On the duality between CS-matter theory and strings in $\mathrm{AdS}_{4} \times \mathbb{C P}^{3}$: loops vs. spins

Radu Roiban
Pennsylvania State University

based on work with T. McLoughlin and A. Tseytlin arXiv:0807.3965 and arXiv:0809.4038

Many reasons to study 3d CFT-s:

- potential revelations on the M2-brane theory
- fixed points of condensed matter systems
- understanding of part of the landscape of $d=4$ string vacua
- potentially tractable examples of gauge/string duality
- AdS/CFT: theory is conformal and dual to M-theory on $\operatorname{AdS} S_{4} \times S^{7}$
\diamond fixed point of the D2 brane theory
- 8 physical scalars
- perhaps additional, topological degrees of freedom
\diamond 3d gauge theory has dimensionful coupling \mapsto must disappear at the fixed point \mapsto only CS-type quadratic term
\diamond Parameters: 't Hooft coupling: $\lambda=g_{\mathrm{YM}}^{2} N \mapsto \lambda_{\mathrm{CS}}=\frac{N}{k_{\mathrm{CS}}}$
\diamond Interpretation of level $k_{\text {cs }}$? Natural values? 10d connection?

Outline

- The $\mathcal{N}=6$ CS-matter theory
- The conjectured Bethe ansatz and its relation to $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$
- Worldsheet calculations, comparison and differences
- Outlook

$U(N) \times U(N)$ Chern-Simons-matter theory with $\mathcal{N}=6$ susy

- special case of $\mathcal{N}=3$ construction

- $S O(6) \simeq S U(4)$ R-symmetry
- 4 complex scalar fields: $Y^{A} \in \mathbf{N} \times \overline{\mathbf{N}}$ and $Y_{A}^{\dagger} \in \overline{\mathbf{N}} \times \mathbf{N}$
- 4 complex fermions
- supermultiplet: scalars in 4 and fermions in $\overline{4} \mapsto$ susy gen's in 6

$$
\begin{aligned}
S= & \frac{k_{\mathrm{Cs}}}{4 \pi} \int d^{3} x \operatorname{Tr}\left[\epsilon^{\mu \nu \rho}\left(A_{\mu} \partial_{\nu} A_{\rho}+\frac{2}{3} A_{\mu} A_{\nu} A_{\rho}-\widehat{A}_{\mu} \partial_{\nu} \hat{A}_{\rho}-\frac{2}{3} \widehat{A}_{\mu} \widehat{A}_{\nu} \widehat{A}_{\rho}\right)\right. \\
& +D_{\mu} Y_{A}^{\dagger} D^{\mu} Y^{A}+\frac{1}{12} Y^{A} Y_{A}^{\dagger} Y^{B} Y_{B}^{\dagger} Y^{C} Y_{C}^{\dagger}+\frac{1}{12} Y^{A} Y_{B}^{\dagger} Y^{B} Y_{C}^{\dagger} Y^{C} Y_{A}^{\dagger} \\
& \left.-\frac{1}{2} Y^{A} Y_{A}^{\dagger} Y^{B} Y_{C}^{\dagger} Y^{C} Y_{B}^{\dagger}+\frac{1}{3} Y^{A} Y_{B}^{\dagger} Y^{C} Y_{A}^{\dagger} Y^{B} Y_{C}^{\dagger}+\text { fermions }\right]
\end{aligned}
$$

- superpotential $W=\epsilon^{a b} \epsilon^{\dot{a} \dot{b}} \operatorname{Tr}\left[A_{a} B_{\dot{a}} A_{b} B_{\dot{b}}\right] ; \quad Y^{A}=\left(A_{1}, A_{2}, B_{1}^{\dagger}, B_{2}^{\dagger}\right)$
- Covariant derivative: $D_{\mu} Y^{A}=\partial_{\mu} Y^{A}+A_{\mu} Y^{A}-Y^{A} \widehat{A}_{\mu}$

$$
\begin{aligned}
S= & \frac{k_{\mathrm{cs}}}{4 \pi} \int d^{3} x \operatorname{Tr}\left[\epsilon^{\mu \nu \rho}\left(A_{\mu} \partial_{\nu} A_{\rho}+\frac{2}{3} A_{\mu} A_{\nu} A_{\rho}-\widehat{A}_{\mu} \partial_{\nu} \hat{A}_{\rho}-\frac{2}{3} \widehat{A}_{\mu} \widehat{A}_{\nu} \widehat{A}_{\rho}\right)\right. \\
& +D_{\mu} Y_{A}^{\dagger} D^{\mu} Y^{A}+\frac{1}{12} Y^{A} Y_{A}^{\dagger} Y^{B} Y_{B}^{\dagger} Y^{C} Y_{C}^{\dagger}+\frac{1}{12} Y^{A} Y_{B}^{\dagger} Y^{B} Y_{C}^{\dagger} Y^{C} Y_{A}^{\dagger} \\
& \left.-\frac{1}{2} Y^{A} Y_{A}^{\dagger} Y^{B} Y_{C}^{\dagger} Y^{C} Y_{B}^{\dagger}+\frac{1}{3} Y^{A} Y_{B}^{\dagger} Y^{C} Y_{A}^{\dagger} Y^{B} Y_{C}^{\dagger}+\text { fermions }\right]
\end{aligned}
$$

- Power-counting renormalizable; special choice of levels $k_{1}=-k_{2}$
- Planar perturbation theory: Series expansion in λ^{2} rather than λ (a feature of 3d perturbation theory)
- Argued to have exact conformal invariance $-\operatorname{OSp}(6 \mid 4)$ symmetry ...; Gaiotto, Yin;...
- Theory constructible from $\mathcal{N}=4 d=2+1$ SYM theory broken to $\mathcal{N}=3$ and deformed by supersmmetric CS term and flown to $E \ll m=g_{\mathrm{YM}}^{2} k_{\mathrm{CS}} /(4 \pi)$

