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Black Holes rule!

Black holes are the most intriguing objects in the universe.

They rule and shape galaxies; the experimental data gathered so far
has not only confirmed their existence but also shown their effects
on their environment.

These objects are actually very simple solutions of General Relativity.

And in spite of all the progress in the description of black holes, a full
understanding of the physics of black holes has not been yet achieved.
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Over the last 40 years there has been a lot of progress ...
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Black holes are thermal systems.

They can be characterized by its temperature and entropy.

T, BH

3 @O

This thermodynamical aspect raises some intriguing questions

. B What is the microscopical interpretation of the black hole entropy?

As radiating (thermal)bodies, which is the characteristic emission rate? and,
* what information from the black hole does it carry?

2

3 Black Holes can also scatter radiation so one could ask how? In the
process what thermal information can be extracted?
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All these three questions have been tackled and partially answered in one of
another way from a string theoretical perspective with great success.

@ The entropy counting of microstates (in e.g. extremal and near extremal
black holes)

7., The greybody factors and the agreement with the D-brane emission rate

L Dueto AdS/CFT, quasi-normal frequencies in the BTZ black hole spacetime yield
a prediction for thermalization timescale in the dual two-dimensional CFT, which
otherwise would be very difficult to compute directly.

The answers are not complete, but we are making steps towards a better
understanding of these problems!

Maria J. Rodriguez



The scattering process of any field by a black hole space-time is
characterized by the scattering coefficients

These have been fully understood in special
cases — the low frequency regimes.

Q1: Can we do better?

E.g. Can we solve for all values of the frequencies ?

Q2: Do we understand why the problem is so challenging ?

Not really... although we made progress in this direction.
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Astrophysics:

Solutions of the KG equation may become a
powerful tool to construct the theoretical
templates towards LIGO and VIRGO projects.

Mathematics:

New studies for solving the problem in full
generality are required. This may prompt the

progress in the connection problem of linear
complex differential equations.

Kerr/CFT: In the limits where the solutions of the KG
equation are hypergeometric functions the BH
is conjectured to have dual CFT description. A
deeper understanding of the solutions in other

regimes may be crucial to this problem.
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Technique
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Our goal is to capture the dependence of scattering coefficients and quasi-normal
modes on analytic (global) properties of linearized fluctuations around a black hole
background in asymptotically flat space-time.

We will ...

... analyze the singularities of the KG. wave equation,

... solve the scattering PDEs problem with particular boundary conditions ...

The choice of boundary conditions is intimately connected to

the analytic properties of solutions when the independent
variable (e.g., the radial direction) is complexified.

... and see how the knowledge of the analytic properties of the solutions can
be used to compute scattering coefficients, turning a portion of the hard
calculations into simpler exercises in linear algebra.
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Black hole Scattering

P (r)

R: reflexion coef.
T: trans. coef.

We wantto find Ror T.
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The wave equation

Consider the KG equation of a massless scalar in a BH background

L

\/_—gaﬂ (\/__gguua"w) =0.

that is separable so that the eq. reduces to solving a second order ODE.

Note: So far the only solutions found are in the low frequency limit.

Our method provides the tools to perform the
computations for all ranges of the frequency.

*
8. (W(2)0:%(2)) - V(2) ¥(z) = 0.

% This can always be rewritten as two coupled first order ODEs

() ) ()
D) V(iz) 0 Wy
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There ODE
where

1 U =9
Q) ¥ =: A(2)V,

V(z) © Uy Uy = U(2)8,%.

There is a two-dimensional space of solutions to this ODE, so we can choose a
linearly independent basis of solutions, W(1) and W(2), and collect them into a so-
called fundamental matrix

o(z) = (¥ w® )

where linear independence of the two solutions is equivalent to the invertibility of O(z).

We analytically continue to the complex z-plane and restrict to cases where A(z)
is meromorphic — all cases considered here certainly satisfy this requirement.
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Follow ®(z) around a closed loop y in the complex z-plane, calling the result

2] ®(2) z) = P{ef 4}8(2) = ®(2) M,

Since A(z) is meromorphic, the differential operator az —A returns to itself, which

implies that Q),y(z) must again be a fundamental matrix for the ODE, however it need

not be equal to ®(z): given one fundamental matrix, we can always multiply it from the right
by a constant invertible matrix to obtain another (i.e., we can choose a different linearly
independent basis of solutions). By the definition of a fundamental matrix, then,

Monodromy matrix M’Y = (I)(z)_l’P{ef'v A}(I)(z)

Maria J. Rodriguez



In particular, if one can find a gauge in which A has no poles enclosed by y, then

In this way, poles of A that cannot be removed by gauge
transformations correspond to branch points
of ®(z) and are associated with non-trivial monodromy matrices.

