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Many reasons to study 3d CFT-s:

potential revelations on the M2-brane theory
attempts by Bagger, Lambert

fixed points of condensed matter systems

understanding of part of the landscape of d = 4 string vacua

potentially tractable examples of gauge/string duality



On the M2-brane theory

= AdS/CFT: theory is conformal and dual to M-theory on AdS, xS’
¢ fixed point of the D2 brane theory
— 8 physical scalars

— perhaps additional, topological degrees of freedom

¢ 3d gauge theory has dimensionful coupling — must

disappear at the fixed point — only CS-type quadratic term
o Parameters: 't Hooft coupling: A = g¢yN — Acs = 7=

¢ Interpretation of level kcs? Natural values? 10d connection?



Outline
The NN =6 CS-matter theory
The conjectured Bethe ansatz and its relation to AdSgxS®
Worldsheet calculations, comparison and differences

Outlook



U(N) x U(N) Chern-Simons-matter theory with N/ = 6 susy
— special case of N = 3 construction

SO(6) ~ SU(4) R-symmetry
4 complex scalar fields: YA € N x N and le c N x N

4 complex fermions

supermultiplet: scalars in 4 and fermions in 4 — susy gen’'s in 6

kcs 2 .
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» superpotential W = e®eidTr [A,B,A,B;l; Y4 = (A1, Ao, BI, B))

= Covariant derivative: D, Y4 =09, Y4+ A, Y4 -Y4A4,
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= Power-counting renormalizable; special choice of levels k1 = —k»

e Planar perturbation theory: Series expansion in A2 rather than \
(a feature of 3d perturbation theory)

= Argued to have exact conformal invariance — OSp(6|4) symmetry
.. Gaiotto, Yin;...

e Theory constructible from NV =4 d =2+ 1 SYM theory broken
to N = 3 and deformed by supersmmetric CS term and flown to
E<Lm= gngcs/(4ﬁ) Aharony, Bergman, Jafferis, Maldacena



String/M-theory dual: almost-max susy, correct symmetries
= AdS,; x CP3 has SO(3,2) x SO(6) ~ Sp(4) x SO(6) symmetry

= 7, orbifold projection of AdSs x S’ st — §7

on nonsingular fiber l3
CP

= M2-branes on (C4/Zk (weak coupling stability ensured by supersymmetry)

= String theory Ilimit: k£ — oo relate k£ and kcs

R*
2 _ 2 2
dSAdS4><S7 e —4 (dSAdS4 + 4dSS7) F(4) XX VOl(AdS4)
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Aty = o+ )2+ dslys 5 ds? = (dd + he)? + ds2

e Account for volume reduction:
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So here is another conjectured gauge/string duality. Why bother?

o less-than maximal susy: may exhibit features absent in AdS5><S5
— different coupling constant dependence

— fewer protected quantities; more interpolating functions
¢ Tractable both at weak and strong coupling and thus testable
Where to begin?
o expect agreement for all quantities protected by symmetries

— focus on unprotected quantities — e.g. anomalous dimensions



LLeading order dilatation operator for scalar operators Minahan, Zarembo

= main difference from N = 4 SYM: scalars in bifundamental rep.

— gauge-invariant scalar operators are of the type
Aivi vAosvt vAsT AT
Tr [V 1Y31Y 2YBQY 3YB3...Y LYBL]

= arises at 2-loops
— has nearest and next-to-nearest neighbor interactions

)\2 2L
= > > Hpjy1142
=1
Hijv1042 = 1= K41 —2F 140+ B 40K 141 + K415 142

e Trace and permutation operators:
K:VxV-VxV KA =§,p684
P:VxV—=VxV P =465

e and the surprise is...



