Stability and duality in $\mathcal{N}=2$ supergravity

Jan Manschot

UNC Chapel Hill April 29th, 2010

Introduction

イロト イポト イヨト イヨト 一日

- BPS-states and wall-crossing
- Review supergravity and dualities
- (Multi)-center black hole solutions
- Partition functions
- Convergence and modularity
- Conclusions

Based on arXiv:0906.1767 and 1003.1570

$\mathcal{N}=2$ algebra

$$\{\mathcal{Q}^{I}_{\alpha},\mathcal{Q}^{J}_{\beta}\}=2\varepsilon_{\alpha\beta}Z^{IJ},$$

central charge: $Z : (L, C_X) \rightarrow \mathbb{C}$, where:

- L: lattice of electro-magnetic charges
- C_X: moduli space

BPS states:

- invariant under half of the susy generators,
- their mass satisfies $M = |Z(\Gamma, t)|$ with $\Gamma \in L$ and $t \in C_X$

Supersymmetric index:

$$\Omega(\Gamma; t) = rac{1}{2} \mathrm{Tr}_{\mathcal{H}(\Gamma, t)} \left(2J_3\right)^2 (-1)^{2J_3}$$

Is generically a protected quantity.

 $\Omega(\Gamma_1 + \Gamma_2; t)$ is only locally constant as function of t; it might jump across walls where $Z(\Gamma_1, t)||Z(\Gamma_2, t)$.

Wall-crossing formulas:

Primitive:

$$\Delta\Omega(\mathsf{\Gamma}_{1}+\mathsf{\Gamma}_{2};t_{\mathrm{s}}\rightarrow t_{\mathrm{u}})=(-1)^{\langle\mathsf{\Gamma}_{1},\mathsf{\Gamma}_{2}\rangle}\left|\langle\mathsf{\Gamma}_{1},\mathsf{\Gamma}_{2}\rangle\right|\Omega(\mathsf{\Gamma}_{1};t_{\mathrm{ms}})\Omega(\mathsf{\Gamma}_{2};t_{\mathrm{ms}}),$$

Denef, Moore (2007)

Kontsevich-Soibelman formula:

$$\prod_{\Gamma \in L, Z(\Gamma, t) \in V}^{\curvearrowright} \mathcal{T}_{\Gamma}^{\Omega(\Gamma; t)}$$

6/30

Partition function:

Mixed ensemble:

$$\mathcal{Z}(\tau, C, t) = \sum_{Q} \Omega(P, Q; t) e^{-2\pi \tau_2 M(\Gamma, t) + 2\pi i C^A Q_A}$$

 $au_2 \in \mathbb{R}_+, \ C^A \in \mathbb{R}^{b_2+1}$

イロト イロト イヨト イヨト 二日

$\mathcal{N}=2$ supergravity I

Relevant field content:

vector multiplets:

- U(1) field strengths $F^A = dC^A$, $A = 0, ..., b_2$ sourced by electro-magnetic charges $\Gamma = (P, Q) \in L$,
- complex scalars X^A
- fermions

Compactification

compactify 10d space-time on a Calabi-Yau 3-fold X (6 real dimensions) $\implies \mathcal{N} = 2$ supergravity in $\mathbb{R}^{1,3}$

$\mathcal{N}=2$ supergravity II

Properties of X:

- Betti numbers $b_n = \dim H_n(X)$: $b_0 = b_6 = 1$, $b_2 = b_4$, b_3 , $b_1 = b_5 = 0$
- triple intersection product of 4-cycles: d_{abc}
- Kähler moduli: $t^a = X^a/X^0 = B^a + iJ^a$, $a = 1, \dots, b_2$
- Kähler cone: $C_X = \{J : Q \cdot J > 0, P \cdot J^2, J^3 > 0 \text{ for } Q, P \text{ effective}\}$

