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Many reasons to study 3d CFT-s:

potential revelations on the M2-brane theory
attempts by Bagger, Lambert

fixed points of condensed matter systems

understanding of part of the landscape of d = 4 string vacua

potentially tractable examples of gauge/string duality



On the M2-brane theory

AdS/CFT: theory is conformal and dual to M-theory on AdS4×S7

¦ fixed point of the D2 brane theory

– 8 physical scalars

– perhaps additional, topological degrees of freedom

¦ 3d gauge theory has dimensionful coupling 7→ must

disappear at the fixed point 7→ only CS-type quadratic term

¦ Parameters: ’t Hooft coupling: λ = g2YMN 7→ λcs = N
kcs

¦ Interpretation of level kcs? Natural values? 10d connection?



Outline

The N = 6 CS-matter theory

The conjectured Bethe ansatz and its relation to AdS5×S5

Worldsheet calculations, comparison and differences

Outlook



U(N)× U(N) Chern-Simons-matter theory with N = 6 susy

– special case of N = 3 construction

SO(6) ' SU(4) R-symmetry

4 complex scalar fields: Y A ∈ N× N̄ and Y
†
A ∈ N̄×N

4 complex fermions

supermultiplet: scalars in 4 and fermions in 4̄ 7→ susy gen’s in 6
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Covariant derivative: DµY A = ∂µY A +AµY A − Y AÂµ



S =
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Power-counting renormalizable; special choice of levels k1 = −k2

• Planar perturbation theory: Series expansion in λ2 rather than λ
(a feature of 3d perturbation theory)

Argued to have exact conformal invariance – OSp(6|4) symmetry
...; Gaiotto, Yin;...

• Theory constructible from N = 4 d = 2 + 1 SYM theory broken

to N = 3 and deformed by supersmmetric CS term and flown to

E ¿ m = g2YMkcs/(4π) Aharony, Bergman, Jafferis, Maldacena



String/M-theory dual: almost-max susy, correct symmetries

AdS4 × CP3 has SO(3,2)× SO(6) ' Sp(4)× SO(6) symmetry

Zk orbifold projection of AdS4 × S7

on nonsingular fiber

S1 → S7

↓
CP3

M2-branes on C4/Zk (weak coupling stability ensured by supersymmetry)

string theory limit: k →∞ relate k and kcs

ds2
AdS4×S7 =

R4

4

(
ds2AdS4

+ 4ds2
S7

)
F(4) ∝ Vol(AdS4)

ds2
S7 = (dφ+ ω)2 + ds2CP3

Zk−→ ds2 =
1

k2
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• Account for volume reduction:
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F2 = kcs JCP3 F4 =
3
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So here is another conjectured gauge/string duality. Why bother?

¦ less-than maximal susy: may exhibit features absent in AdS5×S5

– different coupling constant dependence

– fewer protected quantities; more interpolating functions

¦ Tractable both at weak and strong coupling and thus testable

Where to begin?

¦ expect agreement for all quantities protected by symmetries

→ focus on unprotected quantities – e.g. anomalous dimensions



Leading order dilatation operator for scalar operators Minahan, Zarembo

main difference from N = 4 SYM: scalars in bifundamental rep.

7→ gauge-invariant scalar operators are of the type

Tr [Y A1Y
†
B1
Y A2Y

†
B2
Y A3Y

†
B3
. . . Y ALY

†
BL

]

arises at 2-loops

– has nearest and next-to-nearest neighbor interactions

Γ =
λ2

2

2L∑

l=1

Hl,l+1,l+2

Hl,l+1,l+2 = 1l−Kl,l+1 − 2Pl,l+2 + Pl,l+2Kl,l+1 +Kl,l+1Pl,l+2

• Trace and permutation operators:

K : V × V̄ → V × V̄ KAB′
BA′ = δAB′δ

BA′

P : V × V → V × V PABA′B′ = δAB′δ
B
A′

• and the surprise is...