This has an implication that is key to the rest of our study.

Let z =zi fori=1,...,n, be the locations of all branch points of ®(z), and
let Mi be the monodromy matrix associated with a loop that encloses
only the branch point at z . If we follow ®(z) around a path enclosing all
branch points, the other side of the loop encloses no branch points and
so the monodromy around that loop must be trivial.
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In other words,

2
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The conjugacy class of each individual Mi can often be computed
quite simply from local information of the differential equation (with
an important caveat which we will see later), while

MiMs - M, =

is a relation among these local data — it is a piece of global information

Computing scattering coefficients is an example of a problem where we
require global information about our solutions (relating boundary
conditions at different points in the z plane), so we explore how we may
exploit this relation.
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As we alluded to above, if ® has a branch point at zi, then A has a pole there.

The converse is not true because it may be possible to remove the pole
in A by a gauge transformation.

Fortunately, there exists a simple algorithm for choosing gauge
transformations to reduce the order of the pole to some minimal integral
value called the Poincare rank, r: € No,and a gauge where A takes the form

—R.—1 has a convergent
A(Z) o (Z — zz') i \ Taylor series

expansion in some
neighborhood
containing z = zi

Types of poles

A simple pole Ri =0 is called a regular singular point,

A higher order pole Ri > 0 is called an irregular singular point of rank ri.
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The distinction between regular and irregular singular
points might seem artificial, but their implications for ©
are starkly different:

regular singular points correspond to algebraic or
logarithmic branch points in @, while irregular singular
points correspond to essential singularities in @ and
exhibit Stokes’ phenomenon.

Understanding regular singular points will suffice to
illustrate the essence of our approach to scattering
computations, so we focus first on this case.

We will then get into the complications of the irregular
singular points and Stokes phenomenon.
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Monodromies and Regular Singular Points

Our goal now is to find monodromies and the local behavior of ©
around singular points.

To find the conjugacy class of Mi, first perform a gauge transformation to
bring A to the minimal form. Once that is done the conjugacy class of the
monodromy is easily determined

M, = fp{ef%A} o ef%.A’

For simplicity, suppose that Mi has distinct eigenvalues eF2nai (so Ni has
eigenvalues #iai), then we are free to choose our fundamental matrix to
diagonalize Mi, in which case

d(z) = (¢O +0(z — Zz)) ( (z— Zi)iai 0 )

0 (z — z;) "t
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Approaching zi from a direction where Im[iai In(z - zi)]# 0, we see explicitly
that one column corresponds to ingoing waves and the other to outgoing
waves.

Diagonalizing the monodromy matrix Mi therefore corresponds to choosing a
basis with definite boundary conditions at zi.

A scattering computation typically involves finding the change of basis
between solutions that are ingoing/outgoing at one singular point and
solutions that are ingoing/outgoing at another singular point.

M2

B Since there are only two linearly
independent solutions to the ODE, the

following matrix must be a constant

May = 8519,

is nothing more than a change of basis from left-eigenvectors of M2
to left-eigenvectors of M1.
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So far we have said nothing of the normalization of the various bases of
solutions, so we are free to rescale the columns of ®1 and ®2, meaning the
change of basis M2->1 is defined only up to multiplication by a diagonal
matrix on either side

Mo ~ (dl dZ)M2—>1(d3 d4) .

forcing M2->1 € SU(1,1) the ambiguity (up to phases) vanishes

1
Moy = 7;’:. RIZ+|T?=1

Tt

where R and T are the reflection and transmission coefficients, respectively.

We have now seen how monodromy matrices relate to boundary conditions
at regular singular points and we have seen how to compute the conjugacy
class of the corresponding monodromy matrices.
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We will only study problems with two or three singularities. In these cases
the monodromy matrices can be computed.

The more interesting situation, relevant to our discussions of black holes, is
when there are three singular points. In this case, knowledge of the conjugacy
class of M1, M2, and M3, together with the global relation in M1 M2 M3=1, is
enough to reconstruct the matrices themselves in a common basis.

