D-brane Instanton Corrections in 4D String Vacua

The Seesaw Mechanism for D-brane Models

based on: R. Blumenhagen, M. Cvetič, T.W., hep-th/0609191

Timo Weigand

timo@sas.upenn.edu

Department of Physics and Astronomy, University of Pennsylvania

String theory exhibits a huge number of perturbatively metastable 4D vacua determined by zero mode approximation/ effective $\mathcal{N} = 1$ supergravity $S_{eff} \Leftrightarrow W, K, f$ SUSY vacuum given by: DW = 0 (+D-terms)

How do genuine quantum effects modify the landscape topography? W not renormalized perturbatively → non-perturbative corrections crucial

Example:

Closed string sector in Type IIB orientifolds: dependence of W on Kähler moduli only by Euclidean D3-branes decisive for IIB moduli fixing industry

Non-perturbative effects in gauge sector of string vacua?

• relevant for stability of model in the first place (e.g. Π -stability for B-type branes)

• potential to break perturbative gauge or global symmetries

• may generate perturbatively absent couplings, exponentially suppressed w.r.t. string scale

 \rightsquigarrow Majorana masses for right-handed neutrinos of order $10^{11}GeV < M_M < 10^{15}GeV$

 \rightsquigarrow hierarchically small μ -terms of order $\mathcal{O}(M_Z)$

Various non-perturbative effects in gauge sector studied in detail in literature, e.g.

worldsheet instantons in heterotic compactifications
[Dine,Seiberg,Wenn,Witten'86],[Distler,Greene'88],[Witten'99],
[Buchbinder,Donagi,Ovrut'02],[Beasley,Witten'03,'05]
worldsheet instantons in IIA brane models

[Kachru et al.'00], [Aganacic, Vafa'00]

M2/M5-brane effects in heterotic M-theory

[Becker, Becker, Strominger'95], [Harvey, Moore'99] D3-D(-1) system in IIB

[Green,Gutperle'97],[Billo et al.'02],[Green,Stahn'03]

This talk: Effects of wrapped Euclidean D-branes in Type IIA Intersecting Brane Vacua special focus on induced superpotential terms involving charged matter fields Φ_i

 $W_{np} \simeq \prod_{i=1}^{M} \Phi_i e^{-S_{inst.}}$

violating global perturbative abelian symmetries

recent related work:

[Haack,Krefl,Lust,VanProeyen,Zagermann, hep-th/0609211]

[Ibanez,Uranga, hep-th/0609213]

[Florea,Kachru,McGreevy,Saulina, hep-th/0610003]

[Buican, Malyshev, Morrison, Wijnholt, Verlinde, hep-th/0610007]

Plan of the talk

- 1. Motivation
- 2. Reminder: Intersecting Brane Worlds and anomalous U(1)
- 3. E2-brane instanton generated superpotentials:
 - Heuristics
 - Zero mode structure
 - CFT instanton calculus
- 4. Applications:
 - Matter couplings (Majorana masses, proton decay)
 - Vacuum destabilisation and open string moduli fixing
- 5. E2-brane instanton generated D-terms
- 6. Dual formulations
- 7. Conclusions

Briefin on strin model buildin

Open Strings

- Type II A orientifolds: Intersecting Braneworlds (IBW)
- Type I: magnetized D9/D5-branes
- Type II B orientifolds: D7/D3-branes; branes at singularities
- Main ingredients of IBW in IIA orientifolds:
 - stacks of N_a coincident D6-branes $\longrightarrow U(N_a)$ gauge field on worldvolume
 - intersection of stacks of N_a and N_b branes \longrightarrow chiral fermion in (N_a, \overline{N}_b)

Idea: Combine various $U(N_a)$ gauge modules to construct an appropriate gauge group of quiver type $\prod_a U(N_a)$ at intersection of all stacks

Briefin on strin model buildin

Concretely: $\mathcal{M}^{(10)} = \mathcal{M}^{(4)} \times CY_3$ quotient Type IIA on $\mathcal{M}^{(10)}$ by $\Omega(-1)^{F_L} \overline{\sigma}$ Ω : worldsheet parity, F_L : left-handed fermion number $\overline{\sigma}$: anti-holomorphic involution on CY_3