String/M-theory dual: almost-max susy, correct symmetries

- $A d S_{4} \times \mathbb{C P}^{3}$ has $S O(3,2) \times S O(6) \simeq S p(4) \times S O(6)$ symmetry
$\begin{array}{llll}\text { - } & \mathbb{Z}_{k} \text { orbifold projection of } & A d S_{4} \times S^{7} & S^{1} \\ & \rightarrow & S^{7} \\ \text { on nonsingular fiber } & & \downarrow \\ & & \mathbb{C P}^{3}\end{array}$
- M2-branes on $\mathbb{C}^{4} / \mathbb{Z}_{k}$ (weak coupling stability ensured by supersymmetry)
- string theory limit: $k \rightarrow \infty \quad$ relate k and k_{CS}

$$
\begin{gathered}
d s_{A d S_{4} \times S^{7}}^{2}=\frac{R^{4}}{4}\left(d s_{\mathrm{AdS}_{4}}^{2}+4 d s_{S^{7}}^{2}\right) \quad F_{(4)} \propto \operatorname{Vol}\left(\mathrm{AdS}_{4}\right) \\
d s_{S^{7}}^{2}=(d \phi+\omega)^{2}+d s_{\mathbb{C P}^{3}}^{2} \quad \xrightarrow{\mathbb{Z}_{k}} d s^{2}=\frac{1}{k^{2}}(d \phi+k \omega)^{2}+d s_{\mathbb{C P}^{3}}^{2}
\end{gathered}
$$

- Account for volume reduction:

$$
\begin{aligned}
d s^{2} & =\frac{R^{3}}{4 k_{\mathrm{CS}}}\left(d s_{\mathrm{AdS}_{4}}^{2}+4 d s_{\mathbb{C P}}^{2}\right) & e^{2 \phi} & =\frac{R^{3}}{k_{\mathrm{CS}}^{3}} \\
F_{2} & =k_{\mathrm{CS}} \mathbb{J}_{\mathbb{C P}^{3}} & F_{4} & =\frac{3}{8} R^{3} \mathrm{VoI}_{\mathrm{AdS}_{4}}
\end{aligned}
$$

So here is another conjectured gauge/string duality. Why bother?
\diamond less-than maximal susy: may exhibit features absent in $\operatorname{AdS}_{5} \times \mathrm{S}^{5}$

- different coupling constant dependence
- fewer protected quantities; more interpolating functions
\diamond Tractable both at weak and strong coupling and thus testable

Where to begin?
\diamond expect agreement for all quantities protected by symmetries
\rightarrow focus on unprotected quantities - e.g. anomalous dimensions

Leading order dilatation operator for scalar operators Minahan, Zarembo

- main difference from $\mathcal{N}=4$ SYM: scalars in bifundamental rep.
\mapsto gauge-invariant scalar operators are of the type

$$
\operatorname{Tr}\left[Y^{A_{1}} Y_{B_{1}}^{\dagger} Y^{A_{2}} Y_{B_{2}}^{\dagger} Y^{A_{3}} Y_{B_{3}}^{\dagger} \ldots Y^{A_{L}} Y_{B_{L}}^{\dagger}\right]
$$

- arises at 2-loops
- has nearest and next-to-nearest neighbor interactions

$$
\begin{aligned}
\Gamma & =\frac{\lambda^{2}}{2} \sum_{l=1}^{2 L} H_{l, l+1, l+2} \\
H_{l, l+1, l+2} & =\mathbf{1}-K_{l, l+1}-2 P_{l, l+2}+P_{l, l+2} K_{l, l+1}+K_{l, l+1} P_{l, l+2}
\end{aligned}
$$

- Trace and permutation operators:

$$
\begin{array}{ll}
K: V \times \bar{V} \rightarrow V \times \bar{V} & K_{B A^{\prime}}^{A B^{\prime}}=\delta_{A B^{\prime}} \delta^{B A^{\prime}} \\
P: V \times V \rightarrow V \times V & P_{A^{\prime} B^{\prime}}^{A B}=\delta_{B^{\prime}}^{A} \delta_{A^{\prime}}^{B}
\end{array}
$$

- and the surprise is...
... that, despite the next-to-nearest neighbor interaction, this operator may be identified with a Hamiltonian derived from monodromy matrices obeying the Yang-Baxter equation and thus is integrable
- one for even sites: $T_{a}(u, \alpha) \propto R_{a q_{1}}(u) R_{a \bar{q}_{1}}(u+\alpha) \ldots R_{a q_{L}}(u) R_{a \bar{q}_{L}}(u+\alpha)$
- one for odd sites: $T_{\bar{a}}(u, \alpha) \propto R_{\bar{a} q_{1}}(u+\alpha) R_{\bar{a} \bar{q}_{1}}(u) \ldots R_{\bar{a} q_{L}}(u+\alpha) R_{\bar{a} \bar{q}_{L}}(u)$
- 1-Ioop dilatation operator is recovered by choosing $\alpha=-2$
$\tau=\operatorname{Tr}\left[T_{a}\right] \quad \bar{\tau}=\operatorname{Tr}\left[T_{\bar{a}}\right] \quad[\tau, \bar{\tau}]=0 \quad H_{\text {even }}=\tau^{-1} d_{u} \tau \quad H_{\text {odd }}=\bar{\tau}^{-1} d_{u} \bar{\tau}$
Assuming all-order integrability: use machinery of discrete integrable models and symmetries preserved by the lowest dimension operator
- understand closed sectors (subsets of operators closed under RG flow)
- construct spin chain S-matrix (solve Yang-Baxter equation)
- construct Bethe ansatz \longrightarrow Bethe equations
- understand coupling constant dependence

Closed sectors - should be determined by symmetries

- difference from $\mathcal{N}=4$ SYM: both scalars and fermions are in the same representation of the R-symmetry group!
$\mapsto 2$ scalars and 1 derivative $\Leftrightarrow 2$ fermions
\mapsto departure from familiar closed sectors

Closed sectors - should be determined by symmetries

- difference from $\mathcal{N}=4$ SYM: both scalars and fermions are in the same representation of the R-symmetry group!
$\mapsto 2$ scalars and 1 derivative $\Leftrightarrow 2$ fermions
\mapsto departure from familiar closed sectors
S-matrix: vacuum $\operatorname{Tr}\left[\left(Y^{1} Y_{4}^{\dagger}\right)^{L}\right]$ preserves $S U(2 \mid 2) \subset O S p(6 \mid 4)$
- alternating chain \rightarrow separate excitations on even and odd sites
- rep's of $S U(2 \mid 2)$; conjectured to be (2|2)

$$
Y^{1} \rightarrow\left(Y^{2}, Y^{3} \mid\left(\psi_{3}\right)_{\alpha}\right) \text { (A-ext's) and } Y_{4}^{\dagger} \rightarrow\left(Y_{2}^{\dagger}, Y_{3}^{\dagger} \mid\left(\psi_{2}^{\dagger}\right)_{\alpha}\right) \text { (B-ext's) }
$$

- 3 S-matrices: $S_{A A}, S_{B B}$ and $S_{A B}$

Excitation energy: $\epsilon(p)=\sqrt{\frac{1}{4}+4 \pi^{2} h^{2}(\lambda) \sin ^{2} \frac{p}{2}}$ for both