... that, despite the next-to-nearest neighbor interaction, this oper-

ator may be identified with a Hamiltonian derived from monodromy

matrices obeying the Yang-Baxter equation and thus is integrable

– one for even sites: Ta(u, α) ∝ Raq1(u)Raq̄1(u+ α) . . . RaqL(u)Raq̄L(u+ α)

– one for odd sites: Tā(u, α) ∝ Rāq1(u+ α)Rāq̄1(u) . . . RāqL(u+ α)Rāq̄L(u)

1-loop dilatation operator is recovered by choosing α = −2

τ = Tr [Ta] τ̄ = Tr [Tā] [τ, τ̄ ] = 0 Heven = τ−1duτ Hodd = τ̄−1duτ̄

Assuming all-order integrability: use machinery of discrete integrable

models and symmetries preserved by the lowest dimension operator

– understand closed sectors (subsets of operators closed under RG flow)

– construct spin chain S-matrix (solve Yang-Baxter equation)

– construct Bethe ansatz −→ Bethe equations

– understand coupling constant dependence



Closed sectors – should be determined by symmetries

– difference from N = 4 SYM: both scalars and fermions are

in the same representation of the R-symmetry group!

7→ 2 scalars and 1 derivative ⇔ 2 fermions

7→ departure from familiar closed sectors



Closed sectors – should be determined by symmetries

– difference from N = 4 SYM: both scalars and fermions are

in the same representation of the R-symmetry group!

7→ 2 scalars and 1 derivative ⇔ 2 fermions

7→ departure from familiar closed sectors

S-matrix: vacuum Tr [(Y 1Y
†
4)L] preserves SU(2|2) ⊂ OSp(6|4)

alternating chain → separate excitations on even and odd sites

rep’s of SU(2|2); conjectured to be (2|2) Ahn, Nepomechie

Y 1 → (Y 2, Y 3|(ψ3)α) (A-ext’s) and Y
†
4 → (Y †2 , Y

†
3 |(ψ

†
2)α) (B-ext’s)

3 S-matrices: SAA, SBB and SAB

↑ ↑ ↑
Beisert’s psu(2|2) S-matrix less clear

Excitation energy: ε(p) =
√

1
4 + 4π2h2(λ) sin2 p

2 for both



Closed sectors – should be determined by symmetries

– difference from AdS5×S5: both scalars and fermions are
in the same representation of the R-symmetry group!

7→ 2 scalars and 1 derivative ⇔ 2 fermions

7→ departure from AdS5×S5 sectors

S-matrix: vacuum Tr [(Y 1Y
†
4)L] preserves SU(2|2) ⊂ OSp(6|4)

alternating chain → separate excitations on even and odd sites

rep’s of SU(2|2); conjectured to be (2|2) Ahn, Nepomechie

Y 1 → (Y 2, Y 3|(ψ3)α) (A-ext’s) and Y
†
4 → (Y †2 , Y

†
3 |(ψ

†
2)α) (B-ext’s)

3 S-matrices: SAA, SBB and SAB

Formal similarity w/ S-matrices of CFT-s (e.g. Z’s S-matrix for WZW)

if one identifies A and B excitations with left- and right-movers.

(2|2)⊕(2|2) excitations→ formal difference with expected number

of excitations on the worldsheet where there are (8|8) physical fields



• The Bethe equations Gromov, Vieira; Ahn, Nepomechie



¦ Apparently a truncation is possible: set K1,K2,K3 = 0; K4 = K4̄

1 =




S∏

j=1

x+j

x−j




2

• Energy: E =
S∑

j=1

√
1 + 16h(λ)2 sin2 pj

2
h(λ)2 = λ2 +O(λ4)

Suggested eq’s for SL(2) sector – spin S and R-charge L = 2J
Gromov, Vieira

¦ many similarities with Bethe eq’s for the SL(2) sector of AdS5×S5

The map:
√
λ 7→ 4πh(λ)

Bethe mode number shifted by 1/2

EAdS5
7→ 2EAdS4

(twice as many excitations)

SAdS5
7→ 2SAdS4

(BPS relation)



Bethe Ansatz vs. The Worldsheet

eternal problem: how to do reliable worldsheet perturbation theory

and identify correctly the gauge theory and string

theory parameters
eternal solution: Focus on states with large quantum numbers;

worldsheet semiclassical expansion is reliable; iden-

tify the gauge theory operator by matching its

charges; the charge and the “size” of the world-

sheet are related



Bethe Ansatz vs. The Worldsheet

eternal problem: how to do reliable worldsheet perturbation theory

and identify correctly the gauge theory and string

theory parameters
eternal solution: Focus on states with large quantum numbers;

worldsheet semiclassical expansion is reliable; iden-

tify the gauge theory operator by matching its

charges; the charge and the “size” of the world-

sheet are related

¦ Two important solutions:

