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Model for Quantifying Magnetic Alignment and Estimating Ubarrier  

MagGNRs consist of a GNR core coated with highly monodisperse superparamagnetic 

NPs. Application of an external magnetic field H induces a magnetic moment m in each NP, 

which is assumed to be identical and parallel to H. We attribute magnetic alignment of 

MagGNRs to a potential energy difference Ubarrier between states with m aligned parallel versus 

perpendicular to the long axis of the GNR core (Equation 3). This approach mimics the 

treatment of GNRs in an optical trap, where the energy difference between parallel and 

perpendicular orientations relative to the polarization of an electromagnetic field is modeled.[1] 

The distinction here is that magnetic interactions are responsible for the trapping behavior. 

We model the magnetic potential energy of a MagGNR, UMagGNR, which we assume is 

dominated by magnetic dipole-dipole interactions between each pair of NPs on the MagGNR, 

i.e., UMagGNR is the sum of the energies needed to bring each NP of moment m in one-by-one 

from infinity to its position on the MagGNR. This can be done by tabulating the dipole-dipole 

interaction energy Uij between each new NP, j, with each existing NP, i, already placed: 

MagGNR ij
j i j

U U
>

= ∑∑ ,        (S1) 

where the dipole-dipole interaction energy is: 
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rij is the displacement vector between the centers of NPs i and j, and µ0 is the permeability of 

free space. For superparamagnetic NPs, the time-averaged moment will point parallel to H, and 

its strength will depend on H. Given that the moments are identical, mi = mj = m, the above 

simplifies to: 
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We define γij as the angle between rij and H, giving: 
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While Equation S4 provides important insight as it carries a negative cosine-squared 

dependency on angle, the same as the optical trap,[1] γij are not generally the same as the angle 

θ between the long axis of the GNR and H, since the displacement between each pair of NPs is 

not generally along the GNR. Intuitively, we might expect that, when calculating the sum in 

Equation S1, the components of rij perpendicular to the long axis of the GNR would cancel out, 
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provided the NPs uniformly decorate the GNR. To analytically tabulate this effect, we rewrite 

Equation S3 in terms of θ and transform the coordinates from the lab frame (x,y,z) to the 

MagGNR frame (x′,y′,z′) by rotation about the x-axis by φ and then about the z′-axis by θ. The 

diagram below depicts the new coordinate system translated along x′ for clarity (i.e., the 

coordinate systems share the same origin, which is where the center of the MagGNR is located): 

  
The components of rij along H can be written as: 

ˆˆ ˆ
ij ij ij ijx i y j z k′ ′ ′ ′ ′ ′= ∆ + ∆ + ∆r ,       (S5) 

where ∆x′ij and ∆y′ij are the x′- and y′- displacement components between two NPs in the 

coordinate frame of the MagGNR (such that x′ is along the long axis of the GNR). Using 

ˆˆ i=m , we obtain: 

ˆ cos sin
ˆ ˆ ij ij ij

ij
ij ij

i x yθ θ′ ′⋅ ∆ − ∆
⋅ = =

r
m r

r r
.      (S6) 

There is no explicit ∆z′ij dependence because the z′-axis is perpendicular to the x-axis. This is 

because we neglect a possible third rotation of the GNR coordinates about its long axis due to 

the assumed axisymmetry of the GNR. Substituting Equation S6 into Equation S3 and 

performing some algebraic manipulation gives: 
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Examining the three terms in parentheses, we see that the first term represents a constant offset 

independent of θ, which may be ignored because only potential energy differences are relevant 

to magnetic trapping (i.e., the potential energy offset can be arbitrarily set). The third term, 

being linear in both ∆x′ij and ∆y′ij, is expected to sum to zero when applying Equation S1, since 
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the NPs are uniformly distributed about the MagGNR centered at x′ = y′ = 0. Therefore, only 

the second term is relevant for determining θ-dependence of Uij. Since the MagGNR is prolate 

with its long axis along x′, we expect that the ∆x′ij2 terms will be larger than the ∆y′ij2 terms 

when summed, such that the final result has the familiar negative cosine-squared relationship: 

( ) ( )
2

02 2 2
5

2

3
cos

4

cos

MagGNR ij ij
j i jij

B

U x y

nk T

µ
θ θ

π

θ

>

′ ′− ∆ −∆

= −

∑∑
m

r


.    (S8) 

This shows explicitly how the trap depth n is related to the positions of the NPs and magnetic 

moments induced by the applied magnetic field. For example, the expression indicates how the 

greater the aspect ratio of the MagGNR, the more the ∆x′ij2 terms dominate over the ∆y′ij2 terms, 

thus increasing the trap depth.  

 

Quantifying Magnetic Alignment from Optical Extinction Spectroscopy  

In optical spectroscopy, we acquire extinction (also known as absorbance) A by 

measuring the optical intensity I incident and transmitted through a sample: 
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− −
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,       (S9) 

where Beer’s law is used to show that the extinction cross-section Cext is proportional to A, via 

the number density of MagGNRs, N, and the optical path length through the sample z. Since 

much of the underlying optical scattering theory treats Cext, this proportionality is used to 

connect theory with experimental measurements of A.  