→ fixed-point locus of $\overline{\sigma}$: orientifold O6-plane $\mathcal{M}^{(4)} \times \Pi_{O6}$ carries RR and NS charge → introduction of D6-branes for charge cancellation

 N_a D6-branes wrap 3-cycles Π_a on CY_3 and fill $\mathcal{M}^{(4)}$ orientifold action \rightsquigarrow include also image branes Π'_a

chiral matter localised at non-trivial intersection of internal 3-cycles chiral number of generations is $(N_a, \overline{N}_b) = \Pi_a \circ \Pi_b$ (top. intersection number)

Briefin on strin model buildin

Consistency conditions: unbroken $\mathcal{N} = 1$ SUSY in 4D at string scale (stability)

- Π_a SUSY cycle = special Lagrangian $\longleftrightarrow J|_{\Pi_a} = 0, \qquad \Im(e^{i\theta_a}\Omega|_{\Pi_a}) = 0$
- same $\mathcal{N} = 1$ subalgebra preserved by Π_{O6} and each Π_a : $\longleftrightarrow \theta_a = 0 \quad \forall a$

Tadpole cancellation for global consistency

$$\sum_{a} N_a (\Pi_a + \Pi'_a) - 4\Pi_{O6} = [0]$$

Note: Little known about sLags on general CY_3 \implies toroidal orientifolds $CY_3 = T^6/\mathbb{Z}_N \times \mathbb{Z}_M$ \implies abstract RCFT (Gepner Model orientifolds)

nomalous $U(1) \ {\rm and} \ {\rm GS-mechanism}$

Specific signature of IBW: gauge group $\prod_a U(N_a) = \prod_a SU(N_a) \times U(1)_a$ in general: $U(1)_a$ is anomalous anomaly cancelled by 4D Green-Schwarz mechanism, mediated by Chern-Simons coupling

$$S_{CS} = \sum_{a} N_a \,\mu_6 \int_{\mathbb{R}^{1,3} \times \Pi_a} e^{trF_a} \sum_{p} C_{2p+1}$$

abelian gauge potential becomes massive and anomalous $U(1)_a$ survives as a global perturbative symmetry

Only specific linear combinations of U(1)s are massless \rightsquigarrow in realistic models: only $U(1)_Y$ massless, but: additional perturbative U(1) forbid some desirable matter couplings e.g. right-handed neutrino masses or μ -terms

nomalous U(1) and GS-mechanism

Concretely: A_I, B^I : sympl. basis of $H_3(X, \mathbb{Z})$, α_I, β^I : dual basis of $H^3(X, \mathbb{Z})$ Expand: 3-cycle $\prod_a = m_a^I A_I + n_{a,I} B^I$ RR 3-form $C^{(3)} = \ell_s^3 \left(C_I^{(0)} \alpha^I - D^{(0),I} \beta_I \right)$ CS-coupling induces gauging of global axionic shift symmetry: under $A_{a,\mu} \to A_{a,\mu} + \partial_{\mu}\Lambda_a$ the axions $(C_I^{(0)}, D^{(0),I})$ transform as $C_I^{(0)} \to C_I^{(0)} + Q_I^a \Lambda_a, \qquad D^{(0),I} \to D^{(0),I} + P^{a,I} \Lambda_a$ with $Q_{I}^{a} = -N_{a} \left(n_{a,I} - n_{a,I}' \right), \qquad P^{a,I} = N_{a} \left(m_{a}^{I} - m_{a}'^{I} \right)$

Instantons-Heuristics

Strategy: Probe for non-pert. terms by computing suitable amplitudes in instanton background Instanton background: presence of Euclidean E_p -brane wrapping internal (p + 1)-cycle On $X = CY_3$: $b_1(X) = 0 = b_5(X)$ \rightsquigarrow relevant objects are Euclidean E2-branes

Rules:

- Instanton sector corresponds to local minimum of (full) string action
 → E2-brane volume minimizing on internal sLag Ξ
- Integrate over all bosonic and fermionic zero modes localized on E2
 All fermionic zero modes have to appear in some vertex operator

Instantons-Heuristics

Consequence:

F-terms possible only if E2-sector is half-BPS w.r.t. D6-branes/O6-plane, i.e. if Ξ SUSY w.r.t. Π_a , but 1/2 SUSY broken due to localisation in 4D

