oplus (\underline{\mathbf{1}}, \overline{\mathbf{2}}, -3, -3) \oplus \chi_1(\underline{\mathbf{1}}, \underline{\mathbf{1}}, 0, 3)$$

$$\underline{\mathbf{10}} = \chi_1(\underline{\mathbf{1}}, \underline{\mathbf{2}}, 3, 0) \oplus \chi_1 \chi_2(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -2, -2) \oplus \\
\oplus \chi_1^2(\underline{\mathbf{1}}, \overline{\mathbf{2}}, -3, 0) \oplus \chi_1^2 \chi_2^2(\overline{\mathbf{3}}, \underline{\mathbf{1}}, 2, 2)$$

Right-handed Neutrino

More Group Theory

Introduction

- **❖** Introduction
- ❖ An Organizational Principle
- ❖ Wilson Line Breaking
- ❖ More Group Theory
- ❖ Yet More Group Theory
- ❖ Wish List

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

$$G = \mathbb{Z}_3 \times \mathbb{Z}_3 = G_1 \times G_2$$

Fix generators g_1 and g_2 .

Characters (=1-d representations): Denote generators by χ_1 and χ_2 , where $(\omega = e^{\frac{2\pi i}{3}})$

$$\chi_1(g_1) = \omega \qquad \chi_1(g_2) = 1$$
 $\chi_2(g_1) = 1 \qquad \chi_2(g_2) = \omega$

All other characters are products of χ_1 and χ_2 .

Yet More Group Theory

Introduction

- **❖** Introduction
- ❖ An Organizational Principle
- ❖ Wilson Line Breaking
- ❖ More Group Theory
- ❖ Yet More Group Theory
- **❖** Wish List

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

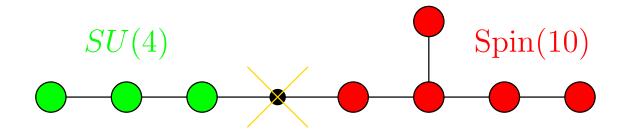
Spectral Sequences

A New Heterotic Standard Model

Conclusion

Maximal regular subgroup

$$SU(4) \times \mathrm{Spin}(10) \subset E_8$$
:



The adjoint of E_8 (fermions in the $E_8 \times E_8$ heterotic string) decomposes as

$$\underline{\mathbf{248}} = \big(\underline{\mathbf{1}},\underline{\mathbf{45}}\big) \oplus \big(\underline{\mathbf{15}},\underline{\mathbf{1}}\big) \oplus \big(\underline{\mathbf{4}},\underline{\mathbf{16}}\big) \oplus \big(\overline{\mathbf{4}},\overline{\mathbf{16}}\big) \oplus \big(\underline{\mathbf{6}},\underline{\mathbf{10}}\big)$$

Introduction

- **❖** Introduction
- ❖ An Organizational Principle
- ❖ Wilson Line Breaking
- ❖ More Group Theory
- ❖ Yet More Group Theory

❖ Wish List

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

To make use of this group theory, we would like

• A Calabi-Yau threefold X with $\mathbb{Z}_3 \times \mathbb{Z}_3$ fundamental group.

Introduction

- **❖** Introduction
- ❖ An Organizational Principle
- ❖ Wilson Line Breaking
- ❖ More Group Theory
- ❖ Yet More Group Theory

❖ Wish List

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

To make use of this group theory, we would like

- A Calabi-Yau threefold X with $\mathbb{Z}_3 \times \mathbb{Z}_3$ fundamental group.
- The Calabi-Yau should be torus fibered.

Introduction

- **❖** Introduction
- An Organizational Principle
- ❖ Wilson Line Breaking
- ❖ More Group Theory
- ❖ Yet More Group Theory

❖ Wish List

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

To make use of this group theory, we would like

- A Calabi-Yau threefold X with $\mathbb{Z}_3 \times \mathbb{Z}_3$ fundamental group.
- The Calabi-Yau should be torus fibered.
- A $SU(4) \subset E_8$ instanton leaves Spin(10) unbroken, so we want a rank 4 stable holomorphic vector bundle \mathcal{V} on X.

Introduction

- **❖** Introduction
- ❖ An Organizational Principle
- ❖ Wilson Line Breaking
- ❖ More Group Theory
- ❖ Yet More Group Theory

❖ Wish List

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

To make use of this group theory, we would like

- A Calabi-Yau threefold X with $\mathbb{Z}_3 \times \mathbb{Z}_3$ fundamental group.
- The Calabi-Yau should be torus fibered.
- A $SU(4) \subset E_8$ instanton leaves Spin(10) unbroken, so we want a rank 4 stable holomorphic vector bundle \mathcal{V} on X.
- With the "right" cohomology groups (low energy spectrum).

The Calabi-Yau

- ❖ Calabi-Yau Introduction
- ❖ Calabi-Yau
 Construction
- ❖ Calabi-Yau Properties
- ❖ Group Actions on the Base I
- ❖ Group Actions on the Base II
- ❖ Invariant Cohomology
- ❖ Divisors on the Base
- ❖ Divisors on the Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

The Calabi-Yau

Calabi-Yau Introduction

Introduction

The Calabi-Yau

- ❖ Calabi-Yau Introduction
- ❖ Calabi-Yau Construction
- ❖ Calabi-Yau Properties
- ❖ Group Actions on the Base I
- ❖ Group Actions on the Base II
- ❖ Invariant Cohomology
- ❖ Divisors on the Base
- ❖ Divisors on the Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Calabi-Yau threefold X with $\pi_1(X) = \mathbb{Z}_3 \times \mathbb{Z}_3$

Calabi-Yau Introduction

Introduction

The Calabi-Yau

❖ Calabi-Yau Introduction

- Calabi-Yau Construction
- ❖ Calabi-Yau Properties
- ❖ Group Actions on the Base I
- ❖ Group Actions on the Base II
- ❖ Invariant Cohomology
- ❖ Divisors on the Base
- ❖ Divisors on the Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Work with

Have in mind

Simply connected Calabi-Yau threefold \widetilde{X} with free $\mathbb{Z}_3 \times \mathbb{Z}_3$ action

Calabi-Yau threefold X with $\pi_1(X) = \mathbb{Z}_3 \times \mathbb{Z}_3$

Calabi-Yau Introduction

Introduction

The Calabi-Yau

❖ Calabi-Yau Introduction

- ❖ Calabi-Yau Construction
- ❖ Calabi-Yau Properties
- ❖ Group Actions on the Base I
- ❖ Group Actions on the Base II
- ❖ Invariant Cohomology
- ❖ Divisors on the Base
- ❖ Divisors on the Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Work with

Have in mind

Simply connected Calabi-Yau threefold \widetilde{X} with free $\mathbb{Z}_3 \times \mathbb{Z}_3$ action

Calabi-Yau threefold X with $\pi_1(X) = \mathbb{Z}_3 \times \mathbb{Z}_3$

elliptically fibered

(torus fibered with section)

torus fibered

(assuming $\mathbb{Z}_3 \times \mathbb{Z}_3$ preserves fibration)

Introduction

The Calabi-Yau

- ❖ Calabi-Yau Introduction
- ❖ Calabi-Yau
 Construction
- ❖ Calabi-Yau Properties
- ❖ Group Actions on the Base I
- ❖ Group Actions on the Base II
- ❖ Invariant Cohomology
- ❖ Divisors on the Base
- ❖ Divisors on the Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Start with two dP_9 surfaces B_1 and B_2 .

Introduction

The Calabi-Yau

❖ Calabi-Yau Introduction

♦ Calabi-Yau Construction

- ❖ Calabi-Yau **Properties**
- Group Actions on the Base I
- ❖ Group Actions on the Base II
- **❖** Invariant Cohomology
- ❖ Divisors on the Base
- ❖ Divisors on the Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Start with two dP_9 surfaces

Note: dP_9 are elliptically fibered; Fibers over a generic point $x \in \mathbb{P}^1$ are

$$\beta_1^{-1}(x) \simeq T^2 \subset B_1, \qquad \beta_2^{-1}(x) \simeq T^2 \subset B_2.$$

$$\beta_2^{-1}(x) \simeq T^2 \subset B_2$$
.

Introduction

The Calabi-Yau

❖ Calabi-Yau Introduction

- **♦** Calabi-Yau Construction
- ❖ Calabi-Yau **Properties**
- Group Actions on the Base I
- ❖ Group Actions on the Base II
- **❖** Invariant Cohomology
- ❖ Divisors on the Base
- ❖ Divisors on the Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Start with two dP_9 surfaces

Note: dP_9 are elliptically fibered; Fibers over a generic point $x \in \mathbb{P}^1$ are

$$\beta_1^{-1}(x) \simeq T^2 \subset B_1, \qquad \beta_2^{-1}(x) \simeq T^2 \subset B_2.$$

$$\beta_2^{-1}(x) \simeq T^2 \subset B_2$$

The fiber product $B_1 \times_{\mathbb{P}^1} B_2$ is the fibration over \mathbb{P}^1 with fiber

$$\beta^{-1}(x) = \beta_1^{-1}(x) \times \beta_2^{-1}(x)$$

Introduction

The Calabi-Yau

❖ Calabi-Yau Introduction

❖ Calabi-Yau Construction

- ❖ Calabi-Yau Properties
- Group Actions on the Base I
- Group Actions on the Base II
- InvariantCohomology
- ❖ Divisors on the Base
- ❖ Divisors on the Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Start with two dP_9 surfaces

Note: dP_9 are elliptically fibered; Fibers over a generic point $x \in \mathbb{P}^1$ are

$$\beta_1^{-1}(x) \simeq T^2 \subset B_1$$
,

$$\left|\beta_2^{-1}(x)\right| \simeq T^2 \subset B_2$$
.