. that, despite the next-to-nearest neighbor interaction, this oper-
ator may be identified with a Hamiltonian derived from monodromy
matrices obeying the Yang-Baxter equation and thus is integrable

— one for even sites: T,(u,a) < Rag,(u)Rag(u + @) ... Rag, (u) Rag, (u + )
— one for odd sites: Ti(u,a) < Ra, (u+ a)Raz (u) ... Rag, (u + o) Rag, (u)
= ]1-loop dilatation operator is recovered by choosing o« = —2

T=1r [Ta] T=1r [TC_L] [7-, 7_-] — O He\/en — T_ldu'T Hodd — 7_-_1de,7_-

Assuming all-order integrability: use machinery of discrete integrable

models and symmetries preserved by the lowest dimension operator
— understand closed sectors (subsets of operators closed under RG flow)
— construct spin chain S-matrix (solve Yang-Baxter equation)

— construct Bethe ansatz — Bethe equations

— understand coupling constant dependence



Closed sectors — should be determined by symmetries

— difference from N = 4 SYM: both scalars and fermions are
in the same representation of the R-symmetry group!

— 2 scalars and 1 derivative & 2 fermions

— departure from familiar closed sectors



Closed sectors — should be determined by symmetries

— difference from N = 4 SYM: both scalars and fermions are
in the same representation of the R-symmetry group!

— 2 scalars and 1 derivative & 2 fermions

— departure from familiar closed sectors

S-matrix; vacuum Tr [(Yle)L] preserves SU(2|2) C OSp(6|4)
= alternating chain — separate excitations on even and odd sites

= rep’s of SU(2|2); conjectured to be (2/|2) Ahn, Nepomechie
Y1 — (Y2, Y3|(3)a) (Aext's) and Y] — (¥, Y][|(¥)a) (B-ext’s)

= 3 S-matrices: Syq4, Spp and Sup

T 1 1

Beisert's psu(2|2) S-matrix less clear

Excitation energy: e(p) = \/% + 472h?(X\) sin? & for both



Closed sectors — should be determined by symmetries

— difference from AdSsxS®: both scalars and fermions are
in the same representation of the R-symmetry group!

— 2 scalars and 1 derivative & 2 fermions

— departure from AdSsxS> sectors

S-matrix; vacuum Tr [(Yle)L] preserves SU(2|2) C OSp(6|4)
» alternating chain — separate excitations on even and odd sites
= rep’s of SU(2|2); conjectured to be (2|2) Ahn, Nepomechie
Y1 — (Y2, Y3|(¢3)a) (Aext's) and Y, — (Y2, YJ|(¥])a) (B-ext's)

= 3 S-matrices: Sjq4, Spp and Syp

= Formal similarity w/ S-matrices of CFT-s (e.g. Z’s S-matrix for WZW)
if one identifies A and B excitations with left- and right-movers.

= (2]2)®(2]2) excitations — formal difference with expected number
of excitations on the worldsheet where there are (8|8) physical fields



e [ he Bethe equations Gromov, Vieira; Ahn, Nepomechie
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¢ Apparently a truncation is possible: set Ky,K», K3 =0; K4 = Kz

e 2 2
L S =
T, [l k— U — @\ T} —; ; .

ik =1%;

S .
e Energy: E= Y |1+ 16h()\)25in2% (N2 = A2 + O(\%)
j=1

» Suggested eq’'s for SL(2) sector — spin S and R-charge L = 2J

Gromov, Vieira

& many similarities with Bethe eq’s for the SL(2) sector of AdSgxS>

The map: = VA~ 47h()\)
= Bethe mode number shifted by 1/2
= Fadsg — 2Eags, (twice as many excitations)
= Sadss — 25ads, (BPS relation)



Bethe Ansatz vs. The Worldsheet

eternal problem:

eternal solution.

how to do reliable worldsheet perturbation theory
and identify correctly the gauge theory and string

theory parameters
Focus on states with large quantum numbers;

worldsheet semiclassical expansion is reliable; iden-
tify the gauge theory operator by matching its
charges; the charge and the ‘size” of the world-
sheet are related