 \rightarrow 2 fermionic zero modes θ_i (Goldstinos)

D-terms only if E2-sector breaks all 4 supersymmetries, i.e. Ξ on sLag non-SUSY w.r.t. $\Pi_a \rightsquigarrow 4$ fermionic zero modes θ_i , $\overline{\theta}_i$

focus on single-instanton contribs. to superpotential ${\cal W}$

Instantons-Heuristics

$$W_{np} \propto e^{-S_{E2}} = \exp\left[-\frac{2\pi}{\ell_s^3} \left(\frac{1}{g_s} \int_{\Xi} \Re(\Omega_3) + i \int_{\Xi} C_3\right)\right]$$

exponential not gauge invariant under $U(1)_a!$ $e^{-S_{E2}} \rightarrow e^{2\pi i Q_a(E2) \Lambda_a} e^{-S_{E2}}$, where $Q_a(E2) = N_a \Xi \circ (\Pi_a - \Pi'_a)$

Consequence: If $Q_a(E2) \neq 0$ for some a, no terms $W = e^{-S_{E2}}$ possible but:

$$W = \prod_{i} \Phi_i \ e^{-S_{E2}} \quad \text{with} \quad \sum_{i} Q(\Phi_i) + Q_a(E2) = 0 \ \forall a$$

non-perturbative breakdown of global U(1) symmetry possible How can we understand this selection rule in terms of fermionic zero modes?

Zero mode structure-Details

Distinguish 2 types of fermionic zero modes:

1) zero modes uncharged under $U(1)_a$:

- Goldstinos θ_i
- If cycle Ξ non-rigid: $b_1(\Xi)$ fermionic zero modes from open strings starting and ending on $E2 \leftrightarrow E2$ -moduli
- additional zero modes also at intersection of Ξ and Ξ' counted by $\frac{1}{2}([\Xi \cap \Xi']^{\pm} - [\Xi \cap \Pi_{O6}]^{\pm})$

vertex ops of these uncharged zero modes can only combine properly with vertex ops of (uncharged) closed string fields

for W_{np} dependent only on open fields of gauge sector, they have to absent:

 Ξ has to be rigid and $[\Xi \cap \Xi']^{\pm} = [\Xi \cap \Pi_{O6}]^{\pm}$

Zero mode structure-Details

2) zero modes charged under $U(1)_a$: from strings between E_2 and $D6_a$ DN-boundary conditions in 4D, mixed boundary conditions along CY_3

 \rightsquigarrow 1/2 complex fermionic zero mode λ_a

zero modes	Reps.	number	
$\lambda_{a,I}$	$(-1_E,\square_a)$	$I = 1, \dots, [\Xi \cap \Pi_a]^+$	
$\overline{\lambda}_{a,I}$	$(1_E, \overline{\Box}_a)$	$I = 1, \dots, [\Xi \cap \Pi_a]^-$	
$\lambda_{a',I}$	$(-1_E, \overline{\Box}_a)$	$I = 1, \dots, [\Xi \cap \Pi'_a]^+$	
$\overline{\lambda}_{a',I}$	$(1_E, \square_a)$	$I = 1, \dots, [\Xi \cap \Pi'_a]^-$	

total $U(1)_a$ charge of all zero modes: $Q_a(E2) = N_a \Xi \circ (\Pi_a - \Pi'_a)$ in agreement with $e^{-S_{E2}} \rightarrow e^{2\pi i Q_a(E2) \Lambda_a} e^{-S_{E2}}$

Instanton calculus - Outline

Our object of desire is $W_{np} \simeq \prod_{i=1}^{M} \Phi_{a_i,b_i} e^{-S_{E2}}$

 $\Phi_{a_i,b_i} = \phi_{a_i,b_i} + \theta \psi_{a_i,b_i}$: superfields at the intersection of Π_{a_i} with Π_{b_i} suppress Chan-Paton labels for simplicity

