Evaluating Kinematical Factors of Pure Spinor Scattering Amplitudes

Carlos R. Mafra

Instituto de Fisica Teorica
State University of Sao Paulo

October 11, 2007

Outline

(9) Introduction

(2) Brief Review of the Pure Spinor Formalism
(3) Scattering Amplitudes with Pure Spinors

- Four gravitons at tree-level
- Four gravitons at one-loop

4. Evaluating Pure Spinor Superspace Expressions

- Four gravitons at two-loops
- Anomaly Kinematical Factor
(5) What is left to do

Outline

(9) Introduction
(2) Brief Review of the Pure Spinor Formalism
(3) Scattering Amplitudes with Pure Spinors

- Four gravitons at tree-level
- Four gravitons at one-loop
(4) Evaluating Pure Spinor Superspace Expressions
- Four gravitons at two-loops
- Anomaly Kinematical Factor
(5) What is left to do

Outline

(9) Introduction
(2) Brief Review of the Pure Spinor Formalism
(3) Scattering Amplitudes with Pure Spinors

- Four gravitons at tree-level
- Four gravitons at one-loop
(4) Evaluating Pure Spinor Superspace Expressions
- Four gravitons at two-loops
- Anomaly Kinematical Factor
(5) What is left to do

Outline

(9) Introduction
(2) Brief Review of the Pure Spinor Formalism
(3) Scattering Amplitudes with Pure Spinors

- Four gravitons at tree-level
- Four gravitons at one-loop

4. Evaluating Pure Spinor Superspace Expressions

- Four gravitons at two-loops
- Anomaly Kinematical Factor
(5) What is left to do

Outline

(9) Introduction
(2) Brief Review of the Pure Spinor Formalism
(3) Scattering Amplitudes with Pure Spinors

- Four gravitons at tree-level
- Four gravitons at one-loop

4. Evaluating Pure Spinor Superspace Expressions

- Four gravitons at two-loops
- Anomaly Kinematical Factor
(5) What is left to do

What do I want to do?

- Compute the kinematical factors of amplitudes obtained with the pure spinor formalism
- PRL 96 (2006),011602 (Berkovits,C.M.)
- JHEP 0601 (2006), 075 (C.M.)
- JHEP 0611 (2006), 079 (Berkovits,C.M.)
- Check if they agree with RNS and GS results
- For example, the 4-point 1-loop kinematical factor:

$$
\left\langle\left(\lambda A^{1}\right)\left(\lambda \gamma^{m} W^{2}\right)\left(\lambda \gamma^{n} W^{3}\right) \mathcal{F}_{m n}^{4}\right\rangle+\text { perm }(234)=t_{8} F^{4}+\text { fermions }
$$

- Or the 4-point amplitude at 2-loops

$$
\left\langle\left(\lambda \gamma^{m n p q r} \lambda\right) \mathcal{F}_{m n}^{1} \mathcal{F}_{p q}^{2} \mathcal{F}_{r s}^{3}\left(\lambda \gamma^{s} W^{4}\right)\right\rangle+\operatorname{perm}(1234)=(t-u) t_{8} F^{4}+\ldots
$$

- Or the gauge variation of the 6-point amplitude at 1-loop

$$
\left\langle\left(\lambda \gamma^{m} W\right)\left(\lambda \gamma^{n} W\right)\left(\lambda \gamma^{p} W\right)\left(W \gamma_{m n p} W\right)\right\rangle=\epsilon_{10} F^{5}
$$

What do I want to do?

- Or how to prove the following interesting identity

$$
\begin{aligned}
& \left\langle\left(\lambda \gamma^{r} \gamma^{m_{1} n_{1}} \theta\right)\left(\lambda \gamma^{s} \gamma^{m_{2} n_{2}} \theta\right)\left(\lambda \gamma^{t} \gamma^{m_{3} n_{3}} \theta\right)\left(\theta \gamma^{m} \gamma^{n} \gamma_{r s t} \gamma^{m_{4} n_{4}} \theta\right)\right\rangle= \\
& =-\frac{2}{45}\left(\eta^{m n} t_{8}^{m_{1} n_{1} m_{2} n_{2} m_{3} n_{3} m_{4} n_{4}}-\frac{1}{2} \epsilon_{10}^{m n m_{1} n_{1} m_{2} n_{2} m_{3} n_{3} m_{4} n_{4}}\right)
\end{aligned}
$$

- Find tricks and shortcuts to compute general scattering amplitudes
- Note: Compact notation $t_{8} F^{4}$ means

$$
\begin{gathered}
t_{8} F^{4} \equiv 4\left(F^{1} F^{2} F^{3} F^{4}\right)+4\left(F^{1} F^{3} F^{2} F^{4}\right)+4\left(F^{1} F^{2} F^{4} F^{3}\right) \\
-\left(F^{1} F^{2}\right)\left(F^{3} F^{4}\right)-\left(F^{1} F^{3}\right)\left(F^{2} F^{4}\right)-\left(F^{1} F^{2}\right)\left(F^{4} F^{3}\right)
\end{gathered}
$$

Pure Spinor Formalism

The pure spinor formalism is a CFT based on the following action

Action (Minimal Pure Spinor Formalism)

$$
S=\int d^{2} z\left(\frac{1}{2} \partial X^{m} \bar{\partial} X_{m}+p_{\alpha} \bar{\partial} \theta^{\alpha}-w_{\alpha} \bar{\partial} \lambda^{\alpha}\right)
$$

With a bosonic pure spinor λ^{α}

Constraints

$$
\left(\lambda \gamma^{m} \lambda\right)=0
$$

Pure Spinor Formalism

Some important definitions for amplitude computations:

- Lorentz current

$$
N^{m n}=\frac{\alpha \prime}{4}\left(w \gamma^{m n} \lambda\right)
$$

- Supersymmetric momentum

$$
\Pi^{m}=\partial X^{m}+\frac{1}{2}\left(\theta \gamma^{m} \partial \theta\right)
$$