Closed sectors - should be determined by symmetries

- difference from $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$: both scalars and fermions are in the same representation of the R-symmetry group!
$\mapsto 2$ scalars and 1 derivative $\Leftrightarrow 2$ fermions
\mapsto departure from AdS $_{5} \times S^{5}$ sectors
S-matrix: vacuum $\operatorname{Tr}\left[\left(Y^{1} Y_{4}^{\dagger}\right)^{L}\right]$ preserves $S U(2 \mid 2) \subset O S p(6 \mid 4)$
- alternating chain \rightarrow separate excitations on even and odd sites
- rep's of $S U(2 \mid 2)$; conjectured to be (2|2)

Ahn, Nepomechie

$$
Y^{1} \rightarrow\left(Y^{2}, Y^{3} \mid\left(\psi_{3}\right)_{\alpha}\right)(\text { A-ext's }) \text { and } Y_{4}^{\dagger} \rightarrow\left(Y_{2}^{\dagger}, Y_{3}^{\dagger} \mid\left(\psi_{2}^{\dagger}\right)_{\alpha}\right) \text { (B-ext's) }
$$

- 3 S-matrices: $S_{A A}, S_{B B}$ and $S_{A B}$
- Formal similarity w/ S-matrices of CFT-s (e.g. Z's S-matrix for WZW) if one identifies A and B excitations with left- and right-movers.
- (2|2) $\oplus(2 \mid 2)$ excitations \rightarrow formal difference with expected number of excitations on the worldsheet where there are (8|8) physical fields
- The Bethe equations

$$
\begin{aligned}
& 1=\prod_{j=1}^{K_{2}} \frac{u_{1, k}-u_{2, j}+\frac{i}{2}}{u_{1, k}-u_{2, j}-\frac{i}{2}} \prod_{j=1}^{K_{4}} \frac{1-1 / x_{1, k} x_{4, j}^{+}}{1-1 / x_{1, k} x_{4, j}^{-}} \prod_{j=1}^{K_{4}} \frac{1-1 / x_{1, k} x_{\overline{4}, j}^{+}}{1-1 / x_{1, k} x_{\overline{4}, j}^{-}}, \\
& 1=\prod_{j \neq k}^{K_{2}} \frac{u_{2, k}-u_{2, j}-i}{u_{2, k}-u_{2, j}+i} \prod_{j=1}^{K_{1}} \frac{u_{2, k}-u_{1, j}+\frac{i}{2}}{u_{2, k}-u_{1, j}-\frac{i}{2}} \prod_{j=1}^{K_{3}} \frac{u_{1, k}-u_{3, j}+\frac{i}{2}}{u_{1, k}-u_{3, j}-\frac{i}{2}}, \\
& 1=\prod_{j=1}^{K_{2}} \frac{u_{3, k}-u_{2, j}+\frac{i}{2}}{u_{3, k}-u_{2, j}-\frac{i}{2}} \prod_{j=1}^{K_{4}} \frac{x_{3, k}-x_{4, j}^{+}}{x_{3, k}-x_{4, j}^{-}} \prod_{j=1}^{K_{\overline{4}}} \frac{x_{3, k}-x_{\overline{4}, j}^{+}}{x_{3, k}-x_{\overline{4}, j}^{-}} \\
& \left(\frac{x_{4, k}^{+}}{x_{4, k}^{-}}\right)^{L}=\prod_{j \neq k}^{K_{4}} \frac{u_{4, k}-u_{4, j}+i}{u_{4, k}-u_{4, j}-i} \prod_{j=1}^{K_{1}} \frac{1-1 / x_{4, k}^{-} x_{1, j}}{1-1 / x_{4, k}^{+} x_{1, j}} \prod_{j=1}^{K_{3}} \frac{x_{4, k}^{-}-x_{3, j}}{x_{4, k}^{+}-x_{3, j}} \times \\
& \times \prod_{j=1}^{K_{4}} \sigma_{\mathrm{BES}}\left(u_{4, k}, u_{4, j}\right) \prod_{j=1}^{K_{\overline{4}}} \sigma_{\mathrm{BES}}\left(u_{4, k}, u_{\overline{4}, j}\right), \\
& \left(\frac{x_{\overline{4}, k}^{+}}{x_{\overline{4}, k}^{-}}\right)^{L}=\prod_{j=1}^{K_{\overline{4}}} \frac{u_{\overline{4}, k}-u_{\overline{4}, j}+i}{u_{\overline{4}, k}-u_{\overline{4}, j}-i} \prod_{j=1}^{K_{1}} \frac{1-1 / x_{\overline{4}, k}^{-} x_{1, j}}{1-1 / x_{\overline{4}, k}^{+} x_{1, j}} \prod_{j=1}^{K_{3}} \frac{x_{\overline{4}, k}^{-}-x_{3, j}}{x_{\overline{4}, k}^{+}-x_{3, j}} \times \\
& \times \prod_{j \neq k}^{K_{\overline{4}}} \sigma_{\mathrm{BES}}\left(u_{\overline{4}, k}, u_{\overline{4}, j}\right) \prod_{j=1}^{K_{4}} \sigma_{\mathrm{BES}}\left(u_{\overline{4}, k}, u_{4, j}\right) . \\
& E=\sum_{j=1}^{K_{4}} \frac{1}{2}\left(\sqrt{1+16 h(\lambda)^{2} \sin ^{2} \frac{p_{j}}{2}}-1\right)+\sum_{j=1}^{K_{\overline{4}}} \frac{1}{2}\left(\sqrt{1+16 h(\lambda)^{2} \sin ^{2} \frac{\bar{p}_{j}}{2}}-1\right) \\
& \begin{array}{l}
p_{j}=\frac{1}{i} \log \frac{x_{4, j}^{+}}{x_{4, j}^{-}} \\
\bar{p}_{j}=\frac{1}{i} \log \frac{x_{\overline{4}, j}^{+}}{x_{\overline{4}, j}^{-}}
\end{array} \\
& 1=\prod_{j=1}^{K_{4}} \frac{x_{4, j}^{+}}{x_{4, j}^{-}} \prod_{j=1}^{K_{\overline{4}}} \frac{x_{\overline{4}, j}^{+}}{x_{\overline{4}, j}^{-}} \\
& x+\frac{1}{x}=\frac{u}{h(\lambda)} \\
& x^{ \pm}+\frac{1}{x^{ \pm}}=\frac{1}{h(\lambda)}\left(u \pm \frac{i}{2}\right)
\end{aligned}
$$