The fiber product $B_1 \times_{\mathbb{P}^1} B_2$ is the fibration over \mathbb{P}^1 with fiber

$$\beta^{-1}(x) = \beta_1^{-1}(x) \times \beta_2^{-1}(x)$$

Introduction

The Calabi-Yau

- ❖ Calabi-Yau Introduction
- ❖ Calabi-Yau Construction
- ❖ Calabi-Yau Properties
- ❖ Group Actions on the Base I
- ❖ Group Actions on the Base II
- ❖ Invariant Cohomology
- ❖ Divisors on the Base
- ❖ Divisors on the Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

• $\widetilde{X} \stackrel{\text{def}}{=} B_1 \times_{\mathbb{P}^1} B_2$ is a simply connected Calabi-Yau threefold, $c_1(\widetilde{X}) = 0$.

Introduction

The Calabi-Yau

- ❖ Calabi-Yau Introduction
- ❖ Calabi-Yau Construction

❖ Calabi-Yau Properties

- ❖ Group Actions on the Base I
- ❖ Group Actions on the Base II
- InvariantCohomology
- ❖ Divisors on the Base
- ❖ Divisors on the Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

- $X \stackrel{\text{def}}{=} B_1 \times_{\mathbb{P}^1} B_2$ is a simply connected Calabi-Yau threefold, $c_1(\widetilde{X}) = 0$.
- Every elliptically fibered Calabi-Yau over a dP_9 is such a fiber product.

Introduction

The Calabi-Yau

- ❖ Calabi-Yau Introduction
- ❖ Calabi-Yau Construction

❖ Calabi-Yau Properties

- ❖ Group Actions on the Base I
- ❖ Group Actions on the Base II
- InvariantCohomology
- ❖ Divisors on the Base
- ❖ Divisors on the Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

- $X \stackrel{\text{def}}{=} B_1 \times_{\mathbb{P}^1} B_2$ is a simply connected Calabi-Yau threefold, $c_1(\widetilde{X}) = 0$.
- Every elliptically fibered Calabi-Yau over a dP_9 is such a fiber product.
- $h^{1,1}(\widetilde{X}) = 19 = h^{2,1}(\widetilde{X})$

Introduction

The Calabi-Yau

- ❖ Calabi-Yau Introduction
- ❖ Calabi-Yau Construction

❖ Calabi-Yau Properties

- ❖ Group Actions on the Base I
- ❖ Group Actions on the Base II
- ❖ Invariant Cohomology
- ❖ Divisors on the Base
- ❖ Divisors on the Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

- $X \stackrel{\text{def}}{=} B_1 \times_{\mathbb{P}^1} B_2$ is a simply connected Calabi-Yau threefold, $c_1(\widetilde{X}) = 0$.
- Every elliptically fibered Calabi-Yau over a dP_9 is such a fiber product.
- $h^{1,1}(\widetilde{X}) = 19 = h^{2,1}(\widetilde{X})$
- Group actions on B_1 , B_2 lift to X if their action on the common base \mathbb{P}^1 is identical.

Group Actions on the Base I

Introduction

The Calabi-Yau

- ❖ Calabi-Yau Introduction
- ❖ Calabi-Yau
 Construction
- ❖ Calabi-Yau Properties

❖ Group Actions on the Base I

- ❖ Group Actions on the Base II
- ❖ Invariant Cohomology
- ❖ Divisors on the Base
- ❖ Divisors on the Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

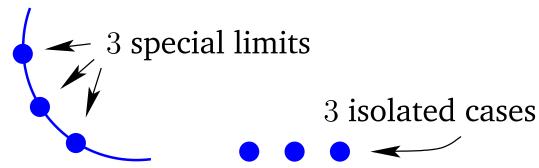
A New Heterotic Standard Model

Conclusion

We classified all $\mathbb{Z}_3 \times \mathbb{Z}_3$ actions on dP_9 surfaces.

The moduli space looks like this:

A one parameter family



Group Actions on the Base II

Introduction

The Calabi-Yau

- ❖ Calabi-Yau Introduction
- ❖ Calabi-Yau
 Construction
- ❖ Calabi-Yau Properties
- ❖ Group Actions on the Base I

❖ Group Actions on the Base II

- ❖ Invariant Cohomology
- ❖ Divisors on the Base
- ❖ Divisors on the Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

All such dP_9 surfaces with $G = \mathbb{Z}_3 \times \mathbb{Z}_3$ action give rise to a G action on \widetilde{X} .

Group Actions on the Base II

Introduction

The Calabi-Yau

- ❖ Calabi-Yau Introduction
- **♦** Calabi-Yau Construction
- ❖ Calabi-Yau Properties
- ❖ Group Actions on the Base I

❖ Group Actions on the Base II

- ❖ Invariant Cohomology
- ❖ Divisors on the Base
- ❖ Divisors on the Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

All such dP_9 surfaces with $G = \mathbb{Z}_3 \times \mathbb{Z}_3$ action give rise to a G action on \widetilde{X} .

• The 3 isolated cases never yield a free $\mathbb{Z}_3 \times \mathbb{Z}_3$ action.

Group Actions on the Base II

Introduction

The Calabi-Yau

- ❖ Calabi-Yau Introduction
- ❖ Calabi-Yau Construction
- ❖ Calabi-Yau Properties
- ❖ Group Actions on the Base I

❖ Group Actions on the Base II

- ❖ Invariant Cohomology
- ❖ Divisors on the Base
- ❖ Divisors on the Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

All such dP_9 surfaces with $G = \mathbb{Z}_3 \times \mathbb{Z}_3$ action give rise to a G action on \widetilde{X} .

- The 3 isolated cases never yield a free $\mathbb{Z}_3 \times \mathbb{Z}_3$ action.
- The one-parameter family and its limits can give a free $\mathbb{Z}_3 \times \mathbb{Z}_3$ action on \widetilde{X} .

We only consider this one-parameter family in the following.

Invariant Cohomology

Introduction

The Calabi-Yau

- ❖ Calabi-Yau Introduction
- ❖ Calabi-Yau Construction
- ❖ Calabi-Yau Properties
- ❖ Group Actions on the Base I
- ❖ Group Actions on the Base II

InvariantCohomology

- ❖ Divisors on the Base
- ❖ Divisors on the Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

$$G = \mathbb{Z}_3 \times \mathbb{Z}_3$$
 action free

$$\Rightarrow H^{p,q}(X) = H^{p,q}(\widetilde{X})^G$$

Invariant Cohomology

Introduction

The Calabi-Yau

- ❖ Calabi-Yau Introduction
- ❖ Calabi-Yau Construction
- ❖ Calabi-Yau Properties
- ❖ Group Actions on the Base I
- ❖ Group Actions on the Base II

InvariantCohomology

- ❖ Divisors on the Base
- ❖ Divisors on the Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

$$G = \mathbb{Z}_3 \times \mathbb{Z}_3$$
 action free

$$\Rightarrow H^{p,q}(X) = H^{p,q}(\widetilde{X})^G$$

Invariant Cohomology

Introduction

The Calabi-Yau

- ❖ Calabi-Yau Introduction
- ❖ Calabi-Yau Construction
- ❖ Calabi-Yau Properties
- ❖ Group Actions on the Base I
- ❖ Group Actions on the Base II

InvariantCohomology

- ❖ Divisors on the Base
- ❖ Divisors on the Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

$$G = \mathbb{Z}_3 \times \mathbb{Z}_3$$
 action free

$$\Rightarrow H^{p,q}(X) = H^{p,q}(\widetilde{X})^G$$

 $h^{1,1}(X) = 3$ dimensional space of divisor classes.

Divisors on the Base

Introduction

The Calabi-Yau

- ❖ Calabi-Yau Introduction
- ❖ Calabi-Yau
 Construction
- ❖ Calabi-Yau Properties
- ❖ Group Actions on the Base I
- ❖ Group Actions on the Base II
- InvariantCohomology

❖ Divisors on the Base

❖ Divisors on the Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

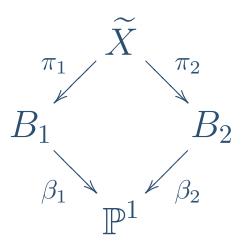
A New Heterotic Standard Model

Conclusion

$$\dim_{\mathbb{C}} = 3$$
:

$$\dim_{\mathbb{C}} = 2$$
:

$$\dim_{\mathbb{C}} = 1$$
:



Divisors on the Base

Introduction

The Calabi-Yau

- ❖ Calabi-Yau Introduction
- ❖ Calabi-Yau Construction
- ❖ Calabi-Yau Properties
- ❖ Group Actions on the Base I
- ❖ Group Actions on the Base II
- ❖ Invariant Cohomology

❖ Divisors on the Base

❖ Divisors on the Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

$$\dim_{\mathbb{C}} = 3: \qquad \widetilde{X}$$

$$\dim_{\mathbb{C}} = 2: \qquad B_1 \qquad B$$

$$\dim_{\mathbb{C}} = 1: \qquad \mathbb{P}^1$$

Invariant divisors on the base B_1 , B_2 :

$$H^{1,1}(B_1)^G = \mathbb{C}f_1 \oplus \mathbb{C}t_1$$
$$H^{1,1}(B_2)^G = \mathbb{C}f_2 \oplus \mathbb{C}t_2$$