- Supersymmetric derivative

$$
D_{\alpha}=\frac{\partial}{\partial \theta^{\alpha}}+\frac{1}{2}\left(\theta \gamma^{m}\right)_{\alpha} \partial_{m}
$$

Pure Spinor Formalism

- Supersymmetric Green-Schwarz constraint

$$
d_{\alpha}=\frac{\alpha^{\prime}}{2} p_{\alpha}-\frac{1}{2}\left(\gamma^{m} \theta\right)_{\alpha} \partial X_{m}-\frac{1}{8}\left(\gamma^{m} \theta\right)_{\alpha}\left(\theta \gamma_{m} \partial \theta\right)
$$

Pure Spinor Formalism

Relevant OPE's

$$
\begin{aligned}
X^{m}(z, \bar{z}) X^{n}(w, \bar{w}) & \longrightarrow-\frac{1}{2} \eta^{m n} \ln |z-w|^{2} \\
N^{m n}(z) \lambda^{\alpha}(y) & \longrightarrow \frac{\alpha \prime}{4} \frac{\left(\gamma^{m n} \lambda\right)^{\alpha}}{z-y} \\
d_{\alpha}(z) V(y, \theta) & \longrightarrow \frac{D_{\alpha} V(y, \theta)}{z-y} \\
\Pi^{m}(z) V(y, \theta) & \longrightarrow \frac{\partial^{m} V(y, \theta)}{z-y}
\end{aligned}
$$

Issues of RNS and GS not present

Space-time SUSY

The pure spinor formalism has manifest space-time supersymmetry

Covariant BRST Quantization

$$
Q_{\mathrm{BRST}}=\oint \lambda^{\alpha} d_{\alpha}
$$

Prescription for Scattering Amplitudes

- Massless Vertex Operators:
- Unintegrated

$$
V=\lambda^{\alpha} A_{\alpha}(X, \theta)
$$

- Integrated

$$
U=\int d z\left(\partial \theta^{\alpha} A_{\alpha}+A_{m} \Pi^{m}+d_{\alpha} W^{\alpha}+\frac{1}{2} N^{m n} \mathcal{F}_{m n}\right)
$$

- Where $A_{\alpha}(x, \theta), A_{m}(x, \theta), W^{\alpha}(x, \theta)$ and $\mathcal{F}_{m n}(x, \theta)$ are the SYM superfields.

Tree-level Amplitudes

- The prescription for tree-level amplitudes is given by

Tree-level N-point

$$
\mathcal{A}_{N}=\left\langle V_{1}\left(z_{1}\right) V_{2}\left(z_{2}\right) V_{3}\left(z_{3}\right) \int d z_{4} U_{4}\left(z_{4}\right) \ldots \int d z_{N} U_{N}\left(z_{N}\right)\right\rangle
$$

- Computation proceeds as usual in a CFT
- Use OPE's to integrate out conformal weight 1 variables
- Then integrate out zero-modes

Tree-level Amplitudes

- For our purposes now, integration over λ^{α} and θ^{α} zero-modes is done with the rule

$\lambda^{3} \theta^{5}$ prescription

$$
\left\langle\left(\lambda \gamma^{m} \theta\right)\left(\lambda \gamma^{n} \theta\right)\left(\lambda \gamma^{p} \theta\right)\left(\theta \gamma_{m n p} \theta\right)\right\rangle=1
$$

Pure Spinor Superspace

- The computation of scattering amplitudes gives rise to pure spinor superspace expressions
- Compact way of writing the full amplitude
- Contain all possible contributions of fermionic and bosonic external states
- To compare results with RNS/GS one has to express these pure spinor expressions in terms of polarization and momenta
- This is now a solved problem:
- Systematic procedure to evaluate pure spinor superspace expressions in components
- I have made Mathematica functions that make this job

Four gravitons at tree-level

Example

$$
\mathcal{A}=\left\langle V^{1}\left(z_{1}, \bar{z}_{1}\right) V^{2}\left(z_{2}, \bar{z}_{2}\right) V^{3}\left(z_{3}, \bar{z}_{3}\right) \int_{\mathbb{C}} d^{2} z U^{4}(z, \bar{z})\right\rangle
$$

where $V^{i}(z, \bar{z})=V^{i}(z) \otimes \tilde{V}^{i}(\bar{z}) e^{i k \cdot x}$ and $U(z, \bar{z})=U(z) \otimes \tilde{U}(\bar{z}) e^{i k \cdot x}$

Tree-level 4-graviton computation (unpublished)

Sidenote

Previous computation (Policastro, Tsimpis 2006) were done in a way that hided the simplicity of the result. Cancellations were overlooked and no simple pure spinor expression was written down for the kinematical factor.

- We have to compute

$$
\left\langle\left(\lambda A^{1}\right)\left(z_{1}\right)\left(\lambda A^{2}\right)\left(z_{2}\right)\left(\lambda A^{3}\right)\left(z_{3}\right) \int d^{2} z\left(\Pi^{m} A_{m}^{4}+\left(d W^{4}\right)+\frac{1}{2} N^{m n} \mathcal{F}_{m n}\right)\right\rangle
$$

\otimes (right-moving part)

- $\operatorname{SL}(2, C)$ invariance allows the fixing $z_{1}=0, z_{2}=1$ and $z_{3} \rightarrow \infty$

Tree-level 4-graviton computation

- $\Pi^{m} A_{m}^{4}$ term of integrated vertex contribute only with

$$
\begin{aligned}
& \left\langle\left(\lambda A^{1}\right)\left(\lambda A^{2}\right)\left(\lambda A^{3}\right) A_{m}^{4} \Pi^{m}: e^{i k_{1} X}:: e^{i k_{2} X}: e^{i k_{3} X}: e^{i k_{4} X}:\right\rangle= \\
& =\sum_{i=1}^{2} \frac{\alpha^{\prime}}{2} \frac{i k_{i}^{m}}{z_{i}-z_{4}}\left\langle\left(\lambda A^{1}\right)\left(\lambda A^{2}\right)\left(\lambda A^{3}\right) A_{m}^{4}\right\rangle \otimes \Pi\left(z_{i j}\right)
\end{aligned}
$$