\diamond Apparently a truncation is possible: set $K_{1}, K_{2}, K_{3}=0 ; K_{4}=K_{\overline{4}}$

$$
\left(\frac{x_{k}^{+}}{x_{k}^{-}}\right)^{L}=-\prod_{j \neq k}^{S} \frac{u_{k}-u_{j}+i}{u_{k}-u_{j}-i}\left(\frac{x_{k}^{-}-x_{j}^{+}}{x_{k}^{+}-x_{j}^{-}}\right)^{2} \sigma_{B E S}^{2}\left(u_{k}, u_{j}\right) \quad 1=\left(\prod_{j=1}^{S} \frac{x_{j}^{+}}{x_{j}^{-}}\right)^{2}
$$

- Energy: $E=\sum_{j=1}^{S} \sqrt{1+16 h(\lambda)^{2} \sin ^{2} \frac{p_{j}}{2}} \quad h(\lambda)^{2}=\lambda^{2}+\mathcal{O}\left(\lambda^{4}\right)$
- Suggested eq's for $S L(2)$ sector $-\operatorname{spin} S$ and R-charge $L=2 J$
\diamond many similarities with Bethe eq's for the $S L(2)$ sector of $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$
The map: - $\sqrt{\lambda} \mapsto 4 \pi h(\lambda)$
- Bethe mode number shifted by $1 / 2$
- $E_{\mathrm{AdS}_{5}} \mapsto 2 E_{\mathrm{AdS}_{4}}$ (twice as many excitations)
- $S_{\mathrm{AdS}_{5}} \mapsto 2 S_{\mathrm{AdS}_{4}}$ (BPS relation)

Bethe Ansatz vs. The Worldsheet

eternal problem: how to do reliable worldsheet perturbation theory and identify correctly the gauge theory and string theory parameters
eternal solution: Focus on states with large quantum numbers; worldsheet semiclassical expansion is reliable; identify the gauge theory operator by matching its charges; the charge and the "size" of the worldsheet are related

Bethe Ansatz vs. The Worldsheet

eternal problem: how to do reliable worldsheet perturbation theory and identify correctly the gauge theory and string theory parameters
eternal solution: Focus on states with large quantum numbers; worldsheet semiclassical expansion is reliable; identify the gauge theory operator by matching its charges; the charge and the "size" of the worldsheet are related
\diamond Two important solutions:

1) spinning folded string
2) circular rotating string with 2 angular momenta Park, Tirziu, Tseytlin

- both exist in $\mathrm{AdS}_{3} \times \mathrm{S}^{1} \subset \mathrm{AdS}_{5} \times \mathrm{S}^{5}$ and $\mathrm{AdS}_{4} \times \mathbb{C P}^{3}$
- both exhibit minimal structural changes compared to $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$
- main difference related to RR fields
- potentially expose subtle differences between the two models

The action: Bosonic part: sigma model based on the metrics

$$
\begin{aligned}
d s_{\mathrm{AdS}_{4}}^{2}= & -\cosh ^{2} \rho d t^{2}+d \rho^{2}+\sinh ^{2} \rho\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \\
d s_{\mathbb{C P}^{3}}^{2}= & d \zeta_{1}^{2}+\sin ^{2} \zeta_{1}\left[d \zeta_{2}^{2}+\cos ^{2} \zeta_{1}\left(d \tau_{1}+\sin ^{2} \zeta_{2}\left(d \tau_{2}+\sin ^{2} \zeta_{3} d \tau_{3}\right)\right)^{2}\right. \\
& \left.+\sin ^{2} \zeta_{2}\left(d \zeta_{3}^{2}+\cos ^{2} \zeta_{2}\left(d \tau_{2}+\sin ^{2} \zeta_{3} d \tau_{3}\right)^{2}+\sin ^{2} \zeta_{3} \cos ^{2} \zeta_{3} d \tau_{3}^{2}\right)\right]
\end{aligned}
$$

- Coordinates iterativelly embedding $\mathbb{C P} \mathbb{P}^{n-1}$ into $\mathbb{C} \mathbb{P}^{n}$

Hoxha et al

- Radii: $R_{\mathbb{C P}^{3}}^{2}=4 R_{\text {AdS }}^{2} \quad R_{\text {AdS }}^{2}=\frac{R^{3}}{4 k_{\mathrm{CS}}}=\pi \sqrt{2 \lambda}=\sqrt{\bar{\lambda}} \equiv$ string tension

Fermionic part: complete all-order GS action is not clear
V1. Use $\mathrm{AdS}_{4} \times \mathbb{C P}^{3}=S O(3,2) / S O(3,1) \times S U(4) / S U(3) \times U(1)$ and fit in a supergroup: $O S p(6 \mid 4) / S O(3,1) \times S U(4) / S U(3) \times U(1)$

Arutyunov, Frolov; Stefanski; Fre, Grassi

- only 24 fermions; partial κ-gauge-fixed; needs motion on $\mathbb{C P}^{3}$

V 2. Double dimensional reduction from supermembrane in $\mathrm{AdS}_{4} \times \mathrm{S}^{7}$
V 3 . Perturbative construction in number of fermions (need only θ^{2})

The action: Bosonic part: sigma model based on the metrics

$$
\begin{gathered}
d s_{\mathrm{AdS}_{4}}^{2}=-\cosh ^{2} \rho d t^{2}+d \rho^{2}+\sinh ^{2} \rho\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \\
d s_{\mathbb{C P}^{3}}^{2}= \\
\\
\quad d \zeta_{1}^{2}+\sin ^{2} \zeta_{1}\left[d \zeta_{2}^{2}+\cos ^{2} \zeta_{1}\left(d \tau_{1}+\sin ^{2} \zeta_{2}\left(d \tau_{2}+\sin ^{2} \zeta_{3} d \tau_{3}\right)\right)^{2}\right. \\
\\
\end{gathered}
$$

- Coordinates iterativelly embedding $\mathbb{C P}^{n-1}$ into $\mathbb{C P}^{n}$

Hoxha et al

- Radii: $R_{\mathbb{C P}^{3}}^{2}=4 R_{\text {AdS }}^{2} \quad R_{\text {AdS }}^{2}=\frac{R^{3}}{4 k_{\mathrm{CS}}}=\pi \sqrt{2 \lambda}=\sqrt{\bar{\lambda}} \equiv$ string tension

Fermionic part: complete all-order GS action is not clear
V1. GS on $O S p(6 \mid 4) / S O(3,1) \times S U(4) / S U(3) \times U(1)$
Arutyunov, Frolov; Stefanski; Fre, Grassi

- only 24 fermions; partial κ-gauge-fixed; needs motion on $\mathbb{C P}^{3}$
- Clasically integrable; classical transfer matrix
- Interesting open quantum question: conservation of higher charges is anomalous in sigma models on $\mathbb{C P}^{n}$ and cancels in ws susy situations; are GS fermions equally powerful?
- Assume all is well; discretize classical BE; conjecture all-order