Bethe Ansatz vs. The Worldsheet

eternal problem: how to do reliable worldsheet perturbation theory
and identify correctly the gauge theory and string

theory parameters
eternal solution: Focus on states with large quantum numbers;

worldsheet semiclassical expansion is reliable; iden-
tify the gauge theory operator by matching its
charges; the charge and the ‘size” of the world-
sheet are related
¢ Two important solutions:
1) spinning folded string GKP; Frolov, Tseytlin
2) circular rotating string with 2 angular momenta Park, Tirziu, Tseytlin
= both exist in AdS3xS! ¢ AdS5xS® and AdS, x CP3
= both exhibit minimal structural changes compared to AdSgxS?
= main difference related to RR fields

= potentially expose subtle differences between the two models



The action: Bosonic part: sigma model based on the metrics

dsAgs, = —Cosh?p dt®+ dp? 4 sinh? p (d6? 4 sin® de?)

dsZps d¢? 4 sin? ¢y [dcg + cos? (1 (dr1 4+ sin® ¢z (drs 4 sin? §3d73))2

+sin2 ¢ (dg‘% + 052 ¢ (drp + sin2 Cadrs)” + sin? ¢5 cos? ggdfgﬂ

= Coordinates iterativelly embedding CP"~1 into CP" Hoxha et al
R3 =
= Radii: Répg, = 4R%d5 Rids = e =TV2\ = \A = string tension

Fermionic part: complete all-order GS action is not clear
V1. Use AdS, x CP3 = SO(3,2)/S0(3,1) x SU(4)/SU(3) x U(1)
and fit in a supergroup: OSp(6]4)/SO(3,1) x SU(4)/SU(3) x U(1)

Arutyunov, Frolov; Stefanski; Fre, Grassi

= only 24 fermions; partial k-gauge-fixed; needs motion on CPp3
V2. Double dimensional reduction from supermembrane in AdS4><S7

V3. Perturbative construction in number of fermions (need only 62)



The action: Bosonic part: sigma model based on the metrics
dsags, = —cosh®p dt*+ dp® + sinh?p (d6* 4 sin® 0de?)
dstps = d(i 4 sin®( [dgg + c0s? (1 (dri 4 sin? (o (dro 4 sin? Cadrs))”
+sin2 ¢y (dg§ + 0S¢ (dra 4 Sin? Cadrs)” + sin? (3 cos? C3d’7‘§>}

= Coordinates iterativelly embeddlng CP" ! into CP" Hoxha et al
R3
= Radii: RQIP,g = 4Ra4s Rags = A =7TV2\ = \/7 = string tension

Cs

Fermionic part: complete all-order GS action is not clear
V1. GS on OSp(6|4)/SO(3,1) x SU(4)/SU(3) x U(1)

Arutyunov, Frolov; Stefanski; Fre, Grassi

= only 24 fermions; partial k-gauge-fixed: needs motion on CP3
m (Clasically integrable; classical transfer matrix

= Interesting open quantum question: conservation of higher
charges is anomalous in sigma models on CP™ and cancels
in Ws susy situations; are GS fermions equally powerful?

= Assume all is well; discretize classical BE; conjecture all-order
Gromov, Vieira



Semiclassical expansion:

27 —
S = AdS/dT/ do /—gg° —8aXM8aXNGMN(X) R2 o = VX

= X =\ in AdSsxS>® while X = 272X in AdS, x CP3

Target space energy density

|
= 1 = 1
E=V)E &,@-,—_):&[5 Si, T 4+ —=E1(S;, T) + ...
Spin density = R-charge density S, = VS, J = VT

= Charges = identify the Cartan-s; phases of embedding coord’s

Magnon dispersion relation at strong coupling: 4 8 bosonic exc.