Explicitly,
det(M;) =1, tr(M;) = 2 cosh(27q;) , M; #1, for 1=1,2,3,
MiMy;Ms; = 1,

a common basis is

_ 2mas
M — 0 1 | My — 2cosh(2mag) e |
1 2cosh(2ra;)

. e—27ra3 0

627ra3 0
M. 3= —2mas o —2mTQas ’
2(e cosh(2may) — cosh(2mas)) e
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Whether this can be made an SU(1,1) matrix depends on details of the ai,
however when it is possible — for instance, when the ai are all real and
M2->1 is invertible — we can read off the norm of the transmission
coefficient without even computing the required diagonal transformation

R = |T]? = sinh(27ay) sinh(27ap) .
sinh7(asg + a1 — ag) sinh7(ag — a; + as)

Of course, ODEs with three regular singular points have hypergeometric

functions as solutions and are therefore well understood, and we have verified
that these formulas are correct.

The challenge for applying the same methods to scattering off black holes is related to
the irregular singular point, which black hole backgrounds have at asymptotic infinity
( a consequence of plane waves having essential singularities at infinity)

The basic idea for computing the scattering coefficients will be the
same, but there will be additional steps and subtleties.
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As we all know, consciously or not, plane waves become essential singularities in
the complex plane. It is crucial, then, to study irregular singular points for
applications to asymptotically flat black holes.

Monodromies and Irregular Singular Points

Let A(z) have a rank r 2 1 singularity at z = oo, which means there is a gauge in which
A= zR_lAO(z) )

where A,(z) has a convergent Taylor series expansion around z = e= in non-negative
powers of 1. Furthermore, let AO(e=) have maximal rank, and choose the gauge so
that Ay(e°) is diagonal.

Then there exists a formal fundamental matrix of the form

j(2) = P(z)e"

where P(z) is a non-negative power series in 1/z (generally not convergent) and
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It would seem that we can read off the monodromy from these solutions to
be e2ni/, (around infinity, z—>e-2miz is the positive direction), as before

However, this is not so because the calculation is complicated by the fact that
P(z) is just an asymptotic series, not a convergent series.

For this reason, e2mi/\, is called the formal monodromy, but we will shortly
see its relation to the monodromy of a true solution.

For describing boundary conditions at z = =, though, we care about diagonalizing
\(z) (as opposed to the true monodromy) since this describes the dominant
behavior of the solutions at z = oo, telling us whether the solutions are ingoing or
outgoing.

On the other hand, the quantity entering the product relation for the transmission/
reflection coefficients is the true monodromy, so it is crucial to understand the

relationship between the two.

The distinction and relation between them is intertwined with the fact that
solutions of ODEs around irregular singular points exhibit Stokes” phenomenon.
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Stokes’ phenomenon.

The defining feature of Stokes’ phenomenon is that it arises when one attempts to
describe one function (e.g., a fundamental matrix of true solutions) in terms of a
function with a different branching structure (e.g., a formal fundamental matrix).

Consider the following formal expression:
Bs(2)710s(2) = e AAP(2)7IP(2)er?).

The important observation to make is that we can only say that

P(z)7'P(z) ~ 1 (as z — 00),

This means it could differ from 1 by something with no series expansion
around z = oo, e.g., ez, and this is precisely what happens.

If a product were between two actual fundamental matrices rather than two
formal ones, we would expect the result to be a constant matrix.

Again, this arises here because the formal solutions are not convergent series.
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Since formal fundamental matrices are asymptotic to actual ones, the limit of
®(2)"'®s(2) as z tends to o= will be a constant matrix S, called a Stokes matrix, with

Sij — lim e—Aii(z)+AJ’j(z) (62.7 s O(Z_l)) ,

Z—r00
¥

toOasz > oo

Schematically
Divide the neighborhood of
the irregular singular point at z

CDJ(Z) =oo nto wedges Qk !

Q_1

4

Think of a given asymptotic expansion (e.g., one for which P (o) = 1) as being
asymptotic to a given true solution within a wedge, Qk. Once we cross the next
Stokes ray, the same true solution will have a different formal fundamental matrix
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This means that the subdominant solution, the first column of ®, may be added to
the dominant solution, the second column of @. Thus,

D(2)|g , ~ @5(2)|q , (( L) =27(2)|q S0 (asz—o00, z€Q ).

At the next overlap, Q-1 n Q-2, the roles of dominant and subdominant
solutions reverse, so the relevant Stokes matrix will be lower triangular:

(D(z)lg_z ~ ‘I’f(z)|g_2 (', 9)So=: <I)f(z)|9_25'—15'0 (as z — 00, 2 € Q_y),
with Ck constant.

This provides us with the identification of the true monodromy as

My, = e*™808 g4.1---8p.

The hard work comes in determining the Ck, commonly called Stokes multipliers.