1) spinning folded string GKP; Frolov, Tseytlin

2) circular rotating string with 2 angular momenta Park, Tirziu, Tseytlin

both exist in AdS3×S1 ⊂ AdS5×S5 and AdS4 × CP3

both exhibit minimal structural changes compared to AdS5×S5

main difference related to RR fields

potentially expose subtle differences between the two models



The action: Bosonic part: sigma model based on the metrics

ds2AdS4
= − cosh2 ρ dt2 + dρ2 + sinh2 ρ

(
dθ2 + sin2 θdφ2

)

ds2CP3 = dζ21 + sin2 ζ1

[
dζ22 + cos2 ζ1

(
dτ1 + sin2 ζ2

(
dτ2 + sin2 ζ3dτ3

))2

+sin2 ζ2

(
dζ23 + cos2 ζ2

(
dτ2 + sin2 ζ3dτ3

)2
+ sin2 ζ3 cos2 ζ3dτ

2
3

)]

Coordinates iterativelly embedding CPn−1 into CPn Hoxha et al

Radii: R2
CP3 = 4R2

AdS R2
AdS =

R3

4kcs
= π
√

2λ =
√
λ̄ ≡ string tension

Fermionic part: complete all-order GS action is not clear

V1. Use AdS4 × CP3 = SO(3,2)/SO(3,1)× SU(4)/SU(3)× U(1)

and fit in a supergroup: OSp(6|4)/SO(3,1)× SU(4)/SU(3)× U(1)
Arutyunov, Frolov; Stefanski; Fre, Grassi

only 24 fermions; partial κ-gauge-fixed; needs motion on CP3

V2. Double dimensional reduction from supermembrane in AdS4×S7

V3. Perturbative construction in number of fermions (need only θ2)



The action: Bosonic part: sigma model based on the metrics

ds2AdS4
= − cosh2 ρ dt2 + dρ2 + sinh2 ρ

(
dθ2 + sin2 θdφ2

)

ds2CP3 = dζ21 + sin2 ζ1
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Coordinates iterativelly embedding CPn−1 into CPn Hoxha et al

Radii: R2
CP3 = 4R2

AdS R2
AdS =

R3

4kcs
= π
√

2λ =
√
λ̄ ≡ string tension

Fermionic part: complete all-order GS action is not clear

V1. GS on OSp(6|4)/SO(3,1)× SU(4)/SU(3)× U(1)
Arutyunov, Frolov; Stefanski; Fre, Grassi

only 24 fermions; partial κ-gauge-fixed; needs motion on CP3

Clasically integrable; classical transfer matrix

Interesting open quantum question: conservation of higher

charges is anomalous in sigma models on CPn and cancels

in ws susy situations; are GS fermions equally powerful?

Assume all is well; discretize classical BE; conjecture all-order
Gromov, Vieira



Semiclassical expansion:

S =
R2

AdS

2π

∫
dτ

∫ 2π

0
dσ
√−ggab 1

2
∂aX

M∂aX
N GMN(X) R2

AdS =
√
λ̄

λ̄ = λ in AdS5×S5 while λ̄ = 2π2λ in AdS4 × CP3

Target space energy density

↓
E =

√
λ̄ E

(
Si,Ji,

1√
λ̄

)
=

√
λ̄

[
E0 (Si,Ji) +

1√
λ̄
E1 (Si,Ji) + . . .

]

↑ ↑
Spin density R-charge density Si =

√
λ̄Si Ji =

√
λ̄Ji

Charges = identify the Cartan-s; phases of embedding coord’s

Magnon dispersion relation at strong coupling: ∃ 8 bosonic exc.

BMN limit using one of the Cartan isometries Nishioka, Takayanagi

εL,H =

√
nL,H + 4π2h(λ)2

k2

J2
h(λ) =

√
λ

2
+O(1)

Bethe ansatz: leading correction to h(λ) vanishes Shenderovich



Tractable limit of the spinning folded string with finite charges:

S À J À 1 l =
J√
λ̄ lnS

=fixed → homogeneous in w.s. coordinates

t̄ = κτ ρ̄ = µσ φ̄ = κτ ϕ̄2 = ϕ̄3 =
1

2
ντ µ2 = κ2 − ν2

↑
Virasoro constraints(E,S,J ) =

∫ 2π

0
dσ

1

2
(κ cosh2 ρ̄, κ sinh2 ρ̄, ν)

µ =
1

π
lnS µÀ 1 l =

ν

µ
can define µσ as spatial ws coordinate

−→ string length is effectively infinite

−→ µ-dependence factorizes

Leading order value of the space-time energy

E0 − S =
√
λ̄ lnS

√
1 + l2 =

√
λ̄ f0(l) lnS

General behavior: E − S =
√
λ̄ f(λ̄, l) lnS

↑
universal scaling function



Circular rotating string:

t̄ = κτ ρ̄ = ρ∗ θ̄ =
π

2
φ̄ = wτ + kσ ϕ̄2 = ϕ̄3 =

1

2
(ωτ +mσ)