Divisors on the Calabi-Yau

Introduction

The Calabi-Yau

- ❖ Calabi-Yau Introduction
- **♦** Calabi-Yau Construction
- ❖ Calabi-Yau Properties
- ❖ Group Actions on the Base I
- Group Actions on the Base II
- InvariantCohomology
- ❖ Divisors on the Base
- ❖ Divisors on the Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Pull-back of divisors from the base

$$\pi_1^{-1}(f_1) = \left\{ T^4 \text{ fiber of } \bigvee_{\mathbb{P}^1} \right\} = \pi_2^{-1}(f_2) \stackrel{\text{def}}{=} \phi$$

$$\pi_1^{-1}(t_1) \stackrel{\text{def}}{=} \tau_1 \qquad \pi_2^{-1}(t_2) \stackrel{\text{def}}{=} \tau_2$$

Divisors on the Calabi-Yau

Introduction

The Calabi-Yau

- ❖ Calabi-Yau Introduction
- ❖ Calabi-Yau Construction
- ❖ Calabi-Yau Properties
- ❖ Group Actions on the Base I
- ❖ Group Actions on the Base II
- ❖ Invariant Cohomology
- ❖ Divisors on the Base
- ❖ Divisors on the Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Pull-back of divisors from the base

$$\pi_1^{-1}(f_1) = \left\{ T^4 \text{ fiber of } \bigvee_{\mathbb{P}^1} \right\} = \pi_2^{-1}(f_2) \stackrel{\text{def}}{=} \phi$$

$$\pi_1^{-1}(t_1) \stackrel{\text{def}}{=} \tau_1 \qquad \pi_2^{-1}(t_2) \stackrel{\text{def}}{=} \tau_2$$

$$H^{1,1}(\widetilde{X})^G = \mathbb{C}\pi_1^{-1}(f_1) + \mathbb{C}\pi_1^{-1}(t_1) +$$

$$+ \mathbb{C}\pi_2^{-1}(f_2) + \mathbb{C}\pi_2^{-1}(t_2) =$$

$$= \mathbb{C}\phi \oplus \mathbb{C}\tau_1 \oplus \mathbb{C}\tau_2$$

Introduction

The Calabi-Yau

The Vector Bundle

- **❖** Line Bundles
- ❖ Equivariant Line Bundles I
- ❖ Equivariant Line Bundles II
- **❖** Notation
- ❖ The Serre Construction
- ❖ Equivariant Vector Bundles
- ❖ Equivariant Example
- **♦** Constructing Vector Bundles

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

The Vector Bundle

Line Bundles

Introduction

The Calabi-Yau

The Vector Bundle

❖ Line Bundles

- ❖ Equivariant Line Bundles I
- ❖ Equivariant Line Bundles II
- **❖** Notation
- ❖ The Serre Construction
- ❖ Equivariant Vector Bundles
- ❖ Equivariant Example
- ❖ Constructing Vector Bundles

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

On any variety Y, we have

$$\Big\{ \text{Divisors } D \Big\} \Big/ \! \sim \ = \ \Big\{ \text{Line bundles } \mathfrak{O}_Y(D) \Big\}$$

Line Bundles

Introduction

The Calabi-Yau

The Vector Bundle

❖ Line Bundles

- ❖ Equivariant Line Bundles I
- ❖ Equivariant Line Bundles II
- **❖** Notation
- ❖ The Serre Construction
- ❖ Equivariant Vector Bundles
- ❖ Equivariant Example
- Constructing Vector Bundles

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

On any variety Y, we have

$$\left\{ \text{Divisors } D \right\} / \bigcirc = \left\{ \text{Line bundles } \mathcal{O}_Y(D) \right\}$$

Linear equivalence

For X, B_1 , B_2 , \mathbb{P}^1 that is just cohomology class of the divisor in $H^{1,1}$.

Line Bundles

Introduction

The Calabi-Yau

The Vector Bundle

❖ Line Bundles

- ❖ Equivariant Line Bundles I
- ❖ Equivariant Line Bundles II
- Notation
- ❖ The Serre Construction
- ❖ Equivariant Vector Bundles
- ❖ Equivariant Example
- Constructing Vector Bundles

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

On any variety Y, we have

$$\left\{ \text{Divisors } D \right\} / \bigcirc = \left\{ \text{Line bundles } \mathcal{O}_Y(D) \right\}$$

Linear equivalence

For X, B_1 , B_2 , \mathbb{P}^1 that is just cohomology class of the divisor in $H^{1,1}$.

Every line bundle is of the form

- $\mathcal{O}_{\widetilde{X}}(x_1\tau_1 + x_2\tau_2 + x_3\phi)$, $x_1, x_2, x_3 \in \mathbb{Z}$.
- ullet ${\mathbb O}_{B_i}(y_1t_i+y_2f_i)$, $y_1,y_2\in{\mathbb Z}$.
- ullet $\mathbb{O}_{\mathbb{P}^1}(n)$, $n\in\mathbb{Z}$.

Equivariant Line Bundles I

Introduction

The Calabi-Yau

The Vector Bundle

- **❖** Line Bundles
- ❖ Equivariant Line Bundles I
- ❖ Equivariant Line Bundles II
- **❖** Notation
- ❖ The Serre Construction
- ❖ Equivariant Vector Bundles
- ❖ Equivariant Example
- ❖ Constructing Vector Bundles

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Line bundles on $X = \widetilde{X}/G$

Equivariant Line Bundles I

Introduction

The Calabi-Yau

The Vector Bundle

- **❖** Line Bundles
- ❖ Equivariant Line Bundles I
- ❖ Equivariant Line Bundles II
- **❖** Notation
- ❖ The Serre Construction
- ❖ Equivariant Vector Bundles
- ❖ Equivariant Example
- Constructing Vector Bundles

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Work with

G-equivariant line bundles on \widetilde{X}

Have in mind

Line bundles on $X = \widetilde{X}/G$

Equivariant Line Bundles I

Introduction

The Calabi-Yau

The Vector Bundle

- **❖** Line Bundles
- ❖ Equivariant Line Bundles I
- ❖ Equivariant Line Bundles II
- **❖** Notation
- ❖ The Serre Construction
- ❖ Equivariant Vector Bundles
- ❖ Equivariant Example
- Constructing Vector Bundles

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Work with

Have in mind

G-equivariant line bundles on \widetilde{X}

Line bundles on $X = \widetilde{X}/G$

An equivariant line bundle is a line bundle \mathcal{L} together with a group action $\gamma: G \times \mathcal{L} \to \mathcal{L}$:

$$\begin{array}{ccc}
\mathcal{L} & \xrightarrow{\gamma_g} & \mathcal{L} \\
\downarrow & & \downarrow \\
\widetilde{X} & \xrightarrow{g} & \widetilde{X}
\end{array}$$

Equivariant Line Bundles II

Introduction

The Calabi-Yau

The Vector Bundle

- **❖** Line Bundles
- ❖ Equivariant Line Bundles I
- ❖ Equivariant Line Bundles II
- **❖** Notation
- ❖ The Serre Construction
- ❖ Equivariant Vector Bundles
- ❖ Equivariant Example
- ❖ Constructing Vector Bundles

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

• Most line bundles on X cannot be made equivariant.

Equivariant Line Bundles II

Introduction

The Calabi-Yau

The Vector Bundle

- **❖** Line Bundles
- ❖ Equivariant Line Bundles I
- ❖ Equivariant Line Bundles II
- Notation
- ❖ The Serre Construction
- Equivariant Vector Bundles
- ❖ Equivariant Example
- Constructing Vector Bundles

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

- Most line bundles on X cannot be made equivariant.
- Only the line bundles $\mathcal{O}_{\widetilde{X}}(x_1\tau_1 + x_2\tau_2 + x_3\phi)$, $x_1, x_2, x_3 \in \mathbb{Z}$ with $x_1 + x_2 \equiv 0 \mod 3$ allow for a $G = \mathbb{Z}_3 \times \mathbb{Z}_3$ action.

Equivariant Line Bundles II

Introduction

The Calabi-Yau

The Vector Bundle

- **❖** Line Bundles
- ❖ Equivariant Line Bundles I
- ❖ Equivariant Line Bundles II
- **❖** Notation
- ❖ The Serre Construction
- Equivariant Vector Bundles
- ❖ Equivariant Example
- Constructing Vector Bundles

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

- Most line bundles on X cannot be made equivariant.
- Only the line bundles $\mathcal{O}_{\widetilde{X}}(x_1\tau_1 + x_2\tau_2 + x_3\phi)$, $x_1, x_2, x_3 \in \mathbb{Z}$ with $x_1 + x_2 \equiv 0 \mod 3$ allow for a $G = \mathbb{Z}_3 \times \mathbb{Z}_3$ action.
- In these cases, there is always more than one *G* action
 - ⇒ Different equivariant line bundles!

Notation

Introduction

The Calabi-Yau

The Vector Bundle

- **❖** Line Bundles
- ❖ Equivariant Line Bundles I
- ❖ Equivariant Line Bundles II

❖ Notation

- ❖ The Serre Construction
- ❖ Equivariant Vector Bundles
- ❖ Equivariant Example
- Constructing Vector Bundles

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Consider the trivial line bundle $\mathcal{O}_{\widetilde{X}} = X \times \mathbb{C}$.

Obvious equivariant action

$$\gamma_g: \widetilde{X} \times \overline{\mathbb{C}} \to \widetilde{X} \times \mathbb{C}, \ (p,v) \mapsto (g(p),v)$$

Notation

Introduction

The Calabi-Yau

The Vector Bundle

- **❖** Line Bundles
- ❖ Equivariant Line Bundles I
- ❖ Equivariant Line Bundles II

❖ Notation

- ❖ The Serre Construction
- ❖ Equivariant Vector Bundles
- ❖ Equivariant Example
- Constructing Vector Bundles

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Consider the trivial line bundle $\mathcal{O}_{\widetilde{X}} = X \times \mathbb{C}$.