Semiclassical expansion:

$$
S=\frac{R_{\text {AdS }}^{2}}{2 \pi} \int d \tau \int_{0}^{2 \pi} d \sigma \sqrt{-g} g^{a b} \frac{1}{2} \partial_{a} X^{M} \partial_{a} X^{N} G_{M N}(X) \quad R_{\text {AdS }}^{2}=\sqrt{\bar{\lambda}}
$$

- $\bar{\lambda}=\lambda$ in AdS $_{5} \times \mathrm{S}^{5}$ while $\bar{\lambda}=2 \pi^{2} \lambda$ in $\mathrm{AdS}_{4} \times \mathbb{C P}^{3}$

Target space energy density

$$
\begin{aligned}
& E=\sqrt{\bar{\lambda}} \mathcal{E}\left(\underset{\uparrow}{\downarrow}\left(\mathcal{S}_{i}, \mathcal{J}_{i}, \frac{1}{\sqrt{\bar{\lambda}}}\right)=\sqrt{\bar{\lambda}}\left[\mathcal{E}_{0}\left(\mathcal{S}_{i}, \mathcal{J}_{i}\right)+\frac{1}{\sqrt{\bar{\lambda}}} \mathcal{E}_{1}\left(\mathcal{S}_{i}, \mathcal{J}_{i}\right)+\ldots\right]\right. \\
& \text { Spin density } \quad \text { R-charge density } \quad S_{i}=\sqrt{\bar{\lambda}} \mathcal{S}_{i} \quad J_{i}=\sqrt{\bar{\lambda}} \mathcal{J}_{i}
\end{aligned}
$$

- Charges $=$ identify the Cartan-s; phases of embedding coord's

Magnon dispersion relation at strong coupling: $\exists 8$ bosonic exc.

- BMN limit using one of the Cartan isometries

Nishioka, Takayanagi

$$
\epsilon_{L, H}=\sqrt{n_{L, H}+4 \pi^{2} h(\lambda)^{2} \frac{k^{2}}{J^{2}}} \quad h(\lambda)=\sqrt{\frac{\lambda}{2}}+\mathcal{O}(1)
$$

- Bethe ansatz: leading correction to $h(\lambda)$ vanishes
- Tractable limit of the spinning folded string with finite charges: $S \gg J \gg 1 \quad l=\frac{J}{\sqrt{\bar{\lambda}} \ln S}=$ fixed \rightarrow homogeneous in w.s. coordinates $\bar{t}=\kappa \tau \quad \bar{\rho}=\mu \sigma \quad \bar{\phi}=\kappa \tau \quad \bar{\varphi}_{2}=\bar{\varphi}_{3}=\frac{1}{2} \nu \tau \quad \mu^{2}=\kappa^{2}-\nu^{2}$ $(\mathcal{E}, \mathcal{S}, \mathcal{J})=\int_{0}^{2 \pi} d \sigma \frac{1}{2}\left(\kappa \cosh ^{2} \bar{\rho}, \kappa \sinh ^{2} \bar{\rho}, \nu\right) \quad$ Virasoro constraints $\mu=\frac{1}{\pi} \ln \mathcal{S} \quad \mu \gg 1 \quad l=\frac{\nu}{\mu} \quad$ can define $\mu \sigma$ as spatial ws coordinate
\longrightarrow string length is effectively infinite
$\longrightarrow \mu$-dependence factorizes
- Leading order value of the space-time energy

$$
E_{0}-S=\sqrt{\bar{\lambda}} \ln S \sqrt{1+l^{2}}=\sqrt{\bar{\lambda}} f_{0}(l) \ln S
$$

- General behavior: $E-S=\sqrt{\bar{\lambda}} f(\bar{\lambda}, l) \ln S$

Circular rotating string:

$$
\bar{t}=\kappa \tau \quad \bar{\rho}=\rho_{*} \quad \bar{\theta}=\frac{\pi}{2} \quad \bar{\phi}=\mathrm{w} \tau+k \sigma \quad \bar{\varphi}_{2}=\bar{\varphi}_{3}=\frac{1}{2}(\omega \tau+m \sigma)
$$

- Virasoro constraints and eq's of motion ($r_{0} \equiv \cosh \rho_{*}$ and $r_{1} \equiv \sinh \rho_{*}$)

$$
w^{2}-\left(\kappa^{2}+k^{2}\right)=0 \quad r_{1}^{2} w k+\omega m=0 \quad r_{0}^{2} \kappa^{2}-r_{1}^{2}\left(w^{2}+k^{2}\right)-\omega^{2}-m^{2}=0
$$

- Classical energy and charges

$$
E_{0}=\sqrt{\bar{\lambda}} r_{0}^{2} \kappa \quad S=\sqrt{\bar{\lambda}} r_{1}^{2} \mathrm{w} \quad J \equiv J_{2}=J_{3}=\sqrt{\bar{\lambda}} \omega
$$

- Express E_{0} in terms of charges and winding numbers k and m in the scaling limit $S, J \rightarrow \infty$ with $u=S / J$-fixed

$$
\begin{aligned}
E_{0}= & S+J+\frac{\bar{\lambda}}{2 J} k^{2} u(1+u)-\frac{\bar{\lambda}^{2}}{8 J^{3}} k^{4} u(1+u)\left(1+3 u+u^{2}\right) \\
& +\frac{\bar{\lambda}^{3}}{16 J^{5}} k^{6} u(1+u)\left(1+7 u+13 u^{2}+7 u^{3}+u^{4}\right)+\mathcal{O}\left(\frac{1}{J^{7}}\right)
\end{aligned}
$$

\diamond two possible relations between AdS_{5} and AdS_{4} results

1) $\bar{\lambda}_{\mathrm{AdS}_{5}} \mapsto \bar{\lambda}_{\mathrm{AdS}_{4}}$ 2) $E_{\mathrm{AdS}_{5}} \mapsto 2 E_{\mathrm{AdS}_{4}}, J_{\mathrm{AdS}_{5}} \mapsto 2 J_{\mathrm{AdS}_{4}}, \bar{\lambda}_{\mathrm{AdS}_{5}} \mapsto 4 \bar{\lambda}_{\mathrm{AdS}_{4}}$

Quantum corrections:
V1. Hamiltonian formalism; works great with static gauge $t=\kappa \tau$

$$
E=\frac{1}{\kappa}\langle\Psi| H|\Psi\rangle \quad \rightarrow \quad E_{1}=\frac{1}{\kappa}\langle\Psi| H_{2}|\Psi\rangle
$$

fermion number Hamiltonian of quadratic fluctuations

$$
E_{1}=\frac{1}{2 \kappa} \sum_{n=-\infty}^{\infty}(-)^{F_{i}} \omega_{n, i} \leftarrow \text { fluctuation frequencies }
$$