 W_{np} detected by correlator in E_2 -background

$$\langle \phi_{a_1,b_1} \cdot \ldots \cdot \phi_{a_{M-2},b_{M-2}} \cdot \psi_{a_{M-1},b_{M-1}} \cdot \psi_{a_M,b_M} \rangle_{E2-\text{inst}} = \int d^4x \, d^2\theta \, \sum_{\text{conf.}} \prod_a \left(\prod_{I=1}^{[\Xi \cap \Pi_a]^+} d\lambda_{a,I} \right) \, \left(\prod_{I=1}^{[\Xi \cap \Pi_a]^-} d\overline{\lambda}_{a,I} \right) \\ \prod_k \langle \Phi_{a_{k_1},b_{k_1}}^k \cdot \ldots \cdot \Phi_{a_{k_r},b_{k_r}}^k \rangle_{\prod \lambda_k}^{g_k}$$

Instanton calculus - Outline

Which ways of splitting the $\langle ... \rangle_{\prod \lambda_k}^{g_k}$ contribute to W? 1) Each factor has to involve at least one E2-boundary 2) all λ_a and the two θ_i modes have to appear precisely once 3) Holomorphy of W: only dependence on g_s via $exp(-S_{E2})$ \rightsquigarrow analyse g_s -scaling of $\langle ... \rangle_{\prod \lambda_k}^{g_k}$:

- each disk: $(g_s)^{-1}$ one-loop diagram (annulus/Möbius): $(g_s)^0$
- vertex ops for $\phi_{a_i,b_i}/\psi_{a_i,b_i}$: $(g_s)^0$ (otherwise decouple as $g_s \to 0$) vertex ops for λ_a : $(g_s)^{1/2}$ cf. D3-D(-1): [Billo et al.'03]

Consequence:

each disk carries precisely two λ_a vertices annulus/Möbius carries no λ_a vertices no worldsheets of genus higher than 1 contribute to WUniversity of North Carolina HEP Seminar, 10/12/2006 – p.19

Instanton calculus - Disks

• factor off vacuum disks cf. [Polchinski'94]

$$\sum_{n=1}^{\infty} \frac{1}{n!} (\langle 1 \rangle_{disk})^n = exp(-S_{E2})$$

• appropriate insertion of θ_i vertices hand in hand with insertion of $\phi_{a_i,b_i}/\psi_{a_i,b_i}$:

Instanton calculus - Disks

• only order g_s^0 diagrams

also multi-insertion disks possible
 e.g. if D6-brane has deformation moduli (superfields Δ_a),
 insertion of arbitrary number of Δ_a
 → overall exp (-1/α' tr(Δ_a))-dependence on open string moduli

University of North Carolina HEP Seminar, 10/12/2006 - p.21

Recall: loop-amplitudes uncharged (no λ_a -insertion)

• factor off vacuum loops involving at least one E2 boundary: $Z^{A}(E2, D6_{a}) = c \int_{0}^{\infty} \frac{dt}{t} \operatorname{Tr}_{E2,D6_{a}} \left(e^{-2\pi t L_{0}}\right) \neq 0$ likewise $Z^{M}(E2, O6) \neq 0$, but $Z^{A}(E2, E2) = 0 = Z^{A}(E2, E2')$ (due to supersymmetry preserved on E2 worldvolume) \rightsquigarrow

$$\sum_{n=0}^{\infty} \frac{1}{n!} \left(\sum_{a} \left[Z^{A}(E2, D6_{a}) + Z^{A}(D6'_{a}, E2) \right] + Z^{M}(E2, O6) \right)$$

= exp (Z₀),

with $Z_0 = \sum_a \left[Z^A(D6_a, E2) + Z^A(D6'_a, E2) \right] + Z^M(E2, O6)$

 \boldsymbol{n}

Compare: $\sum_{n=1}^{\infty} \frac{1}{n!} (\langle 1 \rangle_{disk})^n = e^{-S_{E2}} \leftrightarrow \sum_{n=1}^{\infty} \frac{1}{n!} (\langle 1 \rangle_{1-loop})^n = e^{Z_0}$

Interpretation of $exp(Z_0)$ as 1-loop determinant: Z_0 divergent from $t \to \infty$ integration ($t \to 0$ divergence cancels) \rightsquigarrow in presence of bosonic zero mode: $exp(Z_0) \to \infty$ \rightsquigarrow in presence of fermionic zero mode: $exp(Z_0) \to 0$