Virasoro constraints and eq’s of motion (r0 ≡ cosh ρ∗ and r1 ≡ sinh ρ∗)

w2−(κ2+k2) = 0 r21wk+ωm = 0 r20κ
2−r21(w

2+k2)−ω2−m2 = 0

Classical energy and charges

E0 =
√
λ̄ r20κ S =

√
λ̄ r21w J ≡ J2 = J3 =

√
λ̄ ω

Express E0 in terms of charges and winding numbers k and m

in the scaling limit S, J →∞ with u = S/J-fixed

E0 = S + J +
λ̄

2J
k2u(1 + u)− λ̄2

8J3
k4u(1 + u)(1 + 3u+ u2)

+
λ̄3

16J5
k6u(1 + u)(1 + 7u+ 13u2 + 7u3 + u4) +O

(
1

J7

)

¦ two possible relations between AdS5 and AdS4 results

1) λ̄AdS5 7→ λ̄AdS4 2) EAdS5 7→ 2EAdS4, JAdS5 7→ 2JAdS4, λ̄AdS5 7→ 4λ̄AdS4



Quantum corrections:

V1. Hamiltonian formalism; works great with static gauge t = κτ
Frolov, Tseytlin

E =
1

κ
〈Ψ|H|Ψ〉 → E1 =

1

κ
〈Ψ|H2|Ψ〉
↑

Hamiltonian of quadratic fluctuationsfermion number
↘

E1 =
1

2κ

∞∑

n=−∞
(−)Fi ωn,i ← fluctuation frequencies

V2. Lagrangian formalism in conformal gauge Frolov, Tirziu, Tseytlin

RR, Tseytlin

Large charges → the partition function localizes around a single

critical point of the action; correction to energy from free energy

while accounting for renormalization of the other charges

E1 ∝ ln sdetK 7→ E1 =
1

2κ

∞∑

n=−∞
(−)Fi ωn,i

¦ carries over to higher loops RR, Tseytlin



Quantum corrections:

detailed knowledge of quadratic part of the action

– from all-order action based on OSp(6|4)/SU(3)×U(1)×SO(3,1)
Arutyunov, Frolov; Stefanski;

Fre, Grassiused by Alday, Arutyunov, Bykov; Krishnan for SFS

– General κ-symmetric form implying linearized sugra constraints

L2F = i(ηabδIJ − εabsIJ)θ̄Ie/aDJK
b θK

↑
supercovariant derivative

Hassan; GranaDb = ∂b +
1

4
∂bX

MωM
ABΓAB

DJK
b = DbδJK −

1

8
∂bX

MEAMHABCΓBC(σ3)
JK

+
1

8
eφ

[
F(0)(σ1)

JK + F/(2)(iσ2)
JK + F/(4)(σ1)

JK
]
e/b

In special Lorentz frame CP3 spin connection is not important

After appropriate rotations projector is exposed; fix κ-symmetry

e.g. SFS: L = iΨ̄(ηab − εabΓ11)(τa∂b + τaM̂τb)Ψ, Ψ = S−1θ, S = exp (κ/2σΓa3)



Spectrum of quadratic fluctuations; spinning folded string

(Φ = Φ̄ + εΦ̃ and rotation on Φ̃) McLoughlin, RR

• Bosons:

two massless modes (one in AdS4; one in CP3); canceled by ghosts

three modes from AdS4

ω±(n) =

√
n2 + 2κ2 ± 2

√
κ4 + n2ν2 ωT (n) =

√
n2 + 2κ2 − ν2

one+four modes from CP3 (reflects breaking SO(6)→ SO(4))

ωH(n) =
√
n2 + ν2 4 of ωL(n) =

√
n2 +

1

4
ν2

• Fermions: (reflects breaking SO(6)→ SO(4))

ω±12(n) = ±ν
2

+
√
n2 + κ2

ω±34(n) =
1√
2

√
n2 + 2κ2 ±

√
κ4 + 4n2ν2

e(n) = ω+ + ω−+ ωT + ωH + 4ωL −
4∑

i=1

(ω+i + ω−i) E1 =
∑
n
e(n)



