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● Geometric compactification of the E8 × E8

heterotic string.

● d = 4, N = 1 ⇒ stable background.

● /////////////////////////////////////////SU(3)C × SU(2)L × U(1)Y .

● SU(3)C × SU(2)L × U(1)Y × U(1)B−L

⇒ proton decay suppressed.

● No exotic matter.

● All of the ordinary matter fields
(including right-handed Neutrino).
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Ancient Lore: Spin(10) GUT with Z3 × Z3

Wilson lines “works”:

16 of Spin(10): Breaks into one family of
quarks and leptons including a
right-handed Neutrino.

16 of Spin(10): Anti-family.

10 = 10 of Spin(10): Higgs and color triplets.

Compactification scale ∼ GUT scale
... but nice way to package representations.
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Spin(10) ⊃ SU(3)×SU(2)×U(1)×U(1)×Z3 × Z3

{
Standard Model

gauge group

}
×U(1)B−L×{Wilson lines}

Z3 × Z3 is smallest Wilson line possible.

16 = χ2

1χ2
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)

Right-handed Neutrino
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G = Z3 × Z3 = G1 × G2

Fix generators g1 and g2.

Characters (=1-d representations): Denote
generators by χ1 and χ2, where (ω = e

2πi
3 )

χ1(g1) = ω χ1(g2) = 1

χ2(g1) = 1 χ2(g2) = ω .

All other characters are products of χ1 and χ2.
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Maximal regular subgroup
SU(4) × Spin(10) ⊂ E8:

SU(4) Spin(10)

The adjoint of E8 (fermions in the E8 × E8

heterotic string) decomposes as

248 =
(
1,45

)
⊕

(
15,1

)
⊕

(
4,16

)
⊕

(
4,16

)
⊕

(
6,10

)
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To make use of this group theory, we would like

● A Calabi-Yau threefold X with Z3 × Z3

fundamental group.

● The Calabi-Yau should be torus fibered.

● A SU(4) ⊂ E8 instanton leaves Spin(10)
unbroken, so we want a rank 4 stable
holomorphic vector bundle V on X.

● With the “right” cohomology groups (low
energy spectrum).
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Work with Have in mind

Simply connected
Calabi-Yau

threefold X̃ with
free Z3 × Z3 action

=

Calabi-Yau
threefold X with
π1(X) = Z3 × Z3

elliptically fibered torus fibered
(torus fibered (assuming Z3 × Z3

with section) preserves fibration)
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Start with two dP9 surfaces B1 and B2.

Start
with two dP9 surfaces

B1

β1

��

P
1

and

B2

β2

��

P
1

.

Note: dP9 are elliptically fibered; Fibers over a
generic point x ∈ P

1 are

' T 2 ⊂ B1 , ' T 2 ⊂ B2 .

The fiber product B1 ×P
1 B2 is the fibration

over P
1 with fiber

β−1(x) = ×



Calabi-Yau Construction

Introduction

The Calabi-Yau

❖ Calabi-Yau
Introduction

❖ Calabi-Yau
Construction

❖ Calabi-Yau
Properties

❖ Group Actions on
the Base I

❖ Group Actions on
the Base II

❖ Invariant
Cohomology

❖ Divisors on the
Base

❖ Divisors on the
Calabi-Yau

The Vector Bundle

A First Heterotic
Standard Model

Spectral Sequences

A New Heterotic
Standard Model

Conclusion

A Heterotic Standard Model / University of North Carolina at Chapel Hill 12 / 54

Start with two dP9 surfaces

B1

β1

��

P
1

and

B2

β2

��

P
1

.

Note: dP9 are elliptically fibered; Fibers over a
generic point x ∈ P

1 are

β−1

1 (x) ' T 2 ⊂ B1 , β−1

2 (x) ' T 2 ⊂ B2 .

The fiber product B1 ×P
1 B2 is the fibration

over P
1 with fiber

β−1(x) = ×



Calabi-Yau Construction

Introduction

The Calabi-Yau

❖ Calabi-Yau
Introduction

❖ Calabi-Yau
Construction

❖ Calabi-Yau
Properties

❖ Group Actions on
the Base I

❖ Group Actions on
the Base II

❖ Invariant
Cohomology

❖ Divisors on the
Base

❖ Divisors on the
Calabi-Yau

The Vector Bundle

A First Heterotic
Standard Model

Spectral Sequences

A New Heterotic
Standard Model

Conclusion

A Heterotic Standard Model / University of North Carolina at Chapel Hill 12 / 54

Start with two dP9 surfaces

B1

β1

��

P
1

and

B2

β2

��

P
1

.