Obvious equivariant action

$$\gamma_g: \widetilde{X} \times \mathbb{C} \to \widetilde{X} \times \mathbb{C}, \ (p, v) \mapsto (g(p), v)$$

Different equivariant action by multiplying with a character

$$\chi \gamma_g : \widetilde{X} \times \mathbb{C} \to \widetilde{X} \times \mathbb{C}, \ (p, v) \mapsto (g(p), \chi(g)v)$$

Notation

Introduction

The Calabi-Yau

The Vector Bundle

- **❖** Line Bundles
- ❖ Equivariant Line Bundles I
- ❖ Equivariant Line Bundles II

❖ Notation

- The Serre Construction
- ❖ Equivariant Vector Bundles
- ❖ Equivariant Example
- Constructing Vector Bundles

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Consider the trivial line bundle $\mathcal{O}_{\widetilde{X}} = \widetilde{X} \times \mathbb{C}$.

Obvious equivariant action

$$\gamma_g: \widetilde{X} \times \mathbb{C} \to \widetilde{X} \times \mathbb{C}, \ (p, v) \mapsto (g(p), v)$$

Different equivariant action by multiplying with a character

$$\chi \gamma_g : \widetilde{X} \times \mathbb{C} \to \widetilde{X} \times \mathbb{C}, \ (p, v) \mapsto (g(p), \chi(g)v)$$

• We write $\chi \mathcal{O}_{\widetilde{X}}$ for this different equivariant line bundle.

The Serre Construction

Introduction

The Calabi-Yau

The Vector Bundle

- **❖** Line Bundles
- ❖ Equivariant Line Bundles I
- ❖ Equivariant Line Bundles II
- **❖** Notation

The Serre Construction

- ❖ Equivariant Vector Bundles
- ❖ Equivariant Example
- Constructing Vector Bundles

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

A way to construct may stable rank 2 vector bundles on a surface (here: B_1 and B_2).

- Take two line bundles \mathcal{L}_1 , \mathcal{L}_2 .
- An ideal sheaf I (sheaf of functions vanishing at some fixed points).
- Define S as an extension

$$0 \longrightarrow \mathcal{L}_1 \longrightarrow \mathcal{S} \longrightarrow \mathcal{L}_2 \otimes I \longrightarrow 0$$

 Cayley-Bacharach property ⇒ generic extension is a rank 2 vector bundle.

Equivariant Vector Bundles

Introduction

The Calabi-Yau

The Vector Bundle

- **❖** Line Bundles
- ❖ Equivariant Line Bundles I
- ❖ Equivariant Line Bundles II
- **❖** Notation
- ❖ The Serre Construction

❖ Equivariant Vector Bundles

- ❖ Equivariant Example
- ❖ Constructing Vector Bundles

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Vector bundles on $X = \widetilde{X}/G$

Equivariant Vector Bundles

Introduction

The Calabi-Yau

The Vector Bundle

- **❖** Line Bundles
- ❖ Equivariant Line Bundles I
- ❖ Equivariant Line Bundles II
- **❖** Notation
- ❖ The Serre Construction

❖ Equivariant Vector Bundles

- ❖ Equivariant Example
- Constructing Vector Bundles

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Work with

G-equivariant vector bundles on

Have in mind

Vector bundles on $X = \widetilde{X}/G$

Equivariant Vector Bundles

Introduction

The Calabi-Yau

The Vector Bundle

- **❖** Line Bundles
- ❖ Equivariant Line Bundles I
- ❖ Equivariant Line Bundles II
- **❖** Notation
- ❖ The Serre Construction

❖ Equivariant Vector Bundles

- ❖ Equivariant Example
- Constructing Vector Bundles

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Work with

Have in mind

$$G$$
-equivariant vector bundles on \widetilde{X}

Vector bundles on
$$X = \widetilde{X}/G$$

Problem: Even if \mathcal{E} , \mathcal{F} are equivariant,

$$0 \longrightarrow \mathcal{E} \longrightarrow \mathbf{V} \longrightarrow \mathcal{F} \longrightarrow 0$$

Extension is not necessarily equivariant!

Only extensions in $\operatorname{Ext}^1\left(\mathfrak{F},\mathcal{E}\right)^G$ are equivariant.

$$0 \longrightarrow \mathcal{O}_{B_2}(-2f_2) \longrightarrow \mathcal{W} \longrightarrow \chi_2\mathcal{O}_{B_2}(2f_2) \otimes I_9 \longrightarrow 0$$

$$0 \longrightarrow \mathcal{O}_{B_2}(-2f_2) \longrightarrow \mathcal{W} \longrightarrow \chi_2\mathcal{O}_{B_2}(2f_2) \otimes I_9 \longrightarrow 0$$

• $\mathcal{O}_{B_2}(-2f_2)$, $\chi_2\mathcal{O}_{B_2}(2f_2)$ are equivariant.

$$0 \longrightarrow \mathcal{O}_{B_2}(-2f_2) \longrightarrow \mathcal{W} \longrightarrow \chi_2\mathcal{O}_{B_2}(2f_2) \otimes I_9 \longrightarrow 0$$

- $\mathcal{O}_{B_2}(-2f_2)$, $\chi_2\mathcal{O}_{B_2}(2f_2)$ are equivariant.
- I_9 is the ideal sheaf of one G orbit.

$$0 \longrightarrow \mathcal{O}_{B_2}(-2f_2) \longrightarrow \mathcal{W} \longrightarrow \chi_2\mathcal{O}_{B_2}(2f_2) \otimes I_9 \longrightarrow 0$$

- $\mathcal{O}_{B_2}(-2f_2)$, $\chi_2\mathcal{O}_{B_2}(2f_2)$ are equivariant.
- I_9 is the ideal sheaf of one G orbit.
- Has the Cayley-Bacharach property.

$$0 \longrightarrow \mathcal{O}_{B_2}(-2f_2) \longrightarrow \mathcal{W} \longrightarrow \chi_2\mathcal{O}_{B_2}(2f_2) \otimes I_9 \longrightarrow 0$$

- $\mathcal{O}_{B_2}(-2f_2)$, $\chi_2\mathcal{O}_{B_2}(2f_2)$ are equivariant.
- I_9 is the ideal sheaf of one G orbit.
- Has the Cayley-Bacharach property.

• Ext¹
$$\left(\chi_2 \mathcal{O}_{B_2}(2f_2) \otimes I_9, \mathcal{O}_{B_2}(-2f_2)\right) = \mathbb{C}^9$$

$$0 \longrightarrow \mathcal{O}_{B_2}(-2f_2) \longrightarrow \mathcal{W} \longrightarrow \chi_2\mathcal{O}_{B_2}(2f_2) \otimes I_9 \longrightarrow 0$$

- $\mathcal{O}_{B_2}(-2f_2)$, $\chi_2\mathcal{O}_{B_2}(2f_2)$ are equivariant.
- I_9 is the ideal sheaf of one G orbit.
- Has the Cayley-Bacharach property.

• Ext¹
$$\left(\chi_2 \mathcal{O}_{B_2}(2f_2) \otimes I_9, \ \mathcal{O}_{B_2}(-2f_2)\right) = \operatorname{Reg}(G) = 1 \oplus \chi_1 \oplus \chi_1^2 \oplus \chi_2 \oplus \chi_1 \chi_2 \oplus \chi_1^2 \chi_2 \oplus \chi_1^2 \chi_2 \oplus \chi_1 \chi_2^2 \oplus \chi_1 \chi_2^2 \oplus \chi_1^2 \chi_2^2$$

$$0 \longrightarrow \mathcal{O}_{B_2}(-2f_2) \longrightarrow \mathcal{W} \longrightarrow \chi_2\mathcal{O}_{B_2}(2f_2) \otimes I_9 \longrightarrow 0$$

- $\mathcal{O}_{B_2}(-2f_2)$, $\chi_2\mathcal{O}_{B_2}(2f_2)$ are equivariant.
- I_9 is the ideal sheaf of one G orbit.
- Has the Cayley-Bacharach property.
- Ext¹ $\left(\chi_2 \mathcal{O}_{B_2}(2f_2) \otimes I_9, \ \mathcal{O}_{B_2}(-2f_2)\right) = \operatorname{Reg}(G) =$ 1 $\oplus \chi_1 \oplus \chi_1^2 \oplus \chi_2 \oplus \chi_1 \chi_2 \oplus \chi_1^2 \chi_2 \oplus \chi_2^2 \oplus \chi_1 \chi_2^2 \oplus \chi_1^2 \chi_2^2$ so there exist extensions.

Constructing Vector Bundles

Introduction

The Calabi-Yau

The Vector Bundle

- **❖** Line Bundles
- ❖ Equivariant Line Bundles I
- ❖ Equivariant Line Bundles II
- **❖** Notation
- ❖ The Serre Construction
- ❖ Equivariant Vector Bundles
- ❖ Equivariant Example
- ❖ Constructing Vector Bundles

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Building blocks:

- Line bundles on \widetilde{X} .
- Rank 2 bundles pulled back from B_1 , B_2 .

Constructing Vector Bundles

Introduction

The Calabi-Yau

The Vector Bundle

- **❖** Line Bundles
- ❖ Equivariant Line Bundles I
- ❖ Equivariant Line Bundles II
- **❖** Notation
- ❖ The Serre Construction
- ❖ Equivariant Vector Bundles
- ❖ Equivariant Example

❖ Constructing Vector <u>Bundles</u>

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Building blocks:

- Line bundles on \widetilde{X} .
- Rank 2 bundles pulled back from B_1 , B_2 .