= BMN Ilimit using one of the Cartan isometries Nishioka, Takayanadi

k2 A
I \/ nr. g+ 47r2h(/\>2ﬁ h(N) = \@ + O(1)

» Bethe ansatz: leading correction to h(\) vanishes Shenderovich



= Tractable limit of the spinning folded string with finite charges:

S>J>1 [ = —fixed — homogeneous in w.s. coordinates

VAInS
T — 1
t = KT p = Lo O = KT Yo = 3 = —UT ,u2=/12—u2
2r 1 5 5 . ! :
(&£,8,0) = /o do 5(/«: cosh” p, ksinh“ p, v) Virasoro constraints

1
pu=—InS u>1 I[I= Y can define uo as spatial ws coordinate
T M

—— string length is effectively infinite

— pu-dependence factorizes

= |_eading order value of the space-time energy

Eg—S = VAInSy1i+4+12=vVXfa(DIns

» General behavior: E—S=VXf(\1InS
T

universal scaling function



Circular rotating string:
— T

_ — 1
t=krT p= px« 9=§ ¢ = Wt + ko @2=@3=5(w7—|—m0)

= Virasoro constraints and eq’'s of motion (ro = cosh p, and r; = sinh p,)
—(k2+Ek%) =0 r%wk—l—wm =0 r%mz—r%(wz—l—kQ)—wQ—mz =0
= (Classical energy and charges
Eo = VXr8k S = Vairiw J=Jo=J3=Viuw
= EXpress Ep in terms of charges and winding numbers £ and m

in the scaling limit S, J — oo with v = S/J-fixed

A

N2
Ey = S+J+—k2u(1+u) 73 Zk*u(1 4+ u)(1 4 3u+u?)

)\3

T 16J°

Kou(l + w)(1 4+ 7Tu~+ 13u? + 743 —|—u4)—I—O(J7>

& two possible relations between AdSg and AdS, results

1) Aadss — Aads, 2) Eadsg — 2Eads,, Jadss — 2Jads,: Aadss — 4Aads,



Quantum corrections:

V1. Hamiltonian formalism; works great with static gauge t = k7
Frolov, Tseytlin

1 1
b= —(VIHWV) — FE=_—(V[H|V)
T

fermion number Hamiltonian of quadratic fluctuations
N\

1 s . . .
By = - S (—)fiw,; « fluctuation frequencies
K

NnN——0oo

V2. Lagrangian formalism in conformal gauge Frolov, Tirziu, Tseytlin
RR, Tseytlin

Large charges — the partition function localizes around a single
critical point of the action; correction to energy from free energy
while accounting for renormalization of the other charges

1 o0 |
F1 xInsdetK — Ej = o y (=)t oy
K

n——oo

& carries over to higher loops RR, Tseytlin



Quantum corrections:
= detailed knowledge of quadratic part of the action
— from all-order action based on OSp(6|4)/SU(3)xU(1) xSO(3,1)

Arutyunov, Frolov; Stefanski;
used by Alday, Arutyunov, Bykov: Krishnan for SFS Fre, Grassi

— General k-symmetric form implying linearized sugra constraints

Lop = i(?]ab(sl‘] . eabSIJ)éf)éanJKeK
1 M AB supercovariant derivative
Db - 86 + ZabX “M I_AB Hassan; Grana
1
Dyt = D!t — So XM H 4pcT ¢ (03) 7

+ ée(b Foy (@)™ + 70y (i02)™ + 7 4y (01) "]

= [In special Lorentz frame CP3 spin connection is not important

s After appropriate rotations projector is exposed; fix r-symmetry
e.g. SFS: L = iW(n™ — e®11) (1.0 + 1. M1)WV, W = S710, S = exp (k/20T43)



Spectrum of quadratic fluctuations; spinning folded string
(® = ® + P and rotation on P) McLoughlin, RR

e Bosons:

= two massless modes (one in AdSs; one in CP?); canceled by ghosts
= three modes from AdSy

wi(n) = \/n2 + 2k° + 2\//«:4 + n°v? wp(n) = \/n2 + 2k2 — 12

= one4four modes from CP3 (reflects breaking SO(6) — SO(4))

wg(n) = \/n2 + 12 4 of wp(n) = \/n2 + %1/2

e Fermions: (reflects breaking SO(6) — SO(4))

wri2(n) = ig + \/n2 + k2

1
wi3a(n) = ﬁ\/nQ + 2K° + \/1434 + 4n°v?