Tree-level 4-graviton computation

- One can use some identities to simplify result of other OPE's
- Delay as long as possible explicit evaluation of pure spinor integrals

Lemma

One can show the OPE identity

$$
\begin{gathered}
\left\langle\left(\lambda A^{1}\right)\left(\lambda A^{2}\right)\left(\lambda A^{3}\right)\left(\left(d W^{4}\right)+\frac{1}{2} N^{m n} \mathcal{F}_{m n}\right)\right\rangle= \\
+\frac{\alpha^{\prime}}{2\left(z_{1}-z_{4}\right)}\left\langle A_{m}^{1}\left(\lambda A^{2}\right)\left(\lambda A^{3}\right)\left(\lambda \gamma^{m} W^{4}\right)\right\rangle-(1 \leftrightarrow 2)+(1 \leftrightarrow 3)
\end{gathered}
$$

Tree-level 4-graviton computation

- We organize the computation as

$$
\begin{gathered}
\mathcal{A}=\text { const } \int d^{2} z_{4}\left(\frac{F_{1}}{z_{1}-z_{4}}+\frac{F_{2}}{z_{2}-z_{4}}\right) \otimes\left(\frac{\tilde{F}_{1}}{\bar{z}_{1}-\bar{z}_{4}}+\frac{\tilde{F}_{2}}{\bar{z}_{2}-\bar{z}_{4}}\right) \\
\cdot\left|z_{4}\right|^{-\alpha^{\prime} t / 2}\left|1-z_{4}\right|^{-\alpha^{\prime} u / 2}
\end{gathered}
$$

where

$$
\begin{aligned}
& F_{1}=i k_{m}^{1}\left\langle\left(\lambda A^{1}\right)\left(\lambda A^{2}\right)\left(\lambda A^{3}\right) A_{m}^{4}\right\rangle+\left\langle A_{m}^{1}\left(\lambda A^{2}\right)\left(\lambda A^{3}\right)\left(\lambda \gamma^{m} W^{4}\right)\right\rangle \\
& F_{2}=i k_{m}^{2}\left\langle\left(\lambda A^{1}\right)\left(\lambda A^{2}\right)\left(\lambda A^{3}\right) A_{m}^{4}\right\rangle-\left\langle\left(\lambda A^{1}\right) A_{m}^{2}\left(\lambda A^{3}\right)\left(\lambda \gamma^{m} W^{4}\right)\right\rangle
\end{aligned}
$$

Tree-level 4-graviton computation

- Using the general formula

$$
\int d^{2} z z^{A}(1-z)^{B} \bar{z}^{\tilde{A}}(1-\bar{z})^{\tilde{B}}=2 \pi \frac{\Gamma(1+A) \Gamma(1+B)}{\Gamma(2+A+B)} \cdot \frac{\Gamma(-1-\tilde{A}-\tilde{B})}{\Gamma(-\tilde{A}) \Gamma(-\tilde{B})}
$$

we get

$$
\mathcal{A}=K \tilde{K} \frac{\Gamma\left(-\alpha^{\prime} t / 4\right) \Gamma\left(-\alpha^{\prime} u / 4\right) \Gamma\left(-\alpha^{\prime} s / 4\right)}{\Gamma\left(1+\alpha^{\prime} s / 4\right) \Gamma\left(1+\alpha^{\prime} t / 4\right) \Gamma\left(1+\alpha^{\prime} u / 4\right)}
$$

where

$$
K=u F_{1}-t F_{2} \quad \tilde{K}=u \tilde{F}_{1}-t \tilde{F}_{2}
$$

Tree-level 4-graviton result

Pure Spinor Superspace Result

$$
\mathcal{A}=K \otimes \tilde{K} \frac{\Gamma(-s / 4) \Gamma(-t / 4) \Gamma(-u / 4)}{\Gamma(1+s / 4) \Gamma(1+t / 4) \Gamma(1+u / 4)}
$$

where the kinematical factor is given by

$$
\begin{aligned}
& K=\left\langle\partial^{n}\left(\lambda A^{1}\right) \partial^{m}\left(\lambda A^{2}\right)\left(\lambda A^{3}\right) \mathcal{F}_{m n}^{4}\right\rangle \\
& +\left\langle\left(\partial_{p} A_{m}^{1}\right)\left(\lambda A^{2}\right) \partial^{p}\left(\lambda A^{3}\right)\left(\lambda \gamma^{m} W^{4}\right)\right\rangle \\
& +\left\langle\left(\lambda A^{1}\right)\left(\partial_{p} A_{m}^{2}\right) \partial^{p}\left(\lambda A^{3}\right)\left(\lambda \gamma^{m} W^{4}\right)\right\rangle
\end{aligned}
$$

Massless 4-point one-loop amplitude

Prescription

$$
\mathcal{A}_{N}=\left\langle\mathcal{N}\left(\int \mu \cdot b\right) V_{1}\left(z_{1}\right) \int U_{2} \int U_{3} \int U_{4}\right\rangle
$$

Massless 4-point one-loop amplitude

- This amplitude was computed with the minimal pure spinor formalism (Berkovits 2004) and shown to agree with the RNS and GS results (C.M. 2005).
- Computed also in the non-minimal pure spinor formalism (Berkovits 2005, Berkovits \& C.M. 2006)

Pure Spinor Superspace Result

4-gravitons interaction at one-loop order

$$
\mathcal{A}=K \otimes \tilde{K} \int \frac{d^{2} \tau}{(\operatorname{lm} \tau)^{2}} F(\tau)
$$

- Minimal Pure Spinor Formalism

$$
K_{\text {one-loop }}=\left\langle(\lambda A)\left(\lambda \gamma^{m} W\right)\left(\lambda \gamma^{n} W\right) \mathcal{F}_{m n}\right\rangle
$$

- Now one has to show that $K_{\text {one-loop }}$ is proportional to $t_{8} F^{4}$
- How to do that?