V2. Lagrangian formalism in conformal gauge
Large charges \rightarrow the partition function localizes around a single critical point of the action; correction to energy from free energy while accounting for renormalization of the other charges

$$
E_{1} \propto \ln \operatorname{sdet} K \mapsto E_{1}=\frac{1}{2 \kappa} \sum_{n=-\infty}^{\infty}(-)^{F_{i}} \omega_{n, i}
$$

\diamond carries over to higher loops

Quantum corrections:

- detailed knowledge of quadratic part of the action
- from all-order action based on $\operatorname{OSp}(6 \mid 4) / S U(3) \times U(1) \times S O(3,1)$
- General κ-symmetric form implying linearized sugra constraints

$$
\begin{aligned}
& L_{2 F}=i\left(\eta^{a b} \delta^{I J}-\epsilon^{a b} s^{I J}\right) \bar{\theta}^{I} k_{a} D_{b}^{J K} \theta^{K} \\
& \mathcal{D}_{b}= \partial_{b}+\frac{1}{4} \partial_{b} X^{M} \omega_{M}{ }^{A B} \Gamma_{A B} \quad \text { supercovariant deriv } \\
& D_{b}^{J K}= \mathcal{D}_{b} \delta^{J K}-\frac{1}{8} \partial_{b} X^{M} E_{M}^{A} H_{A B C} \Gamma^{B C}\left(\sigma_{3}\right)^{J K} \\
&+ \frac{1}{8} e^{\phi}\left[F_{(0)}\left(\sigma_{1}\right)^{J K}+\not H_{(2)}\left(i \sigma_{2}\right)^{J K}+\not \mathscr{H}_{(4)}^{\prime}\left(\sigma_{1}\right)^{J K}\right] k_{b}
\end{aligned}
$$

- In special Lorentz frame $\mathbb{C P}^{3}$ spin connection is not important
- After appropriate rotations projector is exposed; fix κ-symmetry e.g. SFS: $L=i \bar{\Psi}\left(\eta^{a b}-\epsilon^{a b} \Gamma_{11}\right)\left(\tau_{a} \partial_{b}+\tau_{a} \hat{M} \tau_{b}\right) \Psi, \Psi=S^{-1} \theta, S=\exp \left(\kappa / 2 \sigma \Gamma_{a 3}\right)$

Spectrum of quadratic fluctuations; spinning folded string ($\Phi=\bar{\Phi}+\epsilon \tilde{\Phi}$ and rotation on $\tilde{\Phi}$)

- Bosons:
- two massless modes (one in AdS_{4}; one in $\mathbb{C P}^{3}$); canceled by ghosts
- three modes from AdS_{4}

$$
\omega_{ \pm}(n)=\sqrt{n^{2}+2 \kappa^{2} \pm 2 \sqrt{\kappa^{4}+n^{2} \nu^{2}}} \quad \omega_{T}(n)=\sqrt{n^{2}+2 \kappa^{2}-\nu^{2}}
$$

- one+four modes from $\mathbb{C P}^{3}$ (reflects breaking $S O(6) \rightarrow S O(4)$)

$$
\omega_{H}(n)=\sqrt{n^{2}+\nu^{2}} \quad 4 \text { of } \omega_{L}(n)=\sqrt{n^{2}+\frac{1}{4} \nu^{2}}
$$

- Fermions: (reflects breaking $S O(6) \rightarrow S O(4)$)

$$
\begin{aligned}
\omega_{ \pm 12}(n) & = \pm \frac{\nu}{2}+\sqrt{n^{2}+\kappa^{2}} \\
\omega_{ \pm 34}(n) & =\frac{1}{\sqrt{2}} \sqrt{n^{2}+2 \kappa^{2} \pm \sqrt{\kappa^{4}+4 n^{2} \nu^{2}}} \\
e(n)=\omega_{+}+\omega_{-}+\omega_{T} & +\omega_{H}+4 \omega_{L}-\sum_{i=1}^{4}\left(\omega_{+i}+\omega_{-i}\right) \quad E_{1}=\sum_{n} e(n)
\end{aligned}
$$

\diamond Ws of infinite length \Rightarrow sum \mapsto integal

$$
e(n)=\omega_{+}+\omega_{-}+\omega_{T}+\omega_{H}+4 \omega_{L}-\sum_{i=1}^{4}\left(\omega_{+i}+\omega_{-i}\right) \quad E_{1}=\int_{0}^{\infty} d p e(\kappa p)
$$

a) $(S, J=0): E_{1}=-\frac{5 \ln 2}{2 \pi} \ln S+\mathcal{O}\left(\ln ^{0} S\right)$
b) $(S, J \neq 0)\left(u=\frac{l}{\sqrt{1+l^{2}}} l=\frac{J}{\sqrt{\bar{\lambda}_{\text {ASS }}} \ln S}\right)$

$$
\begin{aligned}
E_{1}=\frac{\nu}{2 u} & {\left[-\left(1-u^{2}\right)+\sqrt{1-u^{2}}-2 u^{2} \ln u\right.} \\
& \left.-\left(2-u^{2}\right) \ln \left(\sqrt{2-u^{2}}\left(1+\sqrt{1-u^{2}}\right)\right)-2\left(1-u^{2}\right) \ln 2\right]
\end{aligned}
$$

- contrast with $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ energy shift
a) $(S, J=0): E_{1}=-\frac{3 \ln 2}{2 \pi} \ln S+\mathcal{O}\left(\ln ^{0} S\right)$
b) $(S, J \neq 0)\left(u=\frac{l}{\sqrt{1+l^{2}}} l=\frac{J}{\sqrt{\lambda_{\text {AS }}^{5}}} \ln S\right)$

$$
\begin{aligned}
E_{1}=\frac{\nu}{2 u}[& -\left(1-u^{2}\right)+\sqrt{1-u^{2}}-2 u^{2} \ln u \\
& \left.-\left(2-u^{2}\right) \ln \left(\sqrt{2-u^{2}}\left(1+\sqrt{1-u^{2}}\right)\right)\right]
\end{aligned}
$$

Spectrum of quadratic fluctuations; circular rotating string $(\Phi=\Phi+\epsilon \widetilde{\Phi}$ and rotation on $\tilde{\Phi})$