Their values are not solely determined by the local data of the singularity; Stoke
matrices depend on all terms in the connection, including the regular pieces.
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Summary

So we learned that to compute the transmission coefficients.

We have to write down the wave equation on a black hole background.

0. (U(0:9(2) ~ V() () =0 —» 0.3 )= (0 8 ) (1) acow.

U, V(z) 0 Uy

Analyze the singularities of A(z)

l

Compute the monodromies around each singular point. In the cases where
there is an irregular singularity — as in any asymotically flat black hole solution—
we have to compute the Stokes multipliers too.

Let’s see some examples
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Results
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err black hole solution

in2 0
ds2=§dr2—%(dt—asin29d¢) + Xd6? + ((7‘ +a2)d¢—adt)
A=r’+a®>—2Mr, L =r?+a%cos’0.

Wave equation of a massless scalar 9, ¢) = e-i«t+imo g(r)5(9)

%aﬁz (\/__gg,uu u¢) =0.

L ! L 5(6) = ~KeS(6)

(2Mr w — am)? _(2Mr_w— am)? 2 . 2| Bir) = -
[ETAB,. + r—r ) =1 (r—r ) — 1) + (r* 4+ 2M(r + 2M))w*| R(r) = K;R(r)
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The “radial” ODE

(2Mriw — am)? - eMrow - am)?
(r—ri)(ry —r-)  (r—r_)(ry —7-)

wher; o Mm’ 0<e<1 ’ so € = 1is Schwarzschild, e =0 is

extremal Kerr (where the two
T+ = M(l =+ 8) . horizons merge and become an
irregular singular point),

[Br AOr +

+ (2 4+ 2M (r + 2M))w? | R(r) = K;R(r)

The branch points of solutions of the scalar wave equation for Kerr are located
at r =rt,oo. The singularities at the horizons, rt, are regular singular points
while the singularity at infinity is an irregular singular point of rank 1

Substitute a series expansion in the ODE monodromy

. oM _
R() = (r=r) 5o [14+0(r—rs)] =% = ST

The conjugacy classes of the monodromy matrices associated to the horizons

e~ 2may 0 e 2ma 0
M+ = ( 0 e2mo ’ M-= 0 e2ma— '
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Instead, for irregular singular points

R(r) = gFiwr pFiA—1 [1 + O(r_l)] :

At the singularity r - o= there will be a nontrivial conjugacy class of the
monodromy matrix associated to this point as well,

—2mTae;
e irr 0
M, =

But there si the Stokes phenomenon, hence

Moo - 62MA0 S_1S() . The formal monodromy can be read off directly

Stokes 'matrices (it o ( e 2™ 0

_ 1 Cp
) w(:9).
Computing airr is then equivalent to determining the
Monodromy at the irregu|ar Singu|ar point product COC-1 which is a quite involved task.
Analytically, it is not obvious how to estimate airr for

1 ) oA all frequencies.
Qirr = o cosh [COSh(27r’\) +e 000—1/2] + | We developed the StokesNotebook (for

Mathematica) that implements a method to
compute the Stokes multipliers, numerically.

0 ez"’\) , A=2Mw .

Maria J. Rodriguez



Approximate analytical computation: a perturbative approach for <<1

We can turn this into a first order ODE with connection

1
A(z) = ( a2 | 1+4a? 14(-)4Ke—(2Mw)2(7_4€+€2) i )
_1—z+ i + 4z 0

+(2Mw)? ( 2

And find he monodromy at the irregular singular point as a eprturbative expansion

2 2 2 2 15£(£+1)—11
Qi = £7 —4M w (2£+3)((2£+i)(2£—1)

50(6+1)—3
+16mM°w’ /1 — €? (e+1)(2e+(3)(2%+1)(2e-1) +0(w?).
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0.1 0.2 0.3 04 0.5 0.6

Figure 1: The figure depicts the monodromy around the irregular singular point «;.. as a function
of the frequency w for fixed values of the mass M = 0.7, angular momenta ¢ = 0.2 and [l = m = 2.
The black line outlines the analytical perturbative results for ;. while the gray line represents the
fit of the numerical data, the gray dots.
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In Schwarzschild coordinates we have

-1
ds? = — (1 + g) dt® + (1 — %) dr? + r2df? + r? sin? 0d¢2 ,

Solution to the KG equation
Y(t,r,0,¢) = e “HMOR(r)S(6)

A set of ODEs
(1 m2

1) 0p (sinf 0y) — 1 S(0) = —-K,5(0) ,

sin 0 sin? @

(2M)3w?
(r—2M)

The singular points of the ODE for Schwarzschild corresponds to the coordinate
singularity r =0, the horizon r = 2M, and infinity r - oo,

+ (r? +2M(r + 2M))w?| R(r) = K;R(r) .

o.r(r—2M)0, +

R(r) = (r—2M)i°‘+(al +...) +(r—2M)_ia+(a2 +...), ay =2Mw ,
R(r) = r**=(by + b3logr +---) + 7" (bg+---) , a_=0.