Charges

$$\Gamma = (P^0, P^a, Q_a, Q_0) = \mathsf{D6} ext{-}\mathsf{D4} ext{-}\mathsf{D2} ext{-}\mathsf{D0} ext{ branes} \in H_6 \oplus H_4 \oplus H_2 \oplus H_0$$

Symplectic inner product:

$$\langle \Gamma_1, \Gamma_2 \rangle = \mathit{I}_{12} = -\mathit{P}_1^0 \mathit{Q}_{0,2} + \mathit{P}_1 \cdot \mathit{Q}_2 - \mathit{P}_2 \cdot \mathit{Q}_1 + \mathit{P}_2^0 \mathit{Q}_{0,1}$$

Electric-magnetic duality:

- Electric-magnetic duality is a symplectic group $Sp(2b_2 + 2, \mathbb{Z})$: $\mathbf{K}^{\mathrm{T}}\mathbf{I}\mathbf{K} = \mathbf{I}$. Acts on the vector multiplets, e.g. $\mathbf{K}\Gamma$
- Large volume limit $J \to \infty$: subgroup of translations $\mathbf{K}(k) \sim k^a \in \mathbb{Z}^{b_2}$ $Q_a \to Q_a + d_{abc}k^bP^c$ $Q_0 \to Q_0 + k \cdot Q + \frac{1}{2}d_{abc}k^ak^bP^c$ $t^a \to t^a + k^a$
- Large gauge transformations $C^a
 ightarrow C^a + m^a$, also \mathbb{Z}^{b_2}

• $SL(2,\mathbb{Z})$ duality group: $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, ad - bc = 1More manifest in IIB supergravity \rightarrow T-duality on S_t^1

• How does it act?

$$\begin{split} \tau &= \tau_1 + i\tau_2 = C_0 + i\beta/g_{\rm s} \\ \tau &\to \frac{a\tau + b}{c\tau + d}, \quad C \to aC + bB, \quad B \to cC + dB, \quad J \to |c\tau + d|J \end{split}$$

 S-duality + EM-duality + large gauge transformations → Jacobi group SL(2, Z) × (Z^{b₂})² $\mathsf{Dualities} \Rightarrow \mathsf{modular} \text{ properties of partition function:}$

$$egin{aligned} \mathcal{Z}(\gamma(au,\mathsf{C},t))\sim\mathcal{Z}(au,\mathsf{C},t), & \gamma\in\mathit{SL}(2,\mathbb{Z})\ \mathcal{Z}(au,\mathsf{C}+k,t+\ell)\sim\mathcal{Z}(au,\mathsf{C},t) \end{aligned}$$

 \Rightarrow Partition function is useful to test the compatibility of stability with duality.

イロト イポト イヨト イヨト 一日

Single center BPS black hole

Moduli "flow" by attractor mechanism. Ferrara, Kallosh and Strominger (1995)

Mass: $M = |Z(\Gamma, t)|$ Entropy: $S_{BH}(\Gamma) = \pi |Z(\Gamma, t(\Gamma))|^2$

Two center black hole

$$|x_1 - x_2| = \sqrt{G_4} \frac{\langle \Gamma_1, \Gamma_2 \rangle}{2} \frac{|Z(\Gamma_1 + \Gamma_2, t)|}{\operatorname{Im}(Z(\Gamma_1, t)\overline{Z}(\Gamma_2, t))}$$

Goal: construction of partition function for such BPS-states. \Rightarrow test dualities. Large volume limit:

$\lim J \longrightarrow \mathbf{O}$

D-branes \rightarrow coherent sheaves.