Pure Spinor Superspace Result

4-gravitons interaction at one-loop order

$$
\mathcal{A}=K \otimes \tilde{K} \int \frac{d^{2} \tau}{(\operatorname{lm} \tau)^{2}} F(\tau)
$$

- Minimal Pure Spinor Formalism

$$
K_{\text {one-loop }}=\left\langle(\lambda A)\left(\lambda \gamma^{m} W\right)\left(\lambda \gamma^{n} W\right) \mathcal{F}_{m n}\right\rangle
$$

- Now one has to show that $K_{\text {one-loop }}$ is proportional to $t_{8} F^{4}$
- How to do that?

Evaluating Pure Spinor Superspace Expressions

Evaluating Pure Spinor Superspace Expressions

- Pure spinor superspace expressions are compact and elegant
- However, until the Pure Spinor Formalism becomes the de facto standard superstring formalism, one needs to check the results in components
- Straightforward to do with the $\left(\lambda^{3} \theta^{5}\right)$ rule
$\lambda^{3} \theta^{5}$ prescription

$$
\left\langle\left(\lambda \gamma^{m} \theta\right)\left(\lambda \gamma^{n} \theta\right)\left(\lambda \gamma^{p} \theta\right)\left(\theta \gamma_{m n p} \theta\right)\right\rangle=1
$$

Evaluating Pure Spinor Superspace Expressions

- Suppose one wants to compute the 1-loop pure spinor superspace integral

$$
\left\langle(\lambda A)\left(\lambda \gamma^{m} W\right)\left(\lambda \gamma^{n} W\right) \mathcal{F}_{m n}\right\rangle
$$

- We first expand superfields in θ 's as follows

Evaluating Pure Spinor Superspace Expressions

SYM Superfields θ-Expansion

$$
\begin{gathered}
A_{\alpha}(x, \theta)=\frac{1}{2} a_{m}\left(\gamma^{m} \theta\right)_{\alpha}-\frac{1}{3}\left(\xi \gamma_{m} \theta\right)\left(\gamma^{m} \theta\right)_{\alpha}-\frac{1}{32} F_{m n}\left(\gamma_{p} \theta\right)_{\alpha}\left(\theta \gamma^{m n p} \theta\right)+\ldots \\
A_{m}(x, \theta)=a_{m}-\left(\xi \gamma_{m} \theta\right)-\frac{1}{8}\left(\theta \gamma_{m} \gamma^{p q} \theta\right) F_{p q}+\frac{1}{12}\left(\theta \gamma_{m} \gamma^{p q} \theta\right)\left(\partial_{p} \xi \gamma_{q} \theta\right)+\ldots \\
W^{\alpha}(x, \theta)=\xi^{\alpha}-\frac{1}{4}\left(\gamma^{m n} \theta\right)^{\alpha} F_{m n}+\frac{1}{4}\left(\gamma^{m n} \theta\right)^{\alpha}\left(\partial_{m} \xi \gamma_{n} \theta\right) \\
\quad+\frac{1}{48}\left(\gamma^{m n} \theta\right)^{\alpha}\left(\theta \gamma_{n} \gamma^{p q} \theta\right) \partial_{m} F_{p q}+\ldots \\
\mathcal{F}_{m n}(x, \theta)=F_{m n}-2\left(\partial_{[m \xi} \xi \gamma_{n]} \theta\right)+\frac{1}{4}\left(\theta \gamma_{[m} \gamma^{p q} \theta\right) \partial_{n]} F_{p q}+\ldots,
\end{gathered}
$$

Evaluating Pure Spinor Superspace Expressions

- Remember that correlator must have 5θ 's to be non-zero
- If we want the bosonic contribution we distribute θ 's as follows

$\boldsymbol{A}_{\alpha}(\theta)$	$W^{\alpha}(\theta)$	$W^{\alpha}(\theta)$	$\mathcal{F}_{m n}(\theta)$
1	1	1	2
1	1	3	0
1	3	1	0
3	1	1	0

Evaluating Pure Spinor Superspace Expressions

Sidenote

Previous computation (Anguelova, Grassi, Vanhove 2004) was wrong. Omitted first three lines of above table.

- In JHEP 0601 (2006) (C.M.) it was shown that to get the right result one also has to include the first three lines.
- In JHEP 0705 (2007) (C. Stahn) the fermionic contributions were also computed.