The singularity at r = oo is an irregular singular point (of rank 1) and the
problem of finding airr will be analogous to that of Kerr
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80 100

Fig. 2 The figure shows the real part of the monodromy around infinity as a function of
the eigenvalue L in KL=L(L+1) for w=Log[3]/(4 m) + 399 i /4 . We note that for large L>>1
and any w=Log[3]/(4 n) + (2n-1)i /4 the monodromy behaves linearly with L.
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Final Remarks
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Every good story has to have a little bit of drama, our computation has that!

As in any other scattering problem, the phase solution should have a definite sign as
the boundary is approached to correspond to waves falling into or vout of the
horizon.

The ingoing/outgoing solutions at horizons are often written in so-called
“tortoise coordinates” r¥, where they take the form of plane waves:

Yo~ e (L) F e (L),

For the outer horizon, adopting the left-eigenvectors of M+ as a basis
coincidences with ingoing/outgoing boundary conditions

< Atinfinity, the plane wave basis of the form above diagonalizes the formal
monodromy e2mni/\,.Hence to find that base we have to go through the
intermediate basis of Moo,
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The computation of grey body factors (i.e. scattering coefficients) boils down
to finding the connection matrix that maps the two basis of solutions.

sinh (@i — 04 + @—) sinh (@i + o+ + a-)
sinh (i + 04 —a_) sinhm(ayy—or —a_) )

ewam» e—ﬂ'airr
sinh (A — air) sinhw(A + air) |

MPW—H' = MPW—>°0MOO—>+ ’ The normalizations are important!

The caveat that we have to determine the normalization of the solutions to make
the product of both connection matrices meaningful.
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0 TR R ds 0

_ T T T, T 3

Mpw—>+—(0d1‘1) ﬁ _1 _2 OdeTl)’
T

Greybody factors

_ , [e-2ma, SR\ = i)
R \/e sinh (A + airr)

1 — R2)(1 — ’R,%) sinh m(ay + a— + i) sinhm(og — a— + airr)
7" 2 =1 'R 2 —_ ( 1 Ra =
7 %] (d% + RiR2) (dy % + R1R2) ¢

sinh (a4 + a— — @) sinhm(ay — a- — o)

TE=1-R} for i=1,2
The above does not imply that we have achieved a decoupling between the horizon
dynamics and the asymptotically flat geometry. Ideally we would like to conclude
that Moo=+ is independent of Mpw->oo, or at least in a limit.

i The normalization of Qeoo, encoded in d2, affects the greybody factors. This
normalization is not simply a constant, it will depend non-trivial on e.g. the
frequency w and mass of the BH.

i airr does depend on all data in the ODE. So even if we ignored the role of d2 in
the computation, we would have to also argue that airr is independent of the
horizon data (at) to have the physics of the horizon being independent of the
dynamics at infinity.
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Quasi-normal modes

A quasinormal mode (QNM) is defined as a solution that is purely
ingoing at the horizon r = r+ and purely outgoing at infinity.

For real frequencies, it is not possible to satisfy these boundary
conditions, so we now relax that condition and allow w € C

—1
) ) : T #0.
77
Explicitly
d1d3(d3+R1R2) d1(R1+d3R2)

d27'17'2 ) d2d3T1 72
dod3(R1 +_d2 R2) d2 (d2 +&R2)
diT1 T2 d1d3T1i T2

/\
d72 +RiR2=0. ds+Ri1R2 =0,

The QNM are determined by the two last relations.
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We have studied the scattering process of a scalar field by a black hole space-
time. But our results can be extended to vector and tensor perturbations, as
well as a more general cases such as Ads or dS BH scattering.

We accomplished this by analyzing the singularities of the well known
Teukolsky wave equation we show how the corresponding monodromies
around these points are related to scattering coefficients.

We probe into the black hole scattering by using new analytical and numerical
methods which are in good agreement with the previous known results.

These observations, valid in full generality, provide new insights into the
properties of the scattering coefficients and their link to the global
information of the wave equation encoded in the monodromies.
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Thanks.
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