Operations:

Tensor product of bundles.

Constructing Vector Bundles

Introduction

The Calabi-Yau

The Vector Bundle

- **❖** Line Bundles
- ❖ Equivariant Line Bundles I
- ❖ Equivariant Line Bundles II
- **❖** Notation
- ❖ The Serre Construction
- ❖ Equivariant Vector Bundles
- ❖ Equivariant Example

❖ Constructing Vector Bundles

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Building blocks:

- Line bundles on X.
- Rank 2 bundles pulled back from B_1 , B_2 .

Operations:

- Tensor product of bundles.
- Sums of bundles.

Constructing Vector Bundles

Introduction

The Calabi-Yau

The Vector Bundle

- **❖** Line Bundles
- ❖ Equivariant Line Bundles I
- ❖ Equivariant Line Bundles II
- **❖** Notation
- ❖ The Serre Construction
- ❖ Equivariant Vector Bundles
- ❖ Equivariant Example

ConstructingVector Bundles

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Building blocks:

- Line bundles on \widetilde{X} .
- Rank 2 bundles pulled back from B_1 , B_2 .

Operations:

- Tensor product of bundles.
- Statistis / Markel / Never (slope-) stable!
- Extensions of bundles.

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

- **❖** The Gauge Bundle
- **❖** Particle Spectrum
- ❖ The Lagrangian
- ❖ The String Miracle

Spectral Sequences

A New Heterotic Standard Model

Conclusion

A First Heterotic Standard Model

The Gauge Bundle

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

❖ The Gauge Bundle

- **❖** Particle Spectrum
- The Lagrangian
- ❖ The String Miracle

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Define these two rank 2 vector bundles

$$\begin{array}{ll} \mathcal{V}_{1} \stackrel{\text{def}}{=} & \chi_{2} \mathcal{O}_{\widetilde{X}}(-\tau_{1} + \tau_{2}) \oplus \chi_{2} \mathcal{O}_{\widetilde{X}}(-\tau_{1} + \tau_{2}) = \\ & = & 2\chi_{2} \mathcal{O}_{\widetilde{X}}(-\tau_{1} + \tau_{2}) \\ \mathcal{V}_{2} \stackrel{\text{def}}{=} & \mathcal{O}_{\widetilde{X}}(\tau_{1} - \tau_{2}) \otimes \pi_{2}^{*}(\mathcal{W}) \end{array}$$

We define the rank 4 bundle \mathcal{V} finally as a generic extension

$$0 \longrightarrow \mathcal{V}_2 \longrightarrow \mathcal{V} \longrightarrow \mathcal{V}_1 \longrightarrow 0$$

hep-th/0501070: A Heterotic Standard Model hep-th/0502155: A Standard Model from the $E_8 \times E_8$ Heterotic Superstring

hep-th/0505041: Vector Bundle Extensions, Sheaf Cohomology, and the Heterotic Standard Model

Particle Spectrum

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

❖ The Gauge Bundle

❖ Particle Spectrum

- ❖ The Lagrangian
- ❖ The String Miracle

Spectral Sequences

A New Heterotic Standard Model

Conclusion

- 3 families of quarks and leptons.
- Zero anti-families.
- 4 Higgs (twice MSSM).
- Doublets and triplets are completely split, all triplets are projected out.
- Hidden pure E_7 or Spin(12) with 2 matter fields.
- 6 geometric moduli, 19 vector bundle moduli, some hidden E_8 bundle moduli.

hep-th/0509051: Heterotic Standard Model Moduli

The Lagrangian

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

- ❖ The Gauge Bundle
- **❖** Particle Spectrum

❖ The Lagrangian

❖ The String Miracle

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Of course, we do not know the Kähler potential. What can we learn from the superpotential W?

- Higgs μ -terms $\phi H \bar{H}$
- Yukawa couplings $Q_i H \bar{Q}_i + Q_i \bar{H} \bar{Q}_i$

Field	Name
$\overline{\phi}$	Vector bundle moduli
H	Higgs
$ar{H}$	Higgs-conjugate Quarks & leptons of the <i>i</i> -th family
	Quarks & leptons of the <i>i</i> -th family
$ar{Q}_i$	Anti- Q_i

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

- **❖** The Gauge Bundle
- **❖** Particle Spectrum
- **❖** The Lagrangian
- ❖ The String Miracle

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Compactifying on $(\widetilde{X}, \mathcal{V})/G$, we found

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

- ❖ The Gauge Bundle
- ❖ Particle Spectrum
- ❖ The Lagrangian
- ❖ The String Miracle

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Compactifying on $(\widetilde{X}, \mathcal{V})/G$, we found

• Higgs μ -terms $\phi H \bar{H}$ with 4 out of the 19 vector bundle moduli.

hep-th/0510142: Moduli Dependent μ -Terms in a Heterotic Standard Model

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

- ❖ The Gauge Bundle
- **❖** Particle Spectrum
- The Lagrangian

❖ The String Miracle

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Compactifying on $(\widetilde{X}, \mathcal{V})/G$, we found

- Higgs μ -terms $\phi H \bar{H}$ with 4 out of the 19 vector bundle moduli.
- No Yukawa couplings.

hep-th/0510142: Moduli Dependent μ -Terms in a Heterotic Standard Model

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

- ❖ The Gauge Bundle
- ❖ Particle Spectrum
- **❖** The Lagrangian

❖ The String Miracle

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Compactifying on $(\widetilde{X}, \mathcal{V})/G$, we found

- Higgs μ -terms $\phi H \bar{H}$ with 4 out of the 19 vector bundle moduli.
- No Yukawa couplings.

Yukawa textures without symmetries!?!

hep-th/0510142: Moduli Dependent μ -Terms in a Heterotic Standard Model

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

- Leray SpectralSequence
- **❖** An Example
- Leray Degrees
- **♦** Leray Degree Table
- ❖ The Superpotential
- ❖ More on Leray Degrees

A New Heterotic Standard Model

Conclusion

Spectral Sequences

Leray Spectral Sequence

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

Leray SpectralSequence

- **♦** An Example
- Leray Degrees
- **♦** Leray Degree Table
- **❖** The

Superpotential

♦ More on Leray Degrees

A New Heterotic Standard Model

Conclusion

How did we compute all these cohomology groups?

Leray spectral sequence for any sheaf \mathcal{F} on $\widetilde{X} \to B_2$:

$$E_2^{p,q} = H^p(B_2, R^q \pi_{2*} \mathfrak{F}) \quad \Rightarrow \quad H^{p+q}(\widetilde{X}, \mathfrak{F})$$

Leray Spectral Sequence

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

Leray SpectralSequence

- **♦** An Example
- Leray Degrees
- **♦** Leray Degree Table
- ❖ The Superpotential
- ♦ More on Leray Degrees

A New Heterotic Standard Model

Conclusion

How did we compute all these cohomology groups?

Leray spectral sequence for any sheaf \mathcal{F} on $\widetilde{X} \to B_2$:

$$E_2^{p,q} = H^p \Big(B_2, \ R^q \pi_{2*} \mathcal{F} \Big) \quad \Rightarrow \quad H^{p+q} \Big(\widetilde{X}, \ \mathcal{F} \Big)$$

 $R^q\pi_{2*}$ is just the degree q cohomology along the fiber.

Leray Spectral Sequence

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

❖ Leray Spectral Sequence

- **♦** An Example
- Leray Degrees
- Leray Degree Table
- **♦** The

Superpotential

❖ More on Leray Degrees

A New Heterotic Standard Model

Conclusion

How did we compute all these cohomology groups?

Leray spectral sequence for any sheaf \mathcal{F} on $\widetilde{X} \to B_2$:

$$E_2^{p,q} = H^p\left(B_2, R^q\pi_{2*}\mathfrak{F}\right) \quad \Rightarrow \quad H^{p+q}\left(\widetilde{X}, \mathfrak{F}\right)$$

 $R^q\pi_{2*}$ is just the degree q cohomology along the fiber.

Think of $E_2^{p,q}$ as the "forms with p legs along the base and q legs along the fiber".

An Example

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

Leray SpectralSequence

♦ An Example

- Leray Degrees
- **♦** Leray Degree Table
- ❖ The Superpotential
- ❖ More on Leray Degrees

A New Heterotic Standard Model

Conclusion

Example:
$$H^1(\widetilde{X}, \wedge^2 \mathcal{V}) = H^1(\widetilde{X}, 2\chi_2 \pi_2^*(\mathcal{W}))$$

$$\pi_{2*} \left(2\chi_2 \pi_2^*(\mathcal{W}) \right) = 2\chi_2 \mathcal{W}$$

$$R^1 \pi_{2*} \left(2\chi_2 \pi_2^*(\mathcal{W}) \right) = 2\chi_1 \chi_2 \mathcal{W} \otimes \mathcal{O}_{B_2}(-f_2)$$

Compute $H^p(B_1, \cdots)$ by two more Leray SS...

Leray Degrees

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

- Leray SpectralSequence
- **♦** An Example

Leray Degrees

- Leray Degree Table
- ❖ The Superpotential
- ❖ More on Leray Degrees

A New Heterotic Standard Model

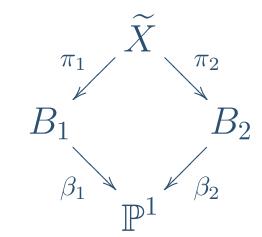
Conclusion

The two fibrations

$$\dim_{\mathbb{C}} = 3:$$

$$\dim_{\mathbb{C}} = 2$$
:

$$\dim_{\mathbb{C}} = 1$$
:



allow us to refine the cohomology degree according to # of legs in the π_1 fiber, the base, and the π_2 fiber direction.