Note: dP9 are elliptically fibered; Fibers over a
generic point x ∈ P

1 are

β−1

1 (x) ' T 2 ⊂ B1 , β−1

2 (x) ' T 2 ⊂ B2 .

The fiber product B1 ×P
1 B2 is the fibration

over P
1 with fiber

β−1(x) = β−1

1 (x) × β−1

2 (x)



Calabi-Yau Construction

Introduction

The Calabi-Yau

❖ Calabi-Yau
Introduction

❖ Calabi-Yau
Construction

❖ Calabi-Yau
Properties

❖ Group Actions on
the Base I

❖ Group Actions on
the Base II

❖ Invariant
Cohomology

❖ Divisors on the
Base

❖ Divisors on the
Calabi-Yau

The Vector Bundle

A First Heterotic
Standard Model

Spectral Sequences

A New Heterotic
Standard Model

Conclusion

A Heterotic Standard Model / University of North Carolina at Chapel Hill 12 / 54

Start with two dP9 surfaces

B1

β1

��

P
1

and

B2

β2

��

P
1

.

Note: dP9 are elliptically fibered; Fibers over a
generic point x ∈ P

1 are

β−1

1 (x) ' T 2 ⊂ B1 , β−1

2 (x) ' T 2 ⊂ B2 .

The fiber product B1 ×P
1 B2 is the fibration

over P
1 with fiber

β−1(x) = β−1

1 (x) × β−1

2 (x)



Calabi-Yau Properties

Introduction

The Calabi-Yau

❖ Calabi-Yau
Introduction

❖ Calabi-Yau
Construction

❖ Calabi-Yau
Properties

❖ Group Actions on
the Base I

❖ Group Actions on
the Base II

❖ Invariant
Cohomology

❖ Divisors on the
Base

❖ Divisors on the
Calabi-Yau

The Vector Bundle

A First Heterotic
Standard Model

Spectral Sequences

A New Heterotic
Standard Model

Conclusion

A Heterotic Standard Model / University of North Carolina at Chapel Hill 13 / 54

● X̃ def= B1 ×P
1 B2 is a simply connected

Calabi-Yau threefold, c1(X̃) = 0.

● Every elliptically fibered Calabi-Yau over a
dP9 is such a fiber product.

● h1,1
(
X̃

)
= 19 = h2,1

(
X̃

)

● Group actions on B1, B2 lift to X̃ if their
action on the common base P

1 is identical.
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= 19 = h2,1

(
X̃

)

● Group actions on B1, B2 lift to X̃ if their
action on the common base P

1 is identical.
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We classified all Z3 × Z3 actions on dP9

surfaces.

The moduli space looks like this:

3 isolated cases

A one parameter family

3 special limits
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All such dP9 surfaces with G = Z3 × Z3 action
give rise to a G action on X̃.

● The 3 isolated cases never yield a free
Z3 × Z3 action.

● The one-parameter family and its limits can

give a free Z3 × Z3 action on X̃.

We only consider this one-parameter family in
the following.
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G = Z3 × Z3 action free

⇒ Hp,q
(
X

)
= Hp,q

(
X̃

)G

Hodge diamond hp,q(X) = 1
0

0
1

0
3

3
0

0

3
0

1
0

0
1

h1,1
(
X

)
= 3 dimensional space

of divisor classes.
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dimC = 3 : X̃
π2
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??π1
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dimC = 2 : B1

β1
��?

??
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β2
����
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�

dimC = 1 : P
1

Invariant divisors on the base B1, B2:

H1,1
(
B1)

G = Cf1 ⊕ Ct1
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(
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G = Cf2 ⊕ Ct2
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Pull-back of divisors from the base

π−1

1 (f1) =





T 4 fiber of

X̃

��

P
1





= π−1

2 (f2)
def= φ

π−1

1 (t1)
def= τ1 π−1

2 (t2)
def= τ2

H1,1
(
X̃

)G
= Cπ−1

1 (f1) + Cπ−1

1 (t1)+

+ Cπ−1

2 (f2) + Cπ−1

2 (t2) =

= Cφ ⊕ Cτ1 ⊕ Cτ2
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On any variety Y , we have

{
Divisors D

}/
∼ =

{
Line bundles OY (D)

}

Linear equivalence

For X̃, B1, B2, P
1 that is just cohomology class

of the divisor in H1,1.