¦ Ws of infinite length ⇒ sum 7→ integal

e(n) = ω++ω−+ωT +ωH+4ωL−
4∑

i=1

(ω+i+ω−i) E1 =
∫ ∞
0

dpe(κp)

a) (S, J = 0): E1 = −5 ln 2
2π lnS +O

(
ln0 S

)

b) (S, J 6= 0)
(
u = l√

1+l2
l = J√

λ̄AdS4 lnS

)

E1 =
ν

2u

[
− (1− u2) +

√
1− u2 − 2u2 lnu

−(2− u2) ln
(√

2− u2(1 +
√

1− u2)
)
−2(1− u2) ln 2

]

• contrast with AdS5×S5 energy shift

a) (S, J = 0): E1 = −3 ln 2
2π lnS +O

(
ln0 S

)

b) (S, J 6= 0)
(
u = l√

1+l2
l = J√

λAdS5 lnS

)

E1 =
ν

2u

[
− (1− u2) +

√
1− u2 − 2u2 lnu

−(2− u2) ln
(√

2− u2(1 +
√

1− u2)
) ]



Spectrum of quadratic fluctuations; circular rotating string

(Φ = Φ̄ + εΦ̃ and rotation on Φ̃) McLoughlin, RR, Tseytlin

• Bosons:

two massless modes (one in AdS4; one in CP3); canceled by ghosts

three modes from AdS4: ωT (n) =
√
p21 + κ2 & two solutions of

1

4
(ω(n)2 − n2)2 + r21κ

2ω(n)2 −
(
1 + r21

) (√
κ2 + k2ω(n)− kn

)2
= 0

one+four modes from CP3 (reflects breaking SO(6)→ SO(6))

ωH(n) =
√
n2 + (ω2 −m2) 4 of ωL(n) =

√
n2 +

1

4
(ω2 −m2)

• Fermions: (reflects breaking SO(6)→ SO(6))

ω±12(n) = ± r20kκm

2(m2+r21k
2)

+
√

(p1 ± b)2 + (ω2 + k2r21) ; b =−κmw w2−ω2

2(m2+r21k
2)

(ω(n)2 − n2)2 + r21κ
2ω(n)2 −

(
1 + r21

) (√
κ2 + k2ω(n)− kn

)2
= 0

e(n) = ω++ω−+ωT +ωH+4ωL−
4∑

i=1

(ω+i+ω−i) E1 =
1

2κ

∑
n
e(n)



• Scaling limit: S, J →∞ with fixed u = S/J; expand in 1/J

features similar to AdS5×S5 calculation: sum at finite J and

S is convergent but some terms in the expansion lead to

divergent contributions Beisert, Tseytlin for AdS5×S5

e.g. leading term in the scaling limit (J =
√
λ̄ω, n = ωx)

esum(n) =
1

2ω

[
n

(
3n− 4

√
n2 + k2u(1 + u) +

√
n2 + 4k2u(1 + u)

)

− k2(1 + u)(1 + 3u)

]
+O

(
1

ω3

)

eint(x) =
k2(1 + u)

2ω

[
1+u(3 + 2x2)

(1 + x2)3/2
− 2

1+u(3 + 8x2)

(1 + 4x2)3/2

]
+O

(
1

ω3

)

eint(0) = esum(0) → ignore last term in esum(n) and replace its

contribution with the integral of eint(x); resummation of divergences

Direct numerical evaluation confirms this interpretation



• Scaling limit: S, J →∞ with fixed u = S/J; expand in 1/J

features similar to AdS5×S5 calculation: sum at finite J and

S is convergent but some terms in the expansion lead to

divergent contributions Beisert, Tseytlin for AdS5×S5

e.g. leading term in the scaling limit (J =
√
λ̄ω, n = ωx)

esum(n) =
1

2ω

[
n

(
3n− 4

√
n2 + k2u(1 + u) +

√
n2 + 4k2u(1 + u)

)

− k2(1 + u)(1 + 3u)

]
+O

(
1

ω3

)

eint(x) =
k2(1 + u)

2ω

[
1+u(3 + 2x2)

(1 + x2)3/2
− 2

1+u(3 + 8x2)

(1 + 4x2)3/2

]
+O

(
1

ω3

)

∑
n
7→ ω

∫ +∞
−∞

dx ⇒
{
esum

eint are expansions in

{
1/Jeven

1/Jodd

→ analyze separately



Eodd
1 =

ω

2κ

∫ ∞
−∞

dx eint
reg(x)

= − λ̄1/2k2

J
ln 2 u(1 + u) +

λ̄3/2k4

2J3
ln 2 u(1 + u)(1 + 3u+ u2)