Evaluating Pure Spinor Superspace Expressions

- Considering all lines of the table we get

$$
\begin{aligned}
& K_{1}^{N S}=+\frac{15}{64} F_{m n}^{1} F_{p q}^{2} F_{r s}^{3} F_{t u}^{4}\left\langle\left(\lambda \gamma^{[t \mid} \gamma^{p q_{\theta}} \theta\right)\left(\lambda \gamma^{\mid u]} \gamma^{r s} \theta\right)\left(\lambda \gamma_{a} \theta\right)\left(\theta \gamma^{m n a} \theta\right)\right\rangle+ \\
& \quad+\frac{15}{16}\left(k_{m}^{4} e_{n}^{1}\right) F_{p q}^{2} F_{r s}^{3} F_{t u}^{4}\left\langle\left(\lambda \gamma^{[m \mid} \gamma^{p q^{p}} \theta\right)\left(\lambda \gamma^{\mid a]} \gamma^{r s} \theta\right)\left(\lambda \gamma^{n} \theta\right)\left(\theta \gamma_{a} \gamma^{t u} \theta\right)\right\rangle+ \\
& +\frac{5}{16}\left(k_{m}^{2} e_{n}^{1}\right) F_{p q}^{2} F_{r s}^{3} F_{t u}^{4}\left\langle\left(\lambda \gamma^{[t \mid} \gamma^{m a} \theta\right)\left(\lambda \gamma^{\mid u]} \gamma^{r s} \theta\right)\left(\lambda \gamma^{n} \theta\right)\left(\theta \gamma_{a} \gamma^{p q} \theta\right)\right\rangle+ \\
& \quad+\frac{5}{16}\left(k_{m}^{3} e_{n}^{1}\right) F_{p q}^{2} F_{r s}^{3} F_{t u}^{4}\left\langle\left(\lambda \gamma^{[t \mid} \gamma^{p q} \theta\right)\left(\lambda \gamma^{\mid u]} \gamma^{m a} \theta\right)\left(\lambda \gamma^{n} \theta\right)\left(\theta \gamma_{a} \gamma^{r s} \theta\right)\right\rangle
\end{aligned}
$$

Evaluating Pure Spinor Superspace Expressions

Practical Question

How do we compute $\left\langle\left(\lambda \gamma^{[t \mid} \gamma^{p a} \theta\right)\left(\lambda \gamma^{\mid u]} \gamma^{r s} \theta\right)\left(\lambda \gamma_{a} \theta\right)\left(\theta \gamma^{m n a} \theta\right)\right\rangle$ or

$$
\begin{gathered}
\left\langle\left(\lambda \gamma^{m} \gamma^{m_{1} n_{1}} \theta\right)\left(\lambda \gamma^{n} \gamma^{m_{2} n_{2}} \theta\right)\left(\lambda \gamma^{p} \gamma^{m_{3} n_{3}} \theta\right)\left(\theta \gamma^{m_{4} n_{4}} \gamma m n p \gamma^{m_{5} n_{5}} \theta\right)\right\rangle \\
\left\langle\left(\lambda \gamma^{m} \theta\right)\left(\lambda \gamma^{a} \gamma^{m_{1} n_{1}} \theta\right)\left(\lambda \gamma^{b c n_{n}} \gamma^{m_{2} n_{2}} \theta\right)\left(\theta \gamma^{m_{3} n_{3}} \gamma_{a b c} \gamma^{m_{4} n_{4}} \theta\right)\right\rangle
\end{gathered}
$$

in general?

- One has to relate a general pure spinor superspace expression to $\left\langle\left(\lambda \gamma^{m} \theta\right)\left(\lambda \gamma^{n} \theta\right)\left(\lambda \gamma^{p} \theta\right)\left(\theta \gamma_{m n p} \theta\right)\right\rangle$
- One can always do that by symmetry arguments
- Example:

$$
\left\langle\left(\lambda \gamma^{m} \theta\right)\left(\lambda \gamma^{n} \theta\right)\left(\lambda \gamma^{p} \theta\right)\left(\theta \gamma_{i j k} \theta\right)\right\rangle=\frac{1}{120} \delta_{i j k}^{m n p}
$$

Identities

- $\left(\lambda \gamma^{m} \gamma^{n p} \theta\right)=\left(\lambda \gamma^{m n p} \theta\right)+\eta^{m n}\left(\lambda \gamma^{p} \theta\right)-\eta^{m p}\left(\lambda \gamma^{n} \theta\right)$
- $\left(\lambda \gamma^{a b c} \gamma^{d e} \theta\right)=+\left(\lambda \gamma^{a b c d e} \theta\right)-2 \delta_{d e}^{b c}\left(\lambda \gamma^{a} \theta\right)+2 \delta_{d e}^{a c}\left(\lambda \gamma^{b} \theta\right)-2 \delta_{d e}^{a b}\left(\lambda \gamma^{c} \theta\right)$

$$
\begin{aligned}
-\delta_{e}^{c}\left(\lambda \gamma^{a b d} \theta\right)+ & \delta_{d}^{c}\left(\lambda \gamma^{a b e} \theta\right)+\delta_{e}^{b}\left(\lambda \gamma^{a c d} \theta\right)-\delta_{d}^{b}\left(\lambda \gamma^{a c e} \theta\right) \\
& -\delta_{e}^{a}\left(\lambda \gamma^{b c d} \theta\right)+\delta_{d}^{a}\left(\lambda \gamma^{b c e} \theta\right)
\end{aligned}
$$

- $\left(\theta \gamma^{m_{4} n_{4}} \gamma_{m n p} \gamma^{m_{5} n_{5}} \theta\right)=G_{m n p r_{1} r_{2} r_{3}}^{m_{4} n_{4} m_{5} n_{5}}\left(\theta \gamma^{r_{1} r_{2} r_{3}} \theta\right)$ where

$$
\begin{gathered}
G_{m n p r_{1} r_{2} r_{3}}^{m_{4} n_{4} m_{5} n_{5}}=+\frac{1}{6} \epsilon^{m m_{4} m_{5} n n_{4} n_{5} p r_{1} r_{2} r_{3}}-24 \delta_{n_{4} n_{5}}^{n p} \delta_{r_{1} r_{2} r_{3}}^{m m_{4} m_{5}}+12 \delta_{n_{4} p}^{m_{5} n_{5}} \delta_{r_{1} r_{2} r_{3}}^{m m_{4} n} \\
-6 \delta_{n p}^{m_{5} n_{5}} \delta_{r_{1} r_{2} r_{3}}^{m m_{4} n_{4}}+12 \delta_{n_{5} p}^{m_{4} n_{4}} \delta_{r_{1} r_{2} r_{3}}^{m m_{5} n}-6 \delta_{n p}^{m_{4} n_{4}} \delta_{r_{1} r_{2} r_{3}}^{m m_{5} n_{5}}-2 \delta_{m_{5} n_{5} n_{4}}^{m_{4} \delta_{1} r_{2} r_{3}} m m_{5} \\
+[m n p]+\left[m_{4} n_{4}\right]+\left[m_{5} n_{5}\right],
\end{gathered}
$$