Leray Degree Table

Field	Cohomology	Fiber 1	Base	Fiber 2
Q_i , $ar{Q}_i$	$H^1ig(\widetilde{X},\mathcal{V}ig)$	0	0	1
H_1 , H_2	$H^1ig(\widetilde{X},\wedge^2\mathcal{V}ig)$	0	1	0
$ar{H}_1,ar{H}_2$	$H^1ig(\widetilde{X},\wedge^2\mathcal{V}ig)$	0	0	1
ϕ_1,\ldots,ϕ_4	$H^1ig(\widetilde{X}, \mathcal{V}\otimes \mathcal{V}^eeig)$	1	0	0
ϕ_5,\ldots,ϕ_{19}	$H^1ig(\widetilde{X}, \mathcal{V}\otimes \mathcal{V}^eeig)$	0	0	1

Leray Degree Table

Field	Cohomology	Fiber 1	Base	Fiber 2
Q_i , $ar{Q}_i$	$H^1ig(\widetilde{X}, \mathcal{V}ig)$	0	0	1
H_1 , H_2	$H^1ig(\widetilde{X},\wedge^2\mathcal{V}ig)$	0	1	0
$ar{H}_1,ar{H}_2$	$H^1ig(\widetilde{X},\wedge^2\mathcal{V}ig)$	0	0	1
ϕ_1,\ldots,ϕ_4	$H^1ig(\widetilde{X}, \mathcal{V}\otimes \mathcal{V}^eeig)$	1	0	0
ϕ_5,\ldots,ϕ_{19}	$H^1ig(\widetilde{X}, \mathcal{V}\otimes \mathcal{V}^eeig)$	0	0	1
$ar{\Omega}$	$H^3ig(\widetilde{X}, \mathfrak{O}_{\widetilde{X}}ig)$	1	1	1

The Superpotential

The cubic terms in the superpotential are

The Superpotential

The cubic terms in the superpotential are

• Higgs μ -terms (note: $\wedge^2 \mathcal{V} = \wedge^2 \mathcal{V}^{\vee}$)

$$H^{1}\left(\widetilde{X}, \mathcal{V} \otimes \mathcal{V}^{\vee}\right) \otimes H^{1}\left(\widetilde{X}, \wedge^{2} \mathcal{V}\right) \otimes H^{1}\left(\widetilde{X}, \wedge^{2} \mathcal{V}^{\vee}\right)$$
$$\longrightarrow H^{3}\left(\widetilde{X}, \mathcal{O}_{\widetilde{X}}\right) = \mathbb{C}$$

The Superpotential

The cubic terms in the superpotential are

• Higgs μ -terms (note: $\wedge^2 \mathcal{V} = \wedge^2 \mathcal{V}^{\vee}$)

$$H^{1}\left(\widetilde{X},\mathcal{V}\otimes\mathcal{V}^{\vee}\right)\otimes H^{1}\left(\widetilde{X},\wedge^{2}\mathcal{V}\right)\otimes H^{1}\left(\widetilde{X},\wedge^{2}\mathcal{V}^{\vee}\right)$$
$$\longrightarrow H^{3}\left(\widetilde{X},\mathfrak{O}_{\widetilde{X}}\right)=\mathbb{C}$$

Yukawa couplings

$$H^{1}\left(\widetilde{X},\mathcal{V}\right)\otimes H^{1}\left(\widetilde{X},\mathcal{V}\right)\otimes H^{1}\left(\widetilde{X},\wedge^{2}\mathcal{V}^{\vee}\right)$$

$$\longrightarrow H^{3}\left(\widetilde{X},\mathfrak{O}_{\widetilde{X}}\right)=\mathbb{C}$$

More on Leray Degrees

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

- Leray SpectralSequence
- **❖** An Example
- Leray Degrees
- **♦** Leray Degree Table
- ❖ The Superpotential
- ❖ More on Leray Degrees

A New Heterotic Standard Model

Conclusion

The products respect the additional Leray degrees!

Field	Fiber 1	Base	Fiber 2
H_1 , H_2	0	1	0
$ar{H}_1$, $ar{H}_2$	0	0	1
ϕ_1,\ldots,ϕ_4	1	0	0

More on Leray Degrees

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

- Leray SpectralSequence
- **❖** An Example
- Leray Degrees
- **♦** Leray Degree Table
- ❖ The Superpotential
- ❖ More on Leray Degrees

A New Heterotic Standard Model

Conclusion

The products respect the additional Leray degrees!

Field	Fiber 1	Base	Fiber 2
H_1 , H_2	0	1	0
$ar{H}_1$, $ar{H}_2$	0	0	1
ϕ_1,\ldots,ϕ_4	1	0	0

The only allowed cubic coupling is

$$W = \sum_{\substack{i=1..4\\a,b=1,2}} \lambda_{iab} \, \phi_i H_a \bar{H}_b$$

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

- ❖ Ideal Sheaves
- **❖** Serre Construction
- **♦** The Gauge Bundle
- **♦** Low Energy Spectrum
- **❖** Gauge Group Breaking
- ❖ Vector Bundle Breaking
- ❖ The Higgs Sector
- Cohomology
- ❖ Doublet-Triplet
 Splitting
- Leray Degrees

Conclusion

A New Heterotic Standard Model

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

❖ Ideal Sheaves

- **❖** Serre Construction
- **❖** The Gauge Bundle
- **♦** Low Energy Spectrum
- ❖ Gauge Group Breaking
- ❖ Vector Bundle Breaking
- The Higgs Sector
- Cohomology
- ❖ Doublet-Triplet
 Splitting
- Leray Degrees

Conclusion

I thought your solution was unique!

Whats new?

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

❖ Ideal Sheaves

- **❖** Serre Construction
- **❖** The Gauge Bundle
- **♦** Low Energy Spectrum
- **❖** Gauge Group Breaking
- ❖ Vector Bundle Breaking
- The Higgs Sector
- Cohomology
- ❖ Doublet-Triplet Splitting
- Leray Degrees

Conclusion

I thought your solution was unique!

Whats new?

• On \widetilde{X} the $G = \mathbb{Z}_3 \times \mathbb{Z}_3$ action is free.

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

❖ Ideal Sheaves

- **❖** Serre Construction
- **❖** The Gauge Bundle
- **♦** Low Energy Spectrum
- **❖** Gauge Group Breaking
- ❖ Vector Bundle Breaking
- The Higgs Sector
- Cohomology
- ❖ Doublet-Triplet Splitting
- Leray Degrees

Conclusion

I thought your solution was unique!

Whats new?

- On \widetilde{X} the $G = \mathbb{Z}_3 \times \mathbb{Z}_3$ action is free.
- But on B_1 , B_2 there are orbits of length 3 and 9.

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

❖ Ideal Sheaves

- **❖** Serre Construction
- **❖** The Gauge Bundle
- ❖ Low Energy Spectrum
- **❖** Gauge Group Breaking
- Vector BundleBreaking
- ❖ The Higgs Sector
- Cohomology
- ❖ Doublet-Triplet Splitting
- Leray Degrees

Conclusion

I thought your solution was unique!

Whats new?

- On \widetilde{X} the $G = \mathbb{Z}_3 \times \mathbb{Z}_3$ action is free.
- But on B_1 , B_2 there are orbits of length 3 and 9.

Observation: We can split up the ideal sheaf of 9 points in 3 + 6 points!

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

❖ Ideal Sheaves

- **❖** Serre Construction
- **❖** The Gauge Bundle
- **♦** Low Energy Spectrum
- ❖ Gauge Group Breaking
- ❖ Vector Bundle Breaking
- ❖ The Higgs Sector
- Cohomology
- ❖ Doublet-Triplet Splitting
- Leray Degrees

Conclusion

I thought your solution was unique!

Whats new?

- On \widetilde{X} the $G = \mathbb{Z}_3 \times \mathbb{Z}_3$ action is free.
- But on B_1 , B_2 there are orbits of length 3 and 9.

Observation: We can split up the ideal sheaf of 9 points in 3+6 points! Define

- I_3 Ideal sheaf on B_1 , 3 points in 3 fibers.
- I_6 Ideal sheaf on B_2 , Singular point in $3I_1$ with multiplicity 2. (i.e. function and a first derivative = 0)

Serre Construction

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

❖ Ideal Sheaves

❖ Serre Construction

- **❖** The Gauge Bundle
- **♦** Low Energy Spectrum
- **❖** Gauge Group Breaking
- ❖ Vector Bundle Breaking
- The Higgs Sector
- Cohomology
- Doublet-TripletSplitting
- Leray Degrees

Conclusion

Define rank 2 bundles W_i on B_i

$$0 \to \chi_1 \mathcal{O}_{B_1}(-f_1) \to \mathcal{W}_1 \to \chi_1^2 \mathcal{O}_{B_1}(f_1) \otimes I_3 \to 0$$

$$0 \to \chi_2^2 \mathcal{O}_{B_2}(-2f_2) \to \mathcal{W}_2 \to \chi_2 \mathcal{O}_{B_2}(2f_2) \otimes I_6 \to 0$$

The Gauge Bundle

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

- ❖ Ideal Sheaves
- **❖** Serre Construction

❖ The Gauge Bundle

- **♦** Low Energy Spectrum
- **❖** Gauge Group Breaking
- ❖ Vector Bundle Breaking
- The Higgs Sector
- Cohomology
- ❖ Doublet-Triplet Splitting
- Leray Degrees

Conclusion

Define these two rank 2 vector bundles

$$\mathcal{V}_1 \stackrel{\text{def}}{=} \mathcal{O}_{\widetilde{X}}(-\tau_1 + \tau_2) \otimes \pi_1^*(\mathcal{W}_1)$$
 $\mathcal{V}_2 \stackrel{\text{def}}{=} \mathcal{O}_{\widetilde{X}}(\tau_1 - \tau_2) \otimes \pi_2^*(\mathcal{W}_2)$

We define the rank 4 bundle \mathcal{V} finally as a generic extension

$$0 \longrightarrow \mathcal{V}_1 \longrightarrow \mathcal{V} \longrightarrow \mathcal{V}_2 \longrightarrow 0$$

Low Energy Spectrum

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

- ❖ Ideal Sheaves
- Serre Construction
- **♦** The Gauge Bundle
- ❖ Low Energy Spectrum
- ❖ Gauge Group Breaking
- ❖ Vector Bundle Breaking
- The Higgs Sector
- Cohomology
- ❖ Doublet-Triplet Splitting
- Leray Degrees

Conclusion

The massless spectrum

- = zero modes of \mathcal{D}_{E_8}
- = H^1 cohomology of the adjoint bundle $\mathcal{E}_8^{\mathcal{V}/G}$.