・ロト ・回ト ・ヨト ・ヨト

э

17/30

Simplification 2

No D6-branes: $P^0 = 0$

D4-brane wraps divisor in X.

$$\Rightarrow Z(\Gamma, t) = -rac{1}{2}P \cdot t^2 + Q \cdot t - Q_0$$

Lattice Λ for $Q_a \in H_2(X, \mathbb{Z})$

- quadratic form $D_{ab}=D_{abc}P^c$: $H_2(X,\mathbb{Z})\otimes H_2(X,\mathbb{Z}) o\mathbb{Z}$,
- signature $(1, b_2 1)$
- projection to Λ_+ : $Q_+ = Q \cdot J/|J|$; such that $Q^2 = Q_-^2 + Q_+^2$

Entropy from MSW CFT Maldacena, Strominger, Witten (1997) :

Entropy: $S_{\rm BH} = \pi \sqrt{\frac{2}{3}P^3 \hat{Q}_{\bar{0}}}$ Lower bound: $\hat{Q}_{\bar{0}} = -Q_0 + \frac{1}{2}Q^2 \ge -c_{\rm R}/24 \approx -P^3/24$

To every black hole center a lattice Λ_i , index $\Omega(\Gamma_i) = \Omega(\Gamma_i, t(\Gamma_i))$ and central charge c_{Ri} is associated.

Mass

$$\lim_{J \to \infty} M(\Gamma, t) = \frac{1}{2}P \cdot J^2 + Q_+^2 - Q_0$$
$$= \frac{1}{2}P \cdot J^2 + Q_+^2 - \frac{1}{2}Q^2 + \hat{Q}_{\bar{0}}$$
$$\begin{vmatrix} Q^2 & Q \cdot J \\ Q \cdot J & J^2 \end{vmatrix} < 0 \quad \text{implies} \quad Q_+^2 - \frac{1}{2}Q^2 > 0,$$
$$\Rightarrow \quad M(\Gamma, t) \text{ bounded from below.}$$

$$\lim_{J \to \infty} M(\Gamma, t) = \frac{1}{2} P \cdot J^2 + Q_+^2 - Q_0$$

= $\frac{1}{2} P \cdot J^2 + \underbrace{Q_+^2 - \frac{1}{2}(Q_1)_1^2 - \frac{1}{2}(Q_2)_2^2}_{\text{signature}(2b_2 - 1, 1)} + \hat{Q}_{\bar{0}, 2}$

 \Rightarrow not bounded from below for generic $Q_1 \in \Lambda_1, \ Q_2 \in \Lambda_2.$

Stability

$$(P_1 \cdot Q_2 - P_2 \cdot Q_1) \operatorname{Im}(Z(\Gamma_1, t)\overline{Z}(\Gamma_2, t)) < 0$$

$$\Rightarrow Q_{+}^{2} - rac{1}{2}(Q_{1})_{1}^{2} - rac{1}{2}(Q_{2})_{2}^{2} > 0$$

 \Rightarrow bounded from below.

For single center:

Mass bounded from below $\Rightarrow \mathcal{Z}_{P}(\tau, C, t) = \sum_{Q_{I}} \Omega(\Gamma) e^{-\pi \tau_{2} M(\Gamma, t) + 2\pi i C^{I} Q_{I}} \text{ is convergent.}$

S-duality/modularity

$$S \quad : \quad \mathcal{Z}_{P}(-1/\tau, -B, C+i|\tau|J) = \tau^{\frac{1}{2}} \overline{\tau}^{-\frac{3}{2}} \varepsilon(S) \, \mathcal{Z}_{P}(\tau, C, t),$$

$$T : \quad \mathcal{Z}_{P}(\tau+1, C+B, t) = \varepsilon(T) \, \mathcal{Z}_{P}(\tau, C, t),$$

Electric-magnetic duality

$$\begin{aligned} \mathcal{Z}_{P}(\tau,C,t+k) &= (-1)^{P \cdot k} e(C \cdot k/2) \, \mathcal{Z}_{P}(\tau,C,t), \\ \mathcal{Z}_{P}(\tau,C+k,t) &= (-1)^{P \cdot k} e(-B \cdot k/2) \, \mathcal{Z}_{P}(\tau,C,t). \end{aligned}$$