Identities

$$
\begin{gathered}
\bullet\left(\theta \gamma^{a b c} \gamma^{m n} \theta\right)=\left(\theta \gamma^{r_{1} r_{2} r_{3}} \theta\right) K_{r_{1} r_{2} r_{3}}^{a b c m n} \text { where } \\
K_{r_{1} r_{2} r_{3}}^{a b c m n}=-\eta^{c n} \delta_{r_{1} r_{2} r_{3}}^{a b m}+\eta^{c m} \delta_{r_{1} r_{2} r_{3}}^{a b n}+\eta^{b n} \delta_{r_{1} r_{2} r_{3}}^{a c m} \\
-\eta^{b m} \delta_{r_{1} r_{2} r_{3}}^{a c n}-\eta^{a n} \delta_{r_{1} r_{2} r_{3}}^{b c m}+\eta^{a m} \delta_{r_{1} r_{2} r_{3}}^{b c n} \\
\left(\gamma^{m n p}\right)_{\alpha \beta}\left(\gamma_{m n p}\right)^{\gamma \delta}=48\left(\delta_{\alpha}^{\gamma} \delta_{\beta}^{\delta}-\delta_{\beta}^{\gamma} \delta_{\alpha}^{\delta}\right), \quad\left(\lambda \gamma_{m} \psi\right)\left(\lambda \gamma^{m} \xi\right)=0 \quad \forall \psi^{\alpha}, \xi^{\alpha} \\
\left(\lambda \gamma^{m n p a r} \lambda\right)\left(\lambda \gamma_{m n a} \theta\right)=0, \quad\left(\lambda \gamma^{m n p q r} \lambda\right)\left(\lambda \gamma_{m} \theta\right)=0
\end{gathered}
$$

- The identities bellow are necessary to get recursion relations between different pure spinor superspace identities

$$
\begin{aligned}
\left(\lambda \gamma^{a m n} \theta\right)\left(\lambda \gamma_{a} \theta\right) & =2\left(\lambda \gamma^{m} \theta\right)\left(\lambda \gamma^{n} \theta\right) \\
\left(\lambda \gamma^{a b m} \theta\right)\left(\lambda \gamma^{a b n} \theta\right) & =-4\left(\lambda \gamma^{m} \theta\right)\left(\lambda \gamma^{n} \theta\right)
\end{aligned}
$$

Identities

$$
\begin{gathered}
\left(\lambda \gamma^{m a b c n} \lambda\right)\left(\theta \gamma_{a b c} \theta\right)=96\left(\lambda \gamma^{m} \theta\right)\left(\lambda \gamma^{n} \theta\right), \\
\left(\lambda \gamma^{a b c m n} \theta\right)\left(\lambda \gamma_{a b c} \theta\right)=-36\left(\lambda \gamma^{m} \theta\right)\left(\lambda \gamma^{n} \theta\right), \\
\left(\lambda \gamma^{a} \gamma^{b c m n} \theta\right)\left(\lambda \gamma_{a b c} \theta\right)=-28\left(\lambda \gamma^{m} \theta\right)\left(\lambda \gamma^{n} \theta\right), \\
\left(\lambda \gamma^{a b c} \theta\right)\left(\lambda \gamma^{a d e} \theta\right)=-\left(\lambda \gamma^{c d e} \theta\right)\left(\lambda \gamma^{b} \theta\right)+\left(\lambda \gamma^{b d e} \theta\right)\left(\lambda \gamma^{c} \theta\right) \\
+\left(\lambda \gamma^{b c e} \theta\right)\left(\lambda \gamma^{d} \theta\right)-\left(\lambda \gamma^{b c d} \theta\right)\left(\lambda \gamma^{e} \theta\right) \\
-\eta^{c e}\left(\lambda \gamma^{b} \theta\right)\left(\lambda \gamma^{d} \theta\right)+\eta^{c d}\left(\lambda \gamma^{b} \theta\right)\left(\lambda \gamma^{e} \theta\right) \\
+\eta^{b e}\left(\lambda \gamma^{c} \theta\right)\left(\lambda \gamma^{d} \theta\right)-\eta^{b d}\left(\lambda \gamma^{c} \theta\right)\left(\lambda \gamma^{e} \theta\right)
\end{gathered}
$$

Identities

- And many many more...

Evaluating Pure Spinor Superspace Expressions

Pure Spinor Superspace Identities

$$
\begin{aligned}
& \left\langle\left(\lambda \gamma^{m} \theta\right)\left(\lambda \gamma^{n} \theta\right)\left(\lambda \gamma^{p} \theta\right)\left(\theta \gamma_{i j k} \theta\right)\right\rangle=\frac{1}{120} \delta_{i j k}^{m n} \\
& \left\langle\left(\lambda \gamma^{m n p} \theta\right)\left(\lambda \gamma_{q} \theta\right)\left(\lambda \gamma_{t} \theta\right)\left(\theta \gamma_{j i k} \theta\right)\right\rangle=\frac{1}{70} \delta_{[q}^{[m} \eta_{t][i} \delta_{j}^{n} \delta_{k]}^{p]} \\
& \left\langle\left(\lambda \gamma_{t} \theta\right)\left(\lambda \gamma^{m n p} \theta\right)\left(\lambda \gamma^{\text {qrs }} \theta\right)\left(\theta \gamma_{i j k} \theta\right)\right\rangle=\frac{1}{8400} \epsilon^{\epsilon^{i k m n p q r s t}} \\
& +\frac{1}{140}\left[\delta_{t}^{[m} \delta_{[i}^{n} \eta^{p]\left[q_{j}\right.} \delta_{k]}^{s]}-\delta_{t}^{[a} \delta_{[i}^{r} \eta^{s][m} \delta_{j}^{n} \delta_{k]}^{p]}\right] \\
& -\frac{1}{280}\left[\eta_{t[i} \eta^{\nu[q} \delta_{j}^{r} \eta^{s][m} \delta_{k]}^{n} \delta_{v}^{p]}-\eta_{t[i} \eta^{\nu[m} \delta_{j}^{n} \eta^{p]\left[q_{k]}^{r}\right.} \delta_{v}^{s]}\right]
\end{aligned}
$$