Low Energy Spectrum

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

- ❖ Ideal Sheaves
- **❖** Serre Construction
- ❖ The Gauge Bundle
- ❖ Low Energy Spectrum
- ❖ Gauge Group Breaking
- Vector BundleBreaking
- The Higgs Sector
- Cohomology
- ❖ Doublet-Triplet Splitting
- Leray Degrees

Conclusion

The massless spectrum

- = zero modes of \mathcal{D}_{E_8}
- = H^1 cohomology of the adjoint bundle $\mathcal{E}_8^{\gamma/G}$.

$$H^1\left(X,\ \mathcal{E}_8^{\mathcal{V}/G}\right) =$$
 $= H^1\left(X,\ \mathcal{E}_8^{\mathcal{V}}/G\right)$

Low Energy Spectrum

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

- ❖ Ideal Sheaves
- **❖** Serre Construction
- **♦** The Gauge Bundle
- ❖ Low Energy Spectrum
- **❖** Gauge Group Breaking
- Vector BundleBreaking
- ❖ The Higgs Sector
- Cohomology
- ❖ Doublet-Triplet Splitting
- Leray Degrees

Conclusion

The massless spectrum

- = zero modes of \mathcal{D}_{E_8}
- = H^1 cohomology of the adjoint bundle $\mathcal{E}_8^{\mathcal{V}/G}$.

Work with

 $H^1\left(\widetilde{X},\ \mathcal{E}_8^{\gamma}
ight)^G =$

Have in mind

$$H^1(X, \mathcal{E}_8^{\mathcal{V}/G}) =$$
 $= H^1(X, \mathcal{E}_8^{\mathcal{V}}/G)$

Gauge Group Breaking

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

- ❖ Ideal Sheaves
- **❖** Serre Construction
- ❖ The Gauge Bundle
- **♦** Low Energy Spectrum
- ❖ Gauge Group Breaking
- ❖ Vector Bundle Breaking
- The Higgs Sector
- Cohomology
- ❖ Doublet-Triplet Splitting
- Leray Degrees

Conclusion

$$\underline{\mathbf{10}} = \chi_2(\underline{\mathbf{1}}, \underline{\mathbf{2}}, 3, 0) \oplus \chi_1^2 \chi_2(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -2, -2) \oplus \\ \oplus \chi_2^2(\underline{\mathbf{1}}, \underline{\overline{\mathbf{2}}}, -3, 0) \oplus \chi_1 \chi_2^2(\underline{\overline{\mathbf{3}}}, \underline{\mathbf{1}}, 2, 2)$$

Correspondingly, the fermions split as...

Vector Bundle Breaking

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

- ❖ Ideal Sheaves
- **❖** Serre Construction
- **♦** The Gauge Bundle
- **♦** Low Energy Spectrum
- **❖** Gauge Group Breaking
- ❖ Vector Bundle Breaking
- The Higgs Sector
- Cohomology
- ❖ Doublet-Triplet Splitting
- Leray Degrees

Conclusion

$$\mathcal{E}_{8}^{V} = \left(\mathfrak{O}_{\widetilde{X}} \otimes \theta(\underline{\mathbf{45}})\right) \oplus \left(\operatorname{ad}(\mathcal{V}) \otimes \theta(\underline{\mathbf{1}})\right) \oplus \left(\mathcal{V} \otimes \theta(\underline{\mathbf{16}})\right) \oplus \left(\mathcal{V}^{\vee} \otimes \theta(\underline{\mathbf{16}}\right)$$

where $\theta(\cdots)$ is the trivial bundle.

$$\theta(\underline{\mathbf{10}}) = \left[\chi_2 \theta(\underline{\mathbf{1}}, \underline{\mathbf{2}}, 3, 0)\right] \oplus \left[\chi_1^2 \chi_2 \theta(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -2, -2)\right] \oplus \left[\chi_2^2 \theta(\underline{\mathbf{1}}, \overline{\underline{\mathbf{2}}}, -3, 0)\right] \oplus \left[\chi_1 \chi_2^2 \theta(\overline{\underline{\mathbf{3}}}, \underline{\mathbf{1}}, 2, 2)\right]$$

The Higgs Sector

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

- ❖ Ideal Sheaves
- **❖** Serre Construction
- **♦** The Gauge Bundle
- **♦** Low Energy Spectrum
- ❖ Gauge Group Breaking
- ❖ Vector Bundle Breaking

❖ The Higgs Sector

- Cohomology
- ❖ Doublet-Triplet
 Splitting
- Leray Degrees

Conclusion

For example, focus on the fields in the 10:

$$H^1\Bigl(\widetilde{X},\ \mathcal{E}_8^V\Bigr)^G=(ext{lots of other fields})\oplus$$

$$\oplus \left[\chi_2 \otimes H^1(\widetilde{X}, \wedge^2 \mathcal{V})\right]^G \otimes (\underline{\mathbf{1}}, \underline{\mathbf{2}}, 3, 0) \oplus$$

$$\oplus \left[\chi_1^2 \chi_2 \otimes H^1 \Big(\widetilde{X}, \wedge^2 \mathcal{V}\Big)\right]^G \otimes \left(\underline{\mathbf{3}}, \underline{\mathbf{1}}, -2, -2\right) \oplus$$

$$\oplus \left[\chi_2^2 \otimes H^1\left(\widetilde{X}, \wedge^2 \mathcal{V}\right)\right]^G \otimes \left(\underline{\mathbf{1}}, \overline{\mathbf{2}}, -3, 0\right) \oplus$$

$$\oplus \left[\chi_1\chi_2^2 \otimes H^1(\widetilde{X}, \wedge^2 \mathcal{V})\right]^G \otimes \left(\overline{\mathbf{3}}, \underline{\mathbf{1}}, 2, 2\right).$$

Cohomology

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

- ❖ Ideal Sheaves
- **❖** Serre Construction
- **♦** The Gauge Bundle
- **♦** Low Energy Spectrum
- ❖ Gauge Group Breaking
- ❖ Vector Bundle Breaking
- The Higgs Sector

Cohomology

- ❖ Doublet-Triplet Splitting
- Leray Degrees

Conclusion

The necessary cohomology groups for V are

$$H^{1}(\widetilde{X}, \mathcal{V}) = 3 \operatorname{Reg}(G)$$

$$H^{1}(\widetilde{X}, \mathcal{V}^{\vee}) = 0$$

$$H^{1}(\widetilde{X}, \wedge^{2}\mathcal{V}) = H^{1}(\widetilde{X}, \mathcal{V}_{1} \otimes \mathcal{V}_{2}) =$$

$$= \chi_{1}\chi_{2} \oplus \chi_{1}^{2}\chi_{2}^{2} \oplus \chi_{2} \oplus \chi_{2}^{2}$$

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

- ❖ Ideal Sheaves
- **❖** Serre Construction
- **❖** The Gauge Bundle
- **♦** Low Energy Spectrum
- **♦** Gauge Group Breaking
- ❖ Vector Bundle Breaking
- The Higgs Sector
- Cohomology
- ❖ Doublet-Triplet Splitting
- Leray Degrees

$$H^1(\widetilde{X}, \wedge^2 \mathcal{V}) = \chi_1 \chi_2 \oplus \chi_1^2 \chi_2^2 \oplus \chi_2 \oplus \chi_2^2$$

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

- ❖ Ideal Sheaves
- **❖** Serre Construction
- ❖ The Gauge Bundle
- ❖ Low Energy Spectrum
- **♦** Gauge Group Breaking
- Vector BundleBreaking
- The Higgs Sector
- Cohomology
- ❖ Doublet-Triplet Splitting
- Leray Degrees

$$H^1\left(\widetilde{X},\wedge^2\mathcal{V}\right) = \chi_1\chi_2 \oplus \chi_1^2\chi_2^2 \oplus \chi_2 \oplus \chi_2^2$$

$$1 = \left[\chi_2 \otimes H^1\left(\widetilde{X},\wedge^2\mathcal{V}\right)\right]^G \text{ up Higgs}$$