− λ̄5/2k6

8J5
u(1 + u)

[
3(1 + 7u+ 13u2 + 7u3 + u4) ln 2

]

+
λ̄5/2k6

6J5
u3(1 + u)3 + O

(
1

J7

)

combine with leading order terms

E0 + Eodd
1 = S + J +

h̄2(λ̄)k2

2J
u(1 + u)− h̄4(λ̄)k4

8J3
u(1 + u)(1 + 3u+ u2)

+
h̄6(λ̄)k6

16J5
u(1 + u)(1 + 7u+ 13u2 + 7u3 + u4)

+
h̄5(λ̄)k6

6J5
u3(1 + u)3 +O

(
1

J7

)

introduce h̄(λ̄) =
√
λ̄ − ln 2 + O

(
1√
λ̄

)
; to this order h̄(λ̄)n con-

tributes the first two terms in its expansion



combine with leading order terms h̄(λ̄) =
√
λ̄− ln 2 +O

(
1√
λ̄

)

(E0 + Eodd
1 )

AdS4×CP3
= S + J +

h̄2(λ̄)k2

2J
u(1 + u)− h̄4(λ̄)k4

8J3
u(1 + u)(1 + 3u+ u2)

+
h̄6(λ̄)k6

16J5
u(1 + u)(1 + 7u+ 13u2 + 7u3 + u4)

+
h̄5(λ̄)k6

6J5
u3(1 + u)3 +O

(
1

J7

)

(E0 + Eodd
1 )

AdS5×S5 = J + S +
λAdS5

k2

2J
u(1 + u)− λ2

AdS5
k4

8J3
u(1 + u)(1 + 3u+ u2)

+
λ3

AdS5
k6

16J5
u(1 + u)(1 + 7u+ 13u2 + 7u3 + u4)

+
λ

5/2
AdS5

k6

3J5
u3(1 + u)3 +O

(
1

J7

)

¦ The map: EAdS5 7→ 2EAdS4, JAdS5 7→ 2JAdS4, λ̄AdS5 7→ 4h̄2(λ̄AdS4)

after all parameters of the solution are expressed in terms of charges!



(Ēeven
1 )AdS4×CP3 =

1

κ

∞∑
n=1

esum
reg (n)

= −λ̄k
4(1 + u)2u2

23J2

(
6ζ(2)− 15k2u(1 + u)ζ(4) +

315

8
k4u2(1 + u)2ζ(6) + . . .

)

+
λ̄2k6(1 + u)2u2

26J4

(
24(1 + 2u− u2)ζ(2) + 15k2u2(1 + u)(5 + 13u)ζ(4)

−63

2
k4u2(1 + u)2(5 + 22u+ 27u2)ζ(6) + . . .

)
+ O

(
1

J6

)

(Ēeven
1 )AdS5×S5 =

1

κ

∞∑
n=1

esum
reg,AdS5×S5(n)

= − λk4(1 + u)2u2

22J2

(
4ζ(2)− 8k2u(1 + u)ζ(4) + 20k4u2(1 + u)2ζ(6) + . . .

)

+
λ2k4(1 + u)2u2

25J4

(
16k2(1 + 2u− u2)ζ(2) + 8k4u2(1 + u)(5 + 13u)ζ(4)

− 16k6u2(1 + u)2(5 + 22u+ 27u2)ζ(6) + . . .
)

+ O
(

1

J6

)

Besides EAdS5 7→ 2EAdS4, JAdS5 7→ 2JAdS4, λ̄AdS5 7→ 4h̄2(λ̄AdS4), map-

ping the two expressions into each other requires a re-identification

of zeta-constants; physically unjustified 7→ differs from proposed BA



Conclusions

The natural worldsheet and (built in) Bethe Ansatz regularization

schemes are not necessarily the same

Magnon dispersion relation receives (in conformal gauge) scheme-

dependent corrections

Remains an open question whether all quantities depend only on

h̄(λ̄); if so, choose some anomalous dimension as physical coupling

conjectured all-loop Bethe Ansatz reproduces (the continuous)

part of the worldsheet results; finite size effects need more analysis

– giant magnon finite size effects seem to work out fine, however

Grignani, Harmark, Orselli, Semenoff; Bombardelli, Fioravanti; Lukowski, Sax; Ahn, Bozhilov;...

Possible origin of differences

– misidentification of sectors/excitations

– misidentification of S-matrix, especially SAB

– breakdown of integrability at the quantum level