Every line bundle is of the form

● OX̃(x1τ1 + x2τ2 + x3φ) , x1, x2, x3 ∈ Z.

● OBi
(y1ti + y2fi) , y1, y2 ∈ Z.

● O
P

1(n) , n ∈ Z.
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Work with Have in mind

G-equivariant line

bundles on X̃
=

Line bundles on
X = X̃/G

An equivariant line bundle is a
line bundle L together with a
group action γ : G × L → L:

L

��

γg

// L

��

X̃ g
// X̃
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● Most line bundles on X̃ cannot be made
equivariant.

● Only the line bundles OX̃(x1τ1 + x2τ2 + x3φ)
, x1, x2, x3 ∈ Z with x1 + x2 ≡ 0 mod 3
allow for a G = Z3 × Z3 action.

● In these cases, there is always more than
one G action

⇒ Different equivariant line bundles!
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Consider the trivial line bundle OX̃ = X̃ × C.

● Obvious equivariant action

γg : X̃ × C → X̃ × C, (p, v) 7→
(
g(p), v

)

● Different equivariant action by multiplying
with a character
χγg : X̃ ×C → X̃ ×C, (p, v) 7→

(
g(p), χ(g)v

)

● We write χOX̃ for this different equivariant
line bundle.
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A way to construct may stable rank 2 vector
bundles on a surface (here: B1 and B2).

● Take two line bundles L1, L2.

● An ideal sheaf I (sheaf of functions
vanishing at some fixed points).

● Define S as an extension

0 −→ L1 −→ S −→ L2 ⊗ I −→ 0

● Cayley-Bacharach property ⇒ generic
extension is a rank 2 vector bundle.
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Work with Have in mind

G-equivariant
vector bundles on

X̃

=

Vector bundles on
X = X̃/G

Problem: Even if E, F are equivariant,

0 −→ E −→ V −→ F −→ 0

Extension is not necessarily equivariant!

Only extensions in Ext1
(
F, E

)G
are

equivariant.
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0 −→ OB2
(−2f2) −→ W −→ χ2OB2

(2f2) ⊗ I9 −→ 0

● OB2
(−2f2), χ2OB2

(2f2) are equivariant.

● I9 is the ideal sheaf of one G orbit.

● Has the Cayley-Bacharach property.

● Ext1

(
χ2OB2

(2f2) ⊗ I9, OB2
(−2f2)

)
=

so there exist extensions.
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Building blocks:

● Line bundles on X̃.

● Rank 2 bundles pulled back from B1, B2.

Operations:

● Tensor product of bundles.

● /////////Sums/////of///////////////bundles. Never (slope-) stable!

● Extensions of bundles.
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Define these two rank 2 vector bundles

V1
def= χ2OX̃(−τ1 + τ2) ⊕ χ2OX̃(−τ1 + τ2) =

= 2χ2OX̃(−τ1 + τ2)

V2
def= OX̃(τ1 − τ2) ⊗ π∗

2(W)

We define the rank 4 bundle V finally as a
generic extension

0 −→ V2 −→ V −→ V1 −→ 0

hep-th/0501070: A Heterotic Standard Model
hep-th/0502155: A Standard Model from the E8 × E8 Heterotic Superstring

hep-th/0505041: Vector Bundle Extensions, Sheaf Cohomology, and the Heterotic Standard Model
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● 3 families of quarks and leptons.

● Zero anti-families.

● 4 Higgs (twice MSSM).

● Doublets and triplets are completely split,
all triplets are projected out.

● Hidden pure E7 or Spin(12) with 2 matter
fields.

● 6 geometric moduli, 19 vector bundle
moduli, some hidden E8 bundle moduli.

hep-th/0509051: Heterotic Standard Model Moduli
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Of course, we do not know the Kähler
potential. What can we learn from the
superpotential W?

● Higgs µ-terms φHH̄

● Yukawa couplings QiHQ̄i + QiH̄Q̄i

Field Name

φ Vector bundle moduli
H Higgs
H̄ Higgs-conjugate
Qi Quarks & leptons of the i-th family
Q̄i Anti-Qi
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Compactifying on (X̃, V)/G, we found

● Higgs µ-terms φHH̄ with 4 out of the 19
vector bundle moduli.