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

- ❖ Ideal Sheaves
- **❖** Serre Construction
- ❖ The Gauge Bundle
- **♦** Low Energy Spectrum
- ❖ Gauge Group Breaking
- ❖ Vector Bundle Breaking
- ❖ The Higgs Sector
- Cohomology
- ❖ Doublet-Triplet
 Splitting
- Leray Degrees

$$H^1\left(\widetilde{X}, \wedge^2 \mathcal{V}\right) = \chi_1 \chi_2 \oplus \chi_1^2 \chi_2^2 \oplus \chi_2 \oplus \chi_2^2 \oplus 0 \chi_1 \chi_2^2$$

$$1 = \left[\chi_2 \otimes H^1(\widetilde{X}, \bigwedge^2 \widetilde{\mathcal{V}})\right]^G \quad \text{up Higgs}$$

$$0 = \left[\chi_1^2 \chi_2 \otimes H^1(\widetilde{X}, \bigwedge^2 \widetilde{\mathcal{V}})\right]^G \qquad \underline{\mathbf{3}}$$

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

- ❖ Ideal Sheaves
- **❖** Serre Construction
- **♦** The Gauge Bundle
- **♦** Low Energy Spectrum
- ❖ Gauge Group Breaking
- Vector BundleBreaking
- ❖ The Higgs Sector
- Cohomology
- ❖ Doublet-Triplet
 Splitting
- Leray Degrees

$$H^{1}\left(\widetilde{X}, \wedge^{2} \mathcal{V}\right) = \chi_{1} \chi_{2} \oplus \chi_{1}^{2} \chi_{2}^{2} \oplus \chi_{2} \oplus \chi_{2}^{2}$$

$$1 = \left[\chi_{2} \otimes H^{1}\left(\widetilde{X}, \wedge^{2} \mathcal{V}\right)\right]^{G} \quad \text{up Higgs}$$

$$0 = \left[\chi_{1}^{2} \chi_{2} \otimes H^{1}\left(\widetilde{X}, \wedge^{2} \mathcal{V}\right)\right]^{G} \quad \underline{\mathbf{3}}$$

$$1 = \left[\chi_{2}^{2} \otimes H^{1}\left(\widetilde{X}, \wedge^{2} \mathcal{V}\right)\right]^{G} \quad \text{down Higgs}$$

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

- ❖ Ideal Sheaves
- **❖** Serre Construction
- ❖ The Gauge Bundle
- **♦** Low Energy Spectrum
- ❖ Gauge Group Breaking
- Vector BundleBreaking
- ❖ The Higgs Sector
- Cohomology
- ❖ Doublet-Triplet Splitting
- Leray Degrees

$$H^{1}\left(\widetilde{X}, \wedge^{2} \mathcal{V}\right) = \chi_{1} \chi_{2} \oplus \chi_{1}^{2} \chi_{2}^{2} \oplus \chi_{2} \oplus \chi_{2}^{2} \oplus 0 \chi_{1}^{2} \chi_{2}$$

$$1 = \left[\chi_{2} \otimes H^{1}\left(\widetilde{X}, \wedge^{2} \mathcal{V}\right)\right]^{G} \quad \text{ap Higgs}$$

$$0 = \left[\chi_{1}^{2} \chi_{2} \otimes H^{1}\left(\widetilde{X}, \wedge^{2} \mathcal{V}\right)\right]^{G} \quad \underline{3}$$

$$1 = \left[\chi_{2}^{2} \otimes H^{1}\left(\widetilde{X}, \wedge^{2} \mathcal{V}\right)\right]^{G} \quad \text{down Higgs}$$

$$0 = \left[\chi_{1} \chi_{2}^{2} \otimes H^{1}\left(\widetilde{X}, \wedge^{2} \mathcal{V}\right)\right]^{G} \quad \underline{3}$$

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

- ❖ Ideal Sheaves
- **❖** Serre Construction
- ❖ The Gauge Bundle
- **♦** Low Energy Spectrum
- ❖ Gauge Group Breaking
- Vector BundleBreaking
- ❖ The Higgs Sector
- Cohomology
- ❖ Doublet-Triplet Splitting
- Leray Degrees

$$H^1(\widetilde{X}, \wedge^2 \mathcal{V}) = \chi_1 \chi_2 \oplus \chi_1^2 \chi_2^2 \oplus \chi_2 \oplus \chi_2^2$$

$$1 = \left[\chi_{2} \otimes H^{1}(\widetilde{X}, \wedge^{2} \mathcal{V})\right]^{G} \quad \text{up Higgs}$$

$$0 = \left[\chi_{1}^{2} \chi_{2} \otimes H^{1}(\widetilde{X}, \wedge^{2} \mathcal{V})\right]^{G} \quad \underline{3}$$

$$1 = \left[\chi_{2}^{2} \otimes H^{1}(\widetilde{X}, \wedge^{2} \mathcal{V})\right]^{G} \quad \text{down Higgs}$$

$$0 = \left[\chi_{1} \chi_{2}^{2} \otimes H^{1}(\widetilde{X}, \wedge^{2} \mathcal{V})\right]^{G} \quad \underline{\overline{3}}$$

Leray Degrees

Field	Cohomology	Fiber 1	Base	Fiber 2
$Q_1,ar{Q}_1$	$H^1ig(\widetilde{X},\mathcal{V}ig)$	1	0	0
$Q_2,Q_3,ar{Q}_2,ar{Q}_3$	$H^1ig(\widetilde{X},\mathcal{V}ig)$	0	0	1
$H_1,ar{H}_1$	$H^1ig(\widetilde{X},\wedge^2\mathcal{V}ig)$	0	1	0
ϕ_1, \ldots ?	$H^1ig(\widetilde{X}, \mathcal{V}\otimes \mathcal{V}^eeig)$?	?	?

Leray Degrees

Field	Cohomology	Fiber 1	Base	Fiber 2
$Q_1,ar{Q}_1$	$H^1ig(\widetilde{X}, \mathcal{V}ig)$	1	0	0
$Q_2,Q_3,ar{Q}_2,ar{Q}_3$	$H^1ig(\widetilde{X},\mathcal{V}ig)$	0	0	1
H_1 , $ar{H}_1$	$H^1ig(\widetilde{X},\wedge^2\mathcal{V}ig)$	0	1	0
ϕ_1, \ldots ?	$H^1ig(\widetilde{X}, \mathcal{V}\otimes \mathcal{V}^eeig)$?	?	?

• No μ -terms, $H_1 \wedge \bar{H}_1 = 0$.

Leray Degrees

Field	Cohomology	Fiber 1	Base	Fiber 2
$Q_1,ar{Q}_1$	$H^1ig(\widetilde{X},\mathcal{V}ig)$	1	0	0
$Q_2,Q_3,ar{Q}_2,ar{Q}_3$	$H^1ig(\widetilde{X},\mathcal{V}ig)$	0	0	1
$H_1,ar{H}_1$	$H^1ig(\widetilde{X},\wedge^2\mathcal{V}ig)$	0	1	0
ϕ_1, \ldots ?	$H^1ig(\widetilde{X}, \mathcal{V}\otimes \mathcal{V}^eeig)$?	?	?

- No μ -terms, $H_1 \wedge \bar{H}_1 = 0$.
- Yukawa couplings.

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

- Summary
- **❖** Important Lessons
- **❖** Future Directions

Summary

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Summary

- Important Lessons
- **❖** Future Directions

The "new" Heterotic Standard Model has

- 3 families of quarks and leptons.
- Zero anti-families.
- 1 Higgs-Higgs conjugate pair (exact MSSM).
- Doublets and triplets are completely split, all triplets are projected out.
- Yukawa couplings.
- No Higgs μ -terms, but can get those from D-terms.

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Summary

❖ Important Lessons

❖ Future Directions

Discrete symmetries are important

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Summary

❖ Important Lessons

❖ Future Directions

- Discrete symmetries are important
 - Doublet-triplet splitting.

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

- Summary
- ❖ Important Lessons
- **❖** Future Directions

- Discrete symmetries are important
 - Doublet-triplet splitting.
 - Moduli reduction, e.g.

$$h^{1,1}(\widetilde{X}) = 19 \longrightarrow 3 = h^{1,1}(X)$$

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Summary

❖ Important Lessons

❖ Future Directions

- Discrete symmetries are important
 - Doublet-triplet splitting.
 - Moduli reduction, e.g. $h^{1,1}(\widetilde{X}) = 19 \longrightarrow 3 = h^{1,1}(X)$
- Not at a special point in moduli space⇒ no enhanced spectrum.

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Summary

❖ Important Lessons

❖ Future Directions

- Discrete symmetries are important
 - Doublet-triplet splitting.
 - Moduli reduction, e.g. $h^{1,1}(\widetilde{X}) = 19 \longrightarrow 3 = h^{1,1}(X)$
- Not at a special point in moduli space \Rightarrow no enhanced spectrum.
- Unique solution?

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

Conclusion

Summary

❖ Important Lessons

***** Future Directions

- Discrete symmetries are important
 - Doublet-triplet splitting.
 - Moduli reduction, e.g. $h^{1,1}(\widetilde{X}) = 19 \longrightarrow 3 = h^{1,1}(X)$
- Not at a special point in moduli space \Rightarrow no enhanced spectrum.
- Unique solution?
- Equivariant actions are the key.

Future Directions

Introduction

The Calabi-Yau

The Vector Bundle

A First Heterotic Standard Model

Spectral Sequences

A New Heterotic Standard Model

- Summary
- ❖ Important Lessons
- ❖ Future Directions

- Supersymmetry breaking.
- $U(1)_{B-L}$ breaking.
- Instanton corrections to Yukawa couplings.
- Moduli stabilization.
- Revisit SU(5) with \mathbb{Z}_2 Wilson line: no $U(1)_{B-L}$.