Theta function decomposition:

$$\mathcal{Z}_{P}(\tau, C, t) = \sum_{\mu \in \Lambda^{*}/\Lambda} \overline{h_{P,\mu}(\tau)} \Theta_{\mu}(\tau, C, B),$$

vector-valued modular form: $h_{P,\mu}(\tau) = \sum_{Q_0} \Omega(\Gamma) q^{-Q_0 + \frac{1}{2}Q^2}, \qquad Q \in \mu + \Lambda$

Siegel-Narain theta function: $\Theta_{\mu}(\tau, 0, 0) = \sum_{Q \in \Lambda + \mu} (-1)^{P \cdot Q} \exp \left(\pi i (\tau Q_{+}^{2} + \bar{\tau} Q_{-}^{2})\right)$

How to implement:

$$\begin{split} \Omega_{P_1 \leftrightarrow P_2}(\Gamma; t) &= \frac{1}{2}(\operatorname{sgn}(\operatorname{Im} Z(\Gamma_1, t) \overline{Z}(\Gamma_2, t)) + \operatorname{sgn}(\langle \Gamma_1, \Gamma_2 \rangle)) \\ &\times \langle \Gamma_1, \Gamma_2 \rangle \ (-1)^{\langle \Gamma_1, \Gamma_2 \rangle - 1} \, \Omega(\Gamma_1) \, \Omega(\Gamma_2). \end{split}$$

Partition function:

$$\mathcal{Z}_{P_1 \leftrightarrow P_2}(\tau, C, t) = \\ \sum_{(\mu_1, \mu_2) \in \Lambda_1^* / \Lambda_1 \oplus \Lambda_2^* / \Lambda_2} \overline{h_{P_1, \mu_1}(\tau)} \overline{h_{P_2, \mu_2}(\tau)} \Psi_{(\mu_1, \mu_2)}(\tau, C, B)$$

 $\Psi_{(\mu_1,\mu_2)}(\tau,C,B)$ is a combination of a Siegel-Narain theta function and indefinite theta function

Indefinite theta function I

Sums only over negative definite lattice points Göttsche, Zagier (1996); Zwegers (2002):

$$\Theta_{\mu}(\tau) = \sum_{Q \in \mu + \Lambda} \frac{1}{2} (\operatorname{sgn}(Q \cdot J) - \operatorname{sgn}(Q \cdot \mathcal{P})) \exp(2\pi i \bar{\tau} Q^2/2)$$

Indefinite theta function II

Modular invariant? No, but mock modular invariant. $\Theta_{\mu}(\tau) \rightarrow \Theta_{\mu}^{*}(\tau)$ by replacing

approaches sgn(x) for $\tau_2 \to \infty$.

Similarly
$$\Psi_{(\mu_1,\mu_2)}(\tau,C,B) \rightarrow \Psi^*_{(\mu_1,\mu_2)}(\tau,C,B)$$

$$\Rightarrow \text{then } \mathcal{Z}_{P_1 \leftrightarrow P_2}(\tau, C, t):$$

- has same modular properties as $\mathcal{Z}_P(\tau, C, t) \rightarrow$ evidence for compatibility of stability and duality
- is continuous across walls, reminiscent of results by Gaiotto, Moore, Neitzke (2008); Joyce (2006)

Flow trees are schematic representations of supergravity solutions.

Analysis of more complicated BPS objects is possible.

- Also the contribution of flow trees with 3 endpoints is convergent.
- partition functions with manifest *S*-duality, are generating functions of

$$ar{\Omega}(\Gamma;t) = \sum_{m|\Gamma} rac{\Omega(\Gamma;t)}{m^2}$$

instead of $\Omega(\Gamma; t)$

 Ω(Γ; t) seem most natural to determine the contribution of flow trees.

Evidence is given for:

- the convergence of the BPS partition function in the mixed ensemble,
- the compatibility of stability and duality
- this also makes the partition function continuous of t

Open problems:

- modularity for $N \ge 3$
- relax $P^0=0$ and $J
 ightarrow\infty$