Cext of a GNR is a sum of the absorption and scattering cross-sections Cabs and Csca, 

respectively. In the Rayleigh approximation (particles small compared to the wavelength), each 

of these will depend upon the polarizability tensor α of the GNR:[2,3] 
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where k is the wavenumber, and E0 is the incident electric field. For GNRs of the aspect ratios 

and sizes in our experiments, both absorption and scattering may be significant, so both are 

included in this analysis. 
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If we define the long axis of the GNR as “1” and the two transverse axes as “2” (since 

they are degenerate), the polarizability tensor, in the frame of the GNR, can be written simply 

as: 
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 =  
 
 

α ,       (S11) 

where α1 is dominant at the LSPR wavelength and α2 is dominant at the TSPR wavelength.  

When a GNR is aligned with its long axis exactly parallel or perpendicular to the 

polarization of the incident light, the extinction coefficients Cext,1 and Cext,2 can be obtained 

from Equations S10, S11:  
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In experiments in this work, the MagGNR orientations are described by the polar angle 

θ and azimuthal angle φ relative to a magnetic field in the laboratory frame along the x-axis 

according to the figure above. To predict the optical response for such an arbitrary orientation, 

one must first write the GNR polarizability in the laboratory frame by appropriate rotation 

operations: 

( ) ( ) ( )1, , ,lab GNRθ φ θ φ θ φ−=α R α R ,       (S13) 
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Then, to predict the extinction coefficients for an electromagnetic field polarized along x 

(parallel to H) or y (perpendicular to H), we find Cext,|| and Cext,⊥, after much simplification, as: 
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In this study, measurements of A were analyzed at the LSPR wavelength, in which case 

α2 << α1 and Cext,2 << Cext,1. We obtain the simplification: 
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The measurements are collected over an ensemble of MagGNRs with an angular distribution fθ, 

as in Equation 5, which is independent of φ. We may assume the MagGNRs have identical 

optical properties, so that the ensemble averages simplify as follows: 
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where both extinctions have the same constants of proportionality (determined by experimental 

conditions). Therefore, ratiometric parameters can be computed, such as the optical anisotropy: 
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and the 3D order parameter: 
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Summary of Analysis of Alignment of MagGNRs 

First, we express the 2D order parameter, 2
2 2 cos 1DS χ= − , in terms of the angles θ 

and φ defined in the above figure, so that it can be computed from knowledge of the 3D angular 

distribution. In this picture, the unit vector corresponding to the long axis of the MagGNR 

written in the laboratory frame is given by a rotation according to the inverse of the matrix R 

in Equation S14. (Note that the inverse of R is also its transpose.) This unit vector is thus: 
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and thus, 
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Therefore, the ensemble average is:  
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Now that we have expressions for the order parameters S2D and S3D in terms of ensemble 

averages over functions of θ, we can follow the method as in Equations 5-7 to compute their 

values for a known trap depth parameter n. Briefly summarized, this would be done by:  
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where the integrals are evaluated numerically in Mathematica. 
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Synthesis of Small Fe3O4 NPs 

Oleylamine-stabilized magnetite (Fe3O4) NPs with average diameters of 6.6 nm were 

synthesized by a reductive thermal decomposition method.[4] 1.05 g of iron(III) acetylacetonate 

was dissolved in a mixture of 15 mL benzyl ether and 15 mL oleylamine, which served as a 

ligand and reducing agent, in a round-bottomed flask connected to a Schlenk line. The mixture 

was degassed at room temperature under vacuum for 1 hour, followed by backfilling with 

nitrogen and heating to 120 °C for another hour under inert atmosphere. The temperature was 

then quickly increased to 210 °C and held for 1 hour. After allowing the product to cool to room 

temperature, 50 mL of ethanol was added to assist flocculation of the NPs during centrifugation 

(Thermo Scientific Sorvall Legend X1R with Fiberlite F15-6x100y rotor) at 4000 rpm (1753 

g) for 5 min. The sedimented oleylamine-stabilized Fe3O4 NPs were then redispersed in 10 mL 

chloroform. An aliquot of 0.25 mL from this stock solution was diluted with chloroform to a 

total volume of 10 mL. PEI functionalization was performed as described in the main text, by 

adding a solution of 100 mg of PEI dissolved in 30 mL of chloroform with vigorous stirring. 

 
References: 
[1] P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, Phys. Rev. 
Lett. 2011, 107, 037401. 
[2] C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles, 
Wiley, Weinheim, Germany 2004. 
[3] V. A. Markel, J. Quant. Spectrosc. Radiat. Transf. 2019, 236, 106611. 
[4] Z. Xu, C. Shen, Y. Hou, H. Gao, S. Sun, Chem. Mater. 2009, 21, 1778. 
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Figure S1. TEM images of (a) small and (b) large BSA-GNRs. 
 
 
 

 

Figure S2. TEM images of Fe3O4 NPs (a) stabilized with native oleic acid ligands and (b) after 
functionalization with PEI. 
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Figure S3. TEM images of large MagGNRs dried under 10 kOe magnetic field parallel to the 

grid and in the vertical direction in the images at (a) lower magnification (b) higher 

magnification. (c) Angular distribution overlaid with the corresponding distributions from 

SAXS measurements and (d) S2D calculated from measurements of 200 aligned large 

MagGNRs. The same (e) imaging in 10 kOe field, (f) measurements and tabulation of the 

angular distribution, and (g) calculation of S2D were performed on 200 aligned small MagGNRs. 

 

 

 

 

 

 
 

Figure S4. Control experiments confirming no alignment without combined use of magnetic 

overcoatings and magnetic fields. (a) Large MagGNRs dried without a magnetic field and 