Cf. worldsheet instantons in het. (0,2)-models [Witten'99]):

$$W = \frac{\operatorname{Pfaff}(\overline{\partial}_{V_{-}})}{(\det \overline{\partial}_{\mathcal{O}})^2 (\det \overline{\partial}_{\mathcal{O}(-1)})^2} \exp(-S_{\operatorname{inst}})$$

As in heterotic string: remove bosonic and fermionic zero modes from 1-loop determinant!

$$\frac{\operatorname{Pfaff}'(\mathcal{D}_F)}{\sqrt{\det'(\mathcal{D}_B)}} = \exp\left(\sum_a \left[Z'^A(E2, D6_a) + Z'^A(E2, D6'_a)\right] + Z'^M(E2, O6)\right).$$

• also attach chains of Φ_{a_i,b_i} to 1-loop diagrams with one boundary on E2In particular: moduli Δ_a \rightsquigarrow moduli dependence of 1-loop determinant

University of North Carolina HEP Seminar, 10/12/2006 - p.25

Instanton calculus - Summary

$$\langle \Phi_{a_1,b_1}(x_1) \cdot \ldots \cdot \Phi_{a_M,b_M}(x_M) \rangle_{E2-\text{inst}} = = \int d^4x \, d^2\theta \, \sum_{\text{conf.}} \, \prod_a \left(\prod_{i=1}^{[\Xi \cap \Pi_a]^+} d\lambda_a^i \right) \left(\prod_{i=1}^{[\Xi \cap \Pi_a]^-} d\overline{\lambda}_a^i \right) = \exp(-S_{E2}) \, \times \, \exp\left(Z_0'\right) \times \langle \widehat{\Phi}_{a_1,b_1}[\vec{x}_1] \rangle_{\lambda_{a_1},\overline{\lambda}_{b_1}} \cdot \ldots \cdot \langle \widehat{\Phi}_{a_L,b_L}[\vec{x}_L] \rangle_{\lambda_{a_L},\overline{\lambda}_{b_L}} \, \times \prod_k \langle \widehat{\Phi}_{c_k,c_k}[\vec{x}_k] \rangle_{A(E2,D6_{c_k})}^{\text{loop}}$$

University of North Carolina HEP Seminar, 10/12/2006 - p.26

Matter couplin s

Modulo the derived rules generation of important perturbatively forbidden matter couplings possible

• Most prominently: hierarchically large Majorana masses for right-handed neutrinos

For concreteness consider putative MSSM from IBW

Majorana Masses

Intersection	Matter	Rep.	Y
(a,b)	Q_L	$3 \times (3,2)_{(1,0,0)}$	1/3
(a,c)	$(U_R)^c$	$3 \times (\overline{3}, 1)_{(-1,1,0)}$	-4/3
(a',c)	$(D_R)^c$	$3 \times (\overline{3}, 1)_{(-1, -1, 0)}$	2/3
(b,d)	L_L	$3 \times (1,2)_{(0,0,-1)}$	-1
(c,d)	$(E_R)^c$	$3 \times (1,1)_{(0,-1,1)}$	2
(c',d)	$(N_R)^c$	$3 \times (1,1)_{(0,1,1)}$	0

massless hypercharge $U(1)_Y = \frac{1}{3} U(1)_a - U(1)_c + U(1)_d$ baryon number $Q_B = Q_a$, lepton number $Q_L = Q_b$, Q_c , Q_d massive i.e. perturbative global symmetries \rightsquigarrow Dirac mass $W_H = H^+ L_L (N_R)^c$ present, but Majorana mass $W_m = M_m (N_R)^c (N_R)^c$ perturbatively forbidden

Majorana Masses

Non-pert. coupling possible if CY_3 possesses rigid 3-cycle Ξ with zero mode structure

 $\Xi \cap \Pi_a = \Xi \cap \Pi'_a = \Xi \cap \Pi_b = \Xi \cap \Pi'_b = \Xi \cap \Pi_c = \Xi \cap \Pi'_d = 0$ $[\Xi \cap \Pi'_c]^+ = 2, \ [\Xi \cap \Pi'_c]^- = 0, \ [\Xi \cap \Pi_d]^- = 2, \ [\Xi \cap \Pi_d]^+ = 0.$