Evaluating Pure Spinor Superspace Expressions

- It is straightforward to compute pure spinor superspace expressions in components (although tedious):
(1) Substitute SYM superfields by their theta expansions (2) Use above PS superspace identities (and a lot more!) (3) Write everything in terms of polarization $\left(e_{i}^{m}, \xi^{\alpha}\right)$ and momenta
- Doing that we finally get

PS survived

\square

Evaluating Pure Spinor Superspace Expressions

- It is straightforward to compute pure spinor superspace expressions in components (although tedious):
(1) Substitute SYM superfields by their theta expansions
(2) Use above PS superspace identities (and a lot more!)
(3) Write everything in terms of polarization $\left(e_{i}^{m}, \xi^{\alpha}\right)$ and momenta
- Doing that we finally get

[^0]
Evaluating Pure Spinor Superspace Expressions

- It is straightforward to compute pure spinor superspace expressions in components (although tedious):
(1) Substitute SYM superfields by their theta expansions
(2) Use above PS superspace identities (and a lot more!)
(3) Write everything in terms of polarization $\left(e_{i}^{m}, \xi^{\alpha}\right)$ and momenta
- Doing that we finally get

$$
\left\langle\left(\lambda A^{1}\right)\left(\lambda \gamma^{m} W^{2}\right)\left(\lambda \gamma^{n} W^{3}\right) \mathcal{F}_{m n}^{4}\right\rangle+\text { perm }=t_{8} F^{4}+\text { fermions }
$$

PS survived
 Pure spinor formalism is equivalent to RNS/GS at 1-loop order

Evaluating Pure Spinor Superspace Expressions

- It is straightforward to compute pure spinor superspace expressions in components (although tedious):
(1) Substitute SYM superfields by their theta expansions
(2) Use above PS superspace identities (and a lot more!)
(3) Write everything in terms of polarization $\left(e_{i}^{m}, \xi^{\alpha}\right)$ and momenta
- Doing that we finally get

$$
\left\langle\left(\lambda A^{1}\right)\left(\lambda \gamma^{m} W^{2}\right)\left(\lambda \gamma^{n} W^{3}\right) \mathcal{F}_{m n}^{4}\right\rangle+\text { perm }=t_{8} F^{4}+\text { fermions }
$$

PS survived

Pure spinor formalism is equivalent to RNS/GS at 1-loop order

Massless 4-point two-loop amplitude

Prescription

$$
\mathcal{A}_{N}=\left\langle\mathcal{N}\left(\int \mu \cdot b\right)\left(\int \mu \cdot b\right)\left(\int \mu \cdot b\right) \int U_{2} \int U_{3} \int U_{4}\right\rangle
$$

Pure Spinor Superspace Result

4 gravitons at two-loop order

$\mathcal{A}=K \otimes \tilde{K} \int d^{2} \Omega_{11} d^{2} \Omega_{12} d^{2} \Omega_{22} \prod_{i=1}^{4} \int d^{2} z_{i} \frac{\exp \left(-\Sigma_{i, j=1}^{4} k_{i} \cdot k_{j} G\left(z_{i}, z_{j}\right)\right)}{(\operatorname{det} \operatorname{lm} \Omega)^{5}}$
where

$$
\begin{aligned}
K_{\text {two-loop }}=\left\langle\left(\lambda \gamma^{m n p q r} \lambda\right)\right. & \left.\mathcal{F}_{m n}^{1} \mathcal{F}_{p q}^{2} \mathcal{F}_{r s}^{3}\left(\lambda \gamma^{s} W^{4}\right)\right\rangle \Delta\left(z_{1}, z_{3}\right) \Delta\left(z_{2}, z_{4}\right) \\
& +\operatorname{perm}(1234)
\end{aligned}
$$

Pure Spinor Superspace Result

- Using the above procedure it was shown (Berkovits,C.M.,2005) that

$$
\begin{aligned}
& \left\langle\left(\lambda \gamma^{m n p q r} \lambda\right) \mathcal{F}_{m n}^{1} \mathcal{F}_{p q}^{2} \mathcal{F}_{r s}^{3}\left(\lambda \gamma^{s} W^{4}\right)\right\rangle \Delta\left(z_{1}, z_{3}\right) \Delta\left(z_{2}, z_{4}\right) \\
& +\operatorname{perm}(1234)=(t-u) t_{8} F^{4} \Delta\left(z_{1}, z_{2}\right) \Delta\left(z_{3}, z_{4}\right)+\ldots
\end{aligned}
$$

- Fermionic terms were also computed (C.Stahn,2007)
- Comparing it with the RNS result (D'Hoker, Phong, 2005).

PS survived again

Pure spinor formalism is equivalent to RNS at 2-loop order

Pure Spinor Superspace Result

- Using the above procedure it was shown (Berkovits,C.M.,2005) that

$$
\begin{aligned}
& \left\langle\left(\lambda \gamma^{m n p q r} \lambda\right) \mathcal{F}_{m n}^{1} \mathcal{F}_{p q}^{2} \mathcal{F}_{r s}^{3}\left(\lambda \gamma^{s} W^{4}\right)\right\rangle \Delta\left(z_{1}, z_{3}\right) \Delta\left(z_{2}, z_{4}\right) \\
& +\operatorname{perm}(1234)=(t-u) t_{8} F^{4} \Delta\left(z_{1}, z_{2}\right) \Delta\left(z_{3}, z_{4}\right)+\ldots
\end{aligned}
$$

- Fermionic terms were also computed (C.Stahn,2007)
- Comparing it with the RNS result (D'Hoker, Phong, 2005).