● No Yukawa couplings.

Yukawa textures
without symmetries!?!
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How did we compute all these cohomology
groups?

Leray spectral sequence for any sheaf F on

X̃ → B2:

Ep,q
2 = Hp

(
B2, Rqπ2∗F

)
⇒ Hp+q

(
X̃, F

)

Rqπ2∗ is just the degree q cohomology along
the fiber.

Think of Ep,q
2 as the “forms with p legs along

the base and q legs along the fiber”.
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Example: H1

(
X̃,∧2V

)
= H1

(
X̃, 2χ2π

∗
2(W)

)

π2∗

(
2χ2π

∗
2(W)

)
= 2χ2W

R1π2∗

(
2χ2π

∗
2(W)

)
= 2χ1χ2W ⊗ OB2

(−f2)

Compute Hp(B1, · · · ) by two more Leray SS...

⇒ Ep,q
2 =

q=1 0 2⊕2χ1⊕2χ2⊕2χ2

1
⊕2χ2

2
⊕2χ1χ

2

2
⊕2χ2

1
χ2 0

q=0 0 2⊕2χ1⊕2χ2⊕2χ2

1
⊕2χ2

2
⊕2χ1χ

2

2
⊕2χ2

1
χ2 0

//

OO

p=0 p=1 p=2
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The two fibrations

dimC = 3 : X̃
π2

��?
??

??π1

����
��

�

dimC = 2 : B1

β1
��?

??
??

B2

β2
����

��
�

dimC = 1 : P
1

allow us to refine the cohomology degree
according to # of legs in the π1 fiber, the base,
and the π2 fiber direction.
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Field Cohomology Fiber 1 Base Fiber 2

Qi, Q̄i H1
(
X̃, V

)
0 0 1

H1, H2 H1
(
X̃,∧2V

)
0 1 0

H̄1, H̄2 H1
(
X̃,∧2V

)
0 0 1

φ1, . . . , φ4 H1
(
X̃, V ⊗ V∨

)
1 0 0

φ5, . . . , φ19 H1
(
X̃, V ⊗ V∨

)
0 0 1

Ω̄ H3
(
X̃, OX̃

)
1 1 1
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The cubic terms in the superpotential are

● Higgs µ-terms (note: ∧2V = ∧2V∨)

H1

(
X̃, V ⊗ V

∨
)
⊗ H1

(
X̃,∧2

V

)
⊗ H1

(
X̃,∧2

V
∨
)

−→ H3

(
X̃, OX̃

)
= C

● Yukawa couplings

H1

(
X̃, V

)
⊗ H1

(
X̃, V

)
⊗ H1

(
X̃,∧2

V
∨
)

−→ H3

(
X̃, OX̃

)
= C
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The products respect the additional Leray
degrees!

Field Fiber 1 Base Fiber 2

H1, H2 0 1 0
H̄1, H̄2 0 0 1

φ1, . . . , φ4 1 0 0

The only allowed cubic coupling is

W =
∑

i=1..4
a,b=1,2

λiab φiHaH̄b
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I thought your solution was unique!
Whats new?

● On X̃ the G = Z3 × Z3 action is free.

● But on B1, B2 there are orbits of length 3
and 9.

Observation: We can split up the ideal sheaf of
9 points in 3 + 6 points! Define

I3 Ideal sheaf on B1, 3 points in 3 fibers.

I6 Ideal sheaf on B2,
Singular point in 3I1 with multiplicity 2.
(i.e. function and a first derivative = 0)
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Whats new?
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● But on B1, B2 there are orbits of length 3
and 9.
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Singular point in 3I1 with multiplicity 2.
(i.e. function and a first derivative = 0)
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Define rank 2 bundles Wi on Bi

0 → χ1OB1
(−f1) → W1 → χ2

1OB1
(f1)⊗ I3 → 0

0 → χ2

2OB2
(−2f2) → W2 → χ2OB2

(2f2)⊗I6 → 0
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Define these two rank 2 vector bundles

V1
def= OX̃(−τ1 + τ2) ⊗ π∗

1(W1)

V2
def= OX̃(τ1 − τ2) ⊗ π∗

2(W2)

We define the rank 4 bundle V finally as a
generic extension

0 −→ V1 −→ V −→ V2 −→ 0
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The massless spectrum

= zero modes of /DE8

= H1 cohomology of the adjoint bundle E
V/G
8 .