Non-pert. Majorana coupling: $W_m = M_m (N_R)^c (N_R)^c$ with $M_m = x M_s e^{-\frac{2\pi}{\ell_s^3 g_s} \operatorname{Vol}_{E2}}$ Use $\frac{1}{\alpha_{\text{GUT}}} = \frac{1}{\ell_s^3 g_s} \operatorname{Vol}_{D6} \rightsquigarrow M_m = x M_s e^{-\frac{2\pi}{\alpha_{\text{GUT}}} \frac{\operatorname{Vol}_{E2}}{\operatorname{Vol}_{D6}}}$

For seesaw mechanism need $10^{11} \text{GeV} < M_m < 10^{15} \text{GeV}$

Easily possible within <u>natural regime</u> for $0.4 \cdot R_{D6} > R_{E2} > 0.27 \cdot R_{D6}$

Proton decay?

Nice property of perturbative global U(1) such as Q_B , Q_L : Perturbative absence of dimension-four proton decay operators

 $W_4 = \lambda \left[Q_L (D_R)^c L_L \right] + \lambda' \left[(U_R)^c (D_R)^c (D_R)^c \right] + \lambda'' \left[L_L L_L (E_R)^c \right]$

→ Is proton unstable non-perturbatively? Proton decay induced only if stable as long as $\lambda\lambda' \neq 0$ careful analysis of restrictive structure of boundary combinatorics and fermionic zero modes crucial:

• $[(U_R)^c (D_R)^c (D_R)^c]$ is possible if

$$[\Xi \cap \Pi_a]^+ = 1, \ [\Xi \cap \Pi_c]^- = 1, \ [\Xi \cap \Pi'_c]^- = 2$$

 $\rightsquigarrow 3 \times \lambda_a, 1 \times \overline{\lambda}_c, 2 \times \overline{\lambda}_{c'}$

Proton decay?

- $[L_L L_L (E_R)^c]$ likewise possible
- $[Q_L (D_R)^c L_L]$ not possible: Minimal number of λ_a -modes if E2 on Ξ with

$$[\Xi \cap \Pi_a]^+ = 1 \to 3 \times \lambda_a$$
 due to $N_a = 3$

but Q_L and $(D_R)^c$ can only soak up 1 λ_a each!

 \rightsquigarrow no non-pert. dimension 4 proton decay operators induced in this manner

dditional couplin s

• IBW GUT SU(5) suffer from absence of pert. trilinear Yukawas 10105_H, where 10 from (a,a')-intersection Not generated by E2-instantons due to too many λ -modes

• depending on concrete construction μ -term $\mu H^+ H^-$ is often forbidden pertrubatively \rightsquigarrow can well be generated!

Vacuum destabilisation

Recall: All amplitudes require rigid *E*2 branes with no uncharged zero-modes! very restrictive!2 kinds of destabilising terms can be induced:

• In presence of precisely to fermionic zero modes λ_a , $\overline{\lambda}_b$, open string tadpole

$$W = \Phi_{a,b} \ e^{-S_{E2}}$$

is possible.

• If E2-brane has only non-chiral (vector-like) $\lambda - \overline{\lambda}$ modes with $D6_a$, purely moduli dependent terms induced:

Vacuum destabilisation

Does this destroy all known perturbative brane vacua?

- Both rigidity and zero mode structure rule out these processes in most, though not all cases
- Interplay of several such terms can in principle also lead to fixing of open string moduli
- \rightsquigarrow systematic analysis in concrete examples required
- Cancellation of complete sum of these contributions likewise conceivable in principle (see Beasley/Witten)
 remains to be seen!

D-terms

Recall: If E2 is half-BPS w.r.t. D6-branes: F-terms generated If sLag Ξ of E2 breaks all SUSY \rightsquigarrow 4 zero modes θ_i , $\overline{\theta}_i$ as required for non-pert. D-term

D6 - E2 zero modes: same structure of fermionic zero modes as in half-BPS case absence of tachyons in bosonic sector guaranteed due to DN-boundary conditions in 4D!