PS survived again
 Pure spinor formalism is equivalent to RNS at 2-loop order

Pure Spinor Superspace Result

- Using the above procedure it was shown (Berkovits,C.M.,2005) that

$$
\begin{aligned}
& \left\langle\left(\lambda \gamma^{m n p q r} \lambda\right) \mathcal{F}_{m n}^{1} \mathcal{F}_{p q}^{2} \mathcal{F}_{r s}^{3}\left(\lambda \gamma^{s} W^{4}\right)\right\rangle \Delta\left(z_{1}, z_{3}\right) \Delta\left(z_{2}, z_{4}\right) \\
& +\operatorname{perm}(1234)=(t-u) t_{8} F^{4} \Delta\left(z_{1}, z_{2}\right) \Delta\left(z_{3}, z_{4}\right)+\ldots
\end{aligned}
$$

- Fermionic terms were also computed (C.Stahn,2007)
- Comparing it with the RNS result (D’Hoker, Phong, 2005)...

PS survived again
 Pure spinor formalism is equivalent to RNS at 2-loop order

Pure Spinor Superspace Result

- Using the above procedure it was shown (Berkovits,C.M.,2005) that

$$
\begin{aligned}
& \left\langle\left(\lambda \gamma^{m n p q r} \lambda\right) \mathcal{F}_{m n}^{1} \mathcal{F}_{p q}^{2} \mathcal{F}_{r s}^{3}\left(\lambda \gamma^{s} W^{4}\right)\right\rangle \Delta\left(z_{1}, z_{3}\right) \Delta\left(z_{2}, z_{4}\right) \\
& +\operatorname{perm}(1234)=(t-u) t_{8} F^{4} \Delta\left(z_{1}, z_{2}\right) \Delta\left(z_{3}, z_{4}\right)+\ldots
\end{aligned}
$$

- Fermionic terms were also computed (C.Stahn,2007)
- Comparing it with the RNS result (D'Hoker, Phong, 2005)...

PS survived again

Pure spinor formalism is equivalent to RNS at 2-loop order

Gauge Variation of Massless 6-point one-loop amplitude

Example

$$
\delta \mathcal{A}_{N}=\left\langle\mathcal{N}\left(\int \mu \cdot b\right) Q_{B R S T} \Omega \int U_{2} \int U_{3} \int U_{4} \int U_{5} \int U_{6}\right\rangle
$$

Gauge Variation of Massless 6-point one-loop amplitude

- Gauge variation of unintegrated vertex is $\delta\left(\lambda^{\alpha} A_{\alpha}\right)=Q_{B R S T} \Omega$
- Computed in the non-minimal pure spinor formalism (Berkovits \& C.M. 2006)

Pure Spinor Superspace Result

$$
\delta \mathcal{A}=K_{\text {anom }} \times \text { moduli space part }
$$

where

$$
\begin{gathered}
K_{\text {anom }}=\left\langle\left(\lambda \gamma^{m} W\right)\left(\lambda \gamma^{n} W\right)\left(\lambda \gamma^{p} W\right)\left(W \gamma_{m n p} W\right)\right\rangle \\
=\epsilon_{10} F^{5}
\end{gathered}
$$

Summary

Example

- Four gravitons at tree-level

$$
K_{\text {tree }}=\left(t_{8} \cdot F^{4}\right)
$$

- Four gravitons at one-loop

$$
K_{\text {one-loop }}=\left(t_{8} \cdot F^{4}\right)
$$

- Four gravitons at two-loop

$$
K_{\text {two-loop }}=\left(t_{8} \cdot F^{4}\right)\left[(t-u) \Delta\left(z_{1}, z_{2}\right) \Delta\left(z_{3}, z_{4}\right)+\text { permutations }\right]
$$

- Anomaly kinematic factor

$$
K_{\mathrm{anom}}=\left(\epsilon_{10} \cdot F^{5}\right)
$$

Results are OK

- Everything done so far agrees with standard RNS and GS results
- General proof for tree-level equivalence (Berkovits, Valillo 2000)
- Equivalence at one- and two-loop level by explicit computation (Berkovits, C.M. 2005/2006)
- Computations are easier to carry out using the Pure Spinor Formalism
- Two-loop computation with the RNS: 200 pages
- With pure spinors: 10 pages

Results are OK

- Everything done so far agrees with standard RNS and GS results
- General proof for tree-level equivalence (Berkovits, Valillo 2000)
- Equivalence at one- and two-loop level by explicit computation (Berkovits, C.M. 2005/2006)
- Computations are easier to carry out using the Pure Spinor Formalism
- Two-loop computation with the RNS: 200 pages
- With pure spinors: 10 pages

Results are OK

- Everything done so far agrees with standard RNS and GS results
- General proof for tree-level equivalence (Berkovits, Valillo 2000)
- Equivalence at one- and two-loop level by explicit computation (Berkovits, C.M. 2005/2006)
- Computations are easier to carry out using the Pure Spinor Formalism
- Two-loop computation with the RNS: 200 pages
- With pure spinors: 10 pages

Results are OK

- Everything done so far agrees with standard RNS and GS results
- General proof for tree-level equivalence (Berkovits, Valillo 2000)
- Equivalence at one- and two-loop level by explicit computation (Berkovits, C.M. 2005/2006)
- Computations are easier to carry out using the Pure Spinor Formalism
- Two-loop computation with the RNS: 200 pages
- With pure spinors: 10 pages

TODO list

- Compute the coefficients and check unitarity (work in progress)
- Compute higher-point amplitudes
- Study the properties of pure spinor superspace integrals

THE END

[^0]: PS survived
 Pure spinor formalism is equivalent to RNS/GS at 1-loop order