- Bosons:
- two massless modes (one in AdS_{4}; one in $\mathbb{C P}^{3}$); canceled by ghosts
- three modes from $\mathrm{AdS}_{4}: \omega_{T}(n)=\sqrt{p_{1}^{2}+\kappa^{2}}$ \& two solutions of $\frac{1}{4}\left(\omega(n)^{2}-n^{2}\right)^{2}+r_{1}^{2} \kappa^{2} \omega(n)^{2}-\left(1+r_{1}^{2}\right)\left(\sqrt{\kappa^{2}+k^{2}} \omega(n)-k n\right)^{2}=0$
- one+four modes from $\mathbb{C P}^{3}$ (reflects breaking $S O(6) \rightarrow S O(6)$)

$$
\omega_{H}(n)=\sqrt{n^{2}+\left(\omega^{2}-m^{2}\right)} \quad 4 \text { of } \omega_{L}(n)=\sqrt{n^{2}+\frac{1}{4}\left(\omega^{2}-m^{2}\right)}
$$

- Fermions: (reflects breaking $S O(6) \rightarrow S O(6)$)
$\omega_{ \pm 12}(n)= \pm \frac{r_{0}^{2} k \kappa m}{2\left(m^{2}+r_{1}^{2} k^{2}\right)}+\sqrt{\left(p_{1} \pm b\right)^{2}+\left(\omega^{2}+k^{2} r_{1}^{2}\right)} ; b=-\frac{\kappa m}{w} \frac{w^{2}-\omega^{2}}{2\left(m^{2}+r_{1}^{2} k^{2}\right)}$
$\left(\omega(n)^{2}-n^{2}\right)^{2}+r_{1}^{2} \kappa^{2} \omega(n)^{2}-\left(1+r_{1}^{2}\right)\left(\sqrt{\kappa^{2}+k^{2}} \omega(n)-k n\right)^{2}=0$
$e(n)=\omega_{+}+\omega_{-}+\omega_{T}+\omega_{H}+4 \omega_{L}-\sum_{i=1}^{4}\left(\omega_{+i}+\omega_{-i}\right) \quad E_{1}=\frac{1}{2 \kappa} \sum_{n} e(n)$
- Scaling limit: $S, J \rightarrow \infty$ with fixed $u=S / J$; expand in $1 / J$
- features similar to $\operatorname{AdS}_{5} \times S^{5}$ calculation: sum at finite J and S is convergent but some terms in the expansion lead to divergent contributions Beisert, Tseytlin for $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$
- e.g. leading term in the scaling limit $(J=\sqrt{\bar{\lambda}} \omega, n=\omega x)$

$$
\begin{aligned}
e^{\operatorname{sum}}(n)= & \frac{1}{2 \omega}\left[n\left(3 n-4 \sqrt{n^{2}+k^{2} u(1+u)}+\sqrt{n^{2}+4 k^{2} u(1+u)}\right)\right. \\
& \left.-k^{2}(1+u)(1+3 u)\right]+\mathcal{O}\left(\frac{1}{\omega^{3}}\right) \\
e^{\text {int }}(x)= & \frac{k^{2}(1+u)}{2 \omega}\left[\frac{1+u\left(3+2 x^{2}\right)}{\left(1+x^{2}\right)^{3 / 2}}-2 \frac{1+u\left(3+8 x^{2}\right)}{\left(1+4 x^{2}\right)^{3 / 2}}\right]+\mathcal{O}\left(\frac{1}{\omega^{3}}\right)
\end{aligned}
$$

- $e^{\text {int }}(0)=e^{\text {sum }}(0) \rightarrow$ ignore last term in $e^{\text {sum }}(n)$ and replace its contribution with the integral of $e^{\text {int }}(x)$; resummation of divergences
- Direct numerical evaluation confirms this interpretation
- Scaling limit: $S, J \rightarrow \infty$ with fixed $u=S / J$; expand in $1 / J$
- features similar to $\operatorname{AdS}_{5} \times S^{5}$ calculation: sum at finite J and S is convergent but some terms in the expansion lead to divergent contributions
- e.g. leading term in the scaling limit ($J=\sqrt{\bar{\lambda}} \omega, n=\omega x$)

$$
\begin{aligned}
e^{\text {sum }}(n)= & \frac{1}{2 \omega}\left[n\left(3 n-4 \sqrt{n^{2}+k^{2} u(1+u)}+\sqrt{n^{2}+4 k^{2} u(1+u)}\right)\right. \\
& \left.-k^{2}(1+u)(1+3 u)\right]+\mathcal{O}\left(\frac{1}{\omega^{3}}\right) \\
e^{\text {int }}(x)= & \frac{k^{2}(1+u)}{2 \omega}\left[\frac{1+u\left(3+2 x^{2}\right)}{\left(1+x^{2}\right)^{3 / 2}}-2 \frac{1+u\left(3+8 x^{2}\right)}{\left(1+4 x^{2}\right)^{3 / 2}}\right]+\mathcal{O}\left(\frac{1}{\omega^{3}}\right)
\end{aligned}
$$

- $\sum_{n} \mapsto \omega \int_{-\infty}^{+\infty} d x \Rightarrow\left\{\begin{array}{l}e^{\text {sum }} \\ e^{\text {int }}\end{array}\right.$ are expansions in $\left\{\begin{array}{l}1 / J^{\text {even }} \\ 1 / J^{\text {odd }}\end{array}\right.$
\rightarrow analyze separately

$$
\begin{aligned}
E_{1}^{\mathrm{odd}}= & \frac{\omega}{2 \kappa} \int_{-\infty}^{\infty} d x e_{\mathrm{reg}}^{\mathrm{int}}(x) \\
= & -\frac{\bar{\lambda}^{1 / 2} k^{2}}{J} \ln 2 u(1+u)+\frac{\bar{\lambda}^{3 / 2} k^{4}}{2 J^{3}} \ln 2 u(1+u)\left(1+3 u+u^{2}\right) \\
& -\frac{\bar{\lambda}^{5 / 2} k^{6}}{8 J^{5}} u(1+u)\left[3\left(1+7 u+13 u^{2}+7 u^{3}+u^{4}\right) \ln 2\right] \\
& +\frac{\bar{\lambda}^{5 / 2} k^{6}}{6 J^{5}} u^{3}(1+u)^{3}+\mathcal{O}\left(\frac{1}{J^{7}}\right)
\end{aligned}
$$