 \rightsquigarrow no instability due to possible recombination modes, at most mild non-pert. deformation of D-term SUSY condition

D-terms/ au e kinetic functions

Expect FI-term $S_{FI} = \int d^4x \, d^2\theta \, d^2 \overline{\theta} \, V_{U(1)}$ arising from diagrams involving vert. op. for abelian gauge field on D6 and vector-like pairs of λ , $\overline{\lambda}$ -modes i.e. only E2-branes with zero net charge under $U(1)_a$ contribute to FI-term

D-term SUSY condition $\stackrel{\text{central charge}}{\longleftrightarrow}$ gauge couplings $\xi_a \simeq \operatorname{Arg} \int_{\Pi_a} \Omega_3, \quad f_a = \frac{1}{(2\pi) \, \ell_s^3} \left[\frac{1}{g_s} \Big| \int_{\Pi_a} \Omega_3 \Big| + i \int_{\Pi_a} C_3 \right]$

 \rightsquigarrow expect likewise non-pert. corrections to gauge kinetic function this time from half-BPS *E*2-branes, but again carrying no net U(1) charge (non-chiral intersection)

Dual formulations

Type IIA orientifolds $\stackrel{\text{Mirror symmetry}}{\longleftrightarrow}$ Type I /Type IIB orientifolds $\stackrel{\text{S-duality}}{\longleftrightarrow}$ Heterotic (0, 2)-models 1.) Type I: D9-branes carrying (non-)abelian gauge bundle V_a D5-branes wrapping holomorphic curves

2 types of axions: universal axion from dim. red. of C_6 on $CY_3 \rightsquigarrow$ complexifies dilaton in SKähler axions: C_2 reduced on two-cycles of $CY_3 \rightsquigarrow$ complexify Kähler moduli

analogue of E2-branes in IIA: E1/E5-instantons

• E1: have to wrap rigid curves (isolated \mathbb{P}_1),

charged zero modes counted by $H^*(\mathbb{P}_1, V_a|_{\mathbb{P}_1} \otimes K^{1/2}_{\mathbb{P}_1})$

Dual formulations

• E5: wrap CY_3 , carry bundle V_E , uncharged zero modes = bundle moduli of V_E counted by $H^1(CY_3, V_E \otimes V_E^*) \stackrel{!}{=} 0$ in addition: symmetric/antisymmetric matter in $H^*(CY_3, \Lambda^2 V_E) \stackrel{!}{=} 0 \stackrel{!}{=} H^*(CY_3, \bigotimes_{sym} V_E)$

charged matter in $H^*(CY_3, V_a \otimes V_E), H^*(CY_3, V_a \otimes V'_E)$ Note: complex structure and bundle moduli U and B contain no axions/Wilson lines!

→ general functional dependence possible

$$W = \sum_{E1} e^{-S_{E1}(T)} f(U, B, \Phi_{ab}) + \sum_{E5} e^{-S_{E5}(S,T)} f(U, B, \Phi_{ab}),$$

Dual formulations

2.) Type I directly S-dual to heterotic $Spin(32)/\mathbb{Z}_2$ string with U(N)-bundles same strucutre also for $E_8 \times E_8$ string with general U(N)bundles embedded role of E1/E5 instantons played by worldsheet/NS5-brane

instantons

3.) Type IIB orientifolds with O3/O7-planes chiral matter on D7-branes wrapping holomorphic divisor and carrying gauge bundle V_a axions from dim. red. of C_4 along 4-cycles

E3-brane instantons:

rigid 4-cycle Γ_E : $h^0(\Gamma_E, N) = h^{(2,0)}(\Gamma_E) \stackrel{!}{=} 0$

absence of bundle moduli for $V_E = L : h^{(1,0)}(\Gamma_E) \stackrel{!}{=} 0$ additional charged zero modes if E3 and D7 brane overlap internally! [Ganor '96]

Conclusions

E2-brane instantons in Type IIA brane vacua allow for an explicit CFT description general results for disk and one-loop contributions in agreement with dual descriptions in heterotic/IIB theory

formalism applicable to vacua with exactly solvable CFT: toroidal orientifolds, Gepner Model orientifolds Challenge: present concrete models with rigid cycles

[Blumenhagen, Cvetič, Marchesano, Shiu'05], [Blumenhagen, Plauschinn'06]

implications on phenomenology and model building: vacuum destabilisation/SUSY breaking, open string moduli fixing \rightsquigarrow effects on open string landscape? natural explanation of hierarchies in context of Majorana masses/ μ -terms modification of D-term SUSY condition? extension of concept of Fukaya category?