4
e(n) =wy +tw- +wr+wyg + 4wy, — Z(w_|_i+w_i) Eq =Ze(n)

=1 n



o Ws of infinite length = sum +— integal

4 O
e(n) =witw t+wrtwygtdor— > (wyitw;) Er= /o dpe(kp)
i=1

a) (S,J =0): By =-202InS+ 0 (In®9)

b) (S,J # 0) (u: \/ﬁ L= XA;;InS>

FE{ = QL[—(l—uz)—l—\/l—uQ—Quzlnu
u
—(2—=4?)In <\/2 —u?(1 41— u2)) —2(1 —u?)In2
e contrast with AdSsxS® energy shift
. In2
a) (S,J=0): By =-3"2Ing4+0 (lnos)

b) (S,J # 0) (u: L )

1+l2 >\AdS5 InS

B = %[—(1—u2)—|—\/1—u2—2u2|nu
—(2—=v?)In (\/2—u2(1 + /1 —u2)>]




Spectrum of quadratic fluctuations; circular rotating string
(® = ® + P and rotation on P) McLoughlin, RR, Tseytlin
e Bosons:

= two massless modes (one in AdSs; one in CP?); canceled by ghosts
= three modes from AdS,: wp(n) = \/p% + k2 & two solutions of

%(w(n)2 —n?)? 4+ r%me(n)Q — <1 + T%) (\/fi2 + k2w(n) — kn)Q =0

= one+four modes from CP3 (reflects breaking SO(6) — SO(6))

1
wy(n) = \/712 + (w? — m?) 4 of wr(n) = \/n2 + Z(cu2 —m?)
e Fermions: (reflects breaking SO(6) — SO(6))
2knm 2_.2
wr12(n) = E50 800+ (1 £0)7 + (0P KD b=

(w(n)? —n?)?2 + r%fi2w(n)2 — (1 + r%) <\//<:2 + k2w(n) — kn>2 =0

4

1
e(n) =wy +w_t+wr+wyg+4wr, — E (wiitw_;) Ep= 5 E e(n)
=1 n



e Scaling limit: S, J — oo with fixed v = S/J; expand in 1/J

= features similar to AdSsxS® calculation: sum at finite J and
S is convergent but some terms in the expansion lead to
divergent contributions Beisert, Tseytlin for AdSsxS5

= e.9. leading term in the scaling limit (J = \/jw, n = wx)

e'M(n) = %[n(i%n — 4\/n2 + k2u(l +u) + \/n2 + 4k%u(l + u) )

_ K214+ w)(1 + 3u)] +0 (é)

eint(x) —

B2(14w) [14+u(3+222) 21—|—u(3 + 8x2) 4o (L)
2w (14 22)3/2 (1 4 422)3/2 w3

= "Y(0) = eSUM(0) — ignore last term in eSYM(n) and replace its
contribution with the integral of eint(a:); resummation of divergences

= Direct numerical evaluation confirms this interpretation



e Scaling limit: S, J — oo with fixed v = S/J; expand in 1/J

= features similar to AdSsxS® calculation: sum at finite J and
S is convergent but some terms in the expansion lead to
divergent contributions Beisert, Tseytlin for AdSsxS5

= e.9. leading term in the scaling limit (J = \/jw, n = wx)

e'M(n) = %[n(i%n — 4\/n2 + k2u(l +u) + \/n2 + 4k%u(l + u) )

~ K21+ w)(1+ 3u)] +0 (é)

| B2(1 4+ ) [14+u(3+222)  _ 14u(3 + 822) 1
int — — —
e = [ 1+2237  ° (1+422)3 ] "o <w3)
00 sum even
- Z — w/_to dr = { Znt are expansions in { %jodd