- combine with leading order terms

$$
\begin{aligned}
E_{0}+E_{1}^{\text {odd }}=S & +J+\frac{\bar{h}^{2}(\bar{\lambda}) k^{2}}{2 J} u(1+u)-\frac{\bar{h}^{4}(\bar{\lambda}) k^{4}}{8 J^{3}} u(1+u)\left(1+3 u+u^{2}\right) \\
& +\frac{\bar{h}^{6}(\bar{\lambda}) k^{6}}{16 J^{5}} u(1+u)\left(1+7 u+13 u^{2}+7 u^{3}+u^{4}\right) \\
& +\frac{\bar{h}^{5}(\bar{\lambda}) k^{6}}{6 J^{5}} u^{3}(1+u)^{3}+\mathcal{O}\left(\frac{1}{J^{7}}\right)
\end{aligned}
$$

- introduce $\bar{h}(\bar{\lambda})=\sqrt{\bar{\lambda}}-\ln 2+\mathcal{O}\left(\frac{1}{\sqrt{\bar{\lambda}}}\right)$; to this order $\bar{h}(\bar{\lambda})^{n}$ contributes the first two terms in its expansion
- combine with leading order terms $\bar{h}(\bar{\lambda})=\sqrt{\bar{\lambda}}-\ln 2+\mathcal{O}\left(\frac{1}{\sqrt{\bar{\lambda}}}\right)$

$$
\begin{aligned}
\left(E_{0}+E_{1}^{\text {odd }}\right)_{\text {Ads }_{4} \times \mathrm{Cla}^{3}}= & S+J+\frac{\bar{h}^{2}(\bar{\lambda}) k^{2}}{2 J} u(1+u)-\frac{\bar{h}^{4}(\bar{\lambda}) k^{4}}{8 J^{3}} u(1+u)\left(1+3 u+u^{2}\right) \\
& +\frac{\bar{h}^{6}(\bar{\lambda}) k^{6}}{16 J^{5}} u(1+u)\left(1+7 u+13 u^{2}+7 u^{3}+u^{4}\right) \\
& +\frac{\bar{h}^{5}(\bar{\lambda}) k^{6}}{6 J^{5}} u^{3}(1+u)^{3}+\mathcal{O}\left(\frac{1}{J^{7}}\right) \\
\left(E_{0}+E_{1}^{\text {oddd }}\right)_{\text {Ads }_{5} \times 5^{5}}= & J+S+\frac{\lambda_{\text {AdS }_{5}} k^{2}}{2 J} u(1+u)-\frac{\lambda_{\text {AdS }_{5}}^{2} k^{4}}{8 J^{3}} u(1+u)\left(1+3 u+u^{2}\right) \\
& +\frac{\lambda_{\text {AdS }_{5}}^{3} k^{6}}{16 J^{5}} u(1+u)\left(1+7 u+13 u^{2}+7 u^{3}+u^{4}\right) \\
& +\frac{\lambda_{\text {AdSS }}^{5}}{3 J^{5}} k^{6} u^{3}(1+u)^{3}+\mathcal{O}\left(\frac{1}{J^{7}}\right)
\end{aligned}
$$

\diamond The map: $\quad E_{\mathrm{AdS}_{5}} \mapsto 2 E_{\mathrm{AdS}_{4}}, J_{\mathrm{AdS}_{5}} \mapsto 2 J_{\mathrm{AdS}_{4}}, \bar{\lambda}_{\mathrm{AdS}_{5}} \mapsto 4 \bar{h}^{2}\left(\bar{\lambda}_{\mathrm{AdS}_{4}}\right)$ after all parameters of the solution are expressed in terms of charges!

$$
\begin{aligned}
&\left(\bar{E}_{1}^{\text {even }}\right)_{\mathrm{AdS}_{4} \times \mathbb{C P}^{3}}=\frac{1}{\kappa} \sum_{n=1}^{\infty} e_{\mathrm{reg}}^{\text {sum }}(n) \\
&=-\frac{\bar{\lambda} k^{4}(1+u)^{2} u^{2}}{2^{3} J^{2}}\left(6 \zeta(2)-15 k^{2} u(1+u) \zeta(4)+\frac{315}{8} k^{4} u^{2}(1+u)^{2} \zeta(6)+\ldots\right) \\
&+\frac{\bar{\lambda}^{2} k^{6}(1+u)^{2} u^{2}}{2^{6} J^{4}}\left(24\left(1+2 u-u^{2}\right) \zeta(2)+15 k^{2} u^{2}(1+u)(5+13 u) \zeta(4)\right. \\
&\left.-\frac{63}{2} k^{4} u^{2}(1+u)^{2}\left(5+22 u+27 u^{2}\right) \zeta(6)+\ldots\right)+\mathcal{O}\left(\frac{1}{J^{6}}\right) \\
&=-\frac{\lambda k^{4}(1+u)^{2} u^{2}}{2^{2} J^{2}}\left(4 \zeta(2)-8 k^{2} u(1+u) \zeta(4)+20 k^{4} u^{2}(1+u)^{2} \zeta(6)+\ldots\right) \\
&+\frac{\lambda^{2} k^{4}(1+u)^{2} u^{2}}{2^{5} J^{4}}\left(16 k^{2}\left(1+2 u-u^{2}\right) \zeta(2)+8 k^{4} u^{2}(1+u)(5+13 u) \zeta(4)\right. \\
&\left.\quad-16 k^{6} u^{2}(1+u)^{2}\left(5+22 u+27 u^{2}\right) \zeta(6)+\ldots\right)+\mathcal{O}\left(\frac{1}{J^{6}}\right)
\end{aligned}
$$

- Besides $E_{\mathrm{AdS}_{5}} \mapsto 2 E_{\mathrm{AdS}_{4}}, J_{\mathrm{AdS}_{5}} \mapsto 2 J_{\mathrm{AdS}_{4}}, \bar{\lambda}_{\mathrm{AdS}_{5}} \mapsto 4 \bar{h}^{2}\left(\bar{\lambda}_{\mathrm{AdS}_{4}}\right)$, mapping the two expressions into each other requires a re-identification of zeta-constants; physically unjustified \mapsto differs from proposed BA

Conclusions

- The natural worldsheet and (built in) Bethe Ansatz regularization schemes are not necessarily the same
- Magnon dispersion relation receives (in conformal gauge) schemedependent corrections
- Remains an open question whether all quantities depend only on $\bar{h}(\bar{\lambda})$; if so, choose some anomalous dimension as physical coupling
- conjectured all-loop Bethe Ansatz reproduces (the continuous) part of the worldsheet results; finite size effects need more analysis
- giant magnon finite size effects seem to work out fine, however

Grignani, Harmark, Orselli, Semenoff; Bombardelli, Fioravanti; Lukowski, Sax; Ahn, Bozhilov;...

- Possible origin of differences
- misidentification of sectors/excitations
- misidentification of S-matrix, especially $S_{A B}$
- breakdown of integrability at the quantum level