Work with Have in mind

H1

(
X̃, EV

8

)G
=

H1

(
X, E

V/G
8

)
=

= H1

(
X, EV

8 /G
)
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248 =
(
1,45

)
⊕

(
15,1

)
⊕

⊕
(
4,16

)
⊕

(
4,16

)
⊕

(
6, 10

)

10 = χ2

(
1,2, 3, 0

)
⊕ χ2

1χ2

(
3,1,−2,−2

)
⊕

⊕ χ2
2

(
1,2,−3, 0

)
⊕ χ1χ

2
2

(
3,1, 2, 2

)

Correspondingly, the fermions split as...
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E
V
8 =

(
OX̃ ⊗ θ(45)

)
⊕

(
ad(V) ⊗ θ(1)

)
⊕

⊕
(
V⊗θ(16)

)
⊕

(
V
∨⊗θ(16)

)
⊕

(
∧2

V⊗θ(10)
)

where θ(· · · ) is the trivial bundle.

θ(10) =
[
χ2θ

(
1,2, 3, 0

)]
⊕

[
χ2

1χ2θ
(
3,1,−2,−2

)]
⊕

⊕
[
χ2

2θ
(
1,2,−3, 0

)]
⊕

[
χ1χ

2

2θ
(
3,1, 2, 2

)]
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For example, focus on the fields in the 10:

H1

(
X̃, E

V
8

)G

= (lots of other fields)⊕

⊕
[
χ2 ⊗ H1

(
X̃, ∧2

V

)]G

⊗
(
1,2, 3, 0

)
⊕

⊕
[
χ2

1χ2 ⊗ H1

(
X̃, ∧2

V

)]G

⊗
(
3,1,−2,−2

)
⊕

⊕
[
χ2

2 ⊗ H1

(
X̃, ∧2

V

)]G

⊗
(
1,2,−3, 0

)
⊕

⊕
[
χ1χ

2

2 ⊗ H1

(
X̃, ∧2

V

)]G

⊗
(
3,1, 2, 2

)
.
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The necessary cohomology groups for V are

H1

(
X̃, V

)
= 3 Reg(G)

H1

(
X̃, V∨

)
= 0

H1

(
X̃,∧2

V

)
= H1

(
X̃, V1 ⊗ V2

)
=

= χ1χ2 ⊕ χ2

1χ
2

2 ⊕ χ2 ⊕ χ2

2
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H1

(
X̃,∧2

V

)
= χ1χ2⊕χ2

1χ
2

2⊕χ2⊕χ2

2

1 = [χ2⊗]G up Higgs

0 =
[
χ2

1χ2⊗
]G

3

1 =
[
χ2

2⊗
]G

down Higgs

0 =
[
χ1χ

2
2 ⊗ H1

(
X̃, ∧2V

)]G

3
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Field Cohomology Fiber 1 Base Fiber 2

Q1, Q̄1 H1
(
X̃, V

)
1 0 0

Q2, Q3, Q̄2, Q̄3 H1
(
X̃, V

)
0 0 1

H1, H̄1 H1
(
X̃,∧2V

)
0 1 0

φ1, . . .? H1
(
X̃, V ⊗ V∨

)
? ? ?

● No µ-terms, H1 ∧ H̄1 = 0.

● Yukawa couplings.
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The “new” Heterotic Standard Model has

● 3 families of quarks and leptons.

● Zero anti-families.

● 1 Higgs–Higgs conjugate pair
(exact MSSM).

● Doublets and triplets are completely split,
all triplets are projected out.

● Yukawa couplings.

● No Higgs µ-terms, but can get those from
D-terms.
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● Discrete symmetries are important

✦ Doublet-triplet splitting.

✦ Moduli reduction, e.g.

h1,1
(
X̃

)
= 19 −→ 3 = h1,1(X)

● Not at a special point in moduli space
⇒ no enhanced spectrum.

● Unique solution?

● Equivariant actions are the key.
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● Supersymmetry breaking.

● U(1)B−L breaking.

● Instanton corrections to Yukawa couplings.

● Moduli stabilization.

● Revisit SU(5) with Z2 Wilson line: no
U(1)B−L.
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