— analyze separately



w o0

B = = de (@)
\1/22 \3/2L4
= - — N2 w(l+w)+ 73 IN2 u(1 4+ w)(1+ 3u-+ u?)
\5/216
- u(l—l—u)[3(1—|—7u—|—13u2—|—7u3—|—u4)ln2
\5/2.6

_|_

J7

1
e wW(1l4u)+ O (—)

= combine with leading order terms

h2(\)k? h*(X)k*
odd __ _
Eo + E7 = S+J+ 7 w(l 4+ u) YE

1.6/ 6
h1(6)\J)S w(l 4+ w)(14 7u+ 13u? 4+ 74 + u*)

h3(\)k®
6.J°

w(1l 4+ w)(1 4+ 3u 4+ u?)

1
u3(1 + u)3 + O <7)

= introduce B(Q) = VA —In2 4+ O (%) to this order A(2)" con-
tributes the first two terms in its expansion



= combine with leading order terms h(A) = VA —In2+ O (%)

h2(M\)k? h* (M) k*
o+ B8, = ST+ (1) = 1 (14 304 )
he(N)k°® 2 3 4
-+ 1675 w(l4+u)(1+7u+ 13u” + 7u’ 4+ u")
h2(A)k® 5 N 1
c5 U (1+w) —I—(’)(F>
2 A2 e k4
(Bo+ B, .. = J—l—S—l—)\A;f;k w(l 4 u) — A;j; u(1l 4 w)(1 + 3u + u?)
A3 < kO
+ i‘(és}s w(l 4 w)(1 4+ 7u 4+ 13u? + 74 + u?)
MAK L
+ 375 u (1—|—u) +O<?)

o The map: FEnaasg — 2Fads,, Jadss — 2Jads,, Madss — 4h?(Xads,)

after all parameters of the solution are expressed in terms of charges!



(0. @]

_ 1
(ET") ads.xcp = - Z €reg (1)

n=1

— _Xk4(12;;;‘)2“2 (6{(2) —15K2u(1 4+ uw)C(4) + 315k4 (1 +w)?¢(6) +. )
\21.6 U 2,,2
RN (2164;4 )"u (24(1 + 2u — u?)C(2) + 15k2u2(1 4 u) (5 + 13u)(¢(4)

63 !
—?k“ u?(1 4+ u)?(5 + 22u + 27u?)¢(6) + . ) + O (J6>

0

_ 1
(ET"") Ads,xss = P Z eflequAdS5><S5(n)

n=1

4 2,,2
= _ M (122_;? - (4¢(2) — 8k*u(1 4+ u)¢(4) 4+ 20k*u(1 4+ u)?¢(6) + ...)
ANk (1 4 u)?u?

25 J4

_|_

(16k2(1 4 20— u2)C(2) 4 8k*u2(1 4+ u) (5 + 13u)((4)
— 16k5u2(1 + u)2(5 4 22u + 27u2)C(6) + . ) + 0 <J6>
= Besides Eadsy — 2Eads,: Jadss — 2Jads,, Aadss — 4h%(Xads,), map-

ping the two expressions into each other requires a re-identification
of zeta-constants; physically unjustified — differs from proposed BA



Conclusions

= The natural worldsheet and (built in) Bethe Ansatz regularization
schemes are not necessarily the same

= Magnon dispersion relation receives (in conformal gauge) scheme-
dependent corrections

= Remains an open question whether all quantities depend only on
h()\); if so, choose some anomalous dimension as physical coupling

= conjectured all-loop Bethe Ansatz reproduces (the continuous)
part of the worldsheet results; finite size effects need more analysis

— giant magnon finite size effects seem to work out fine, however
Grignani, Harmark, Orselli, Semenoff; Bombardelli, Fioravanti; Lukowski, Sax; Ahn, Bozhilov;...

» Possible origin of differences
— misidentification of sectors/excitations
— misidentification of S-matrix, especially Syp

— breakdown of integrability at the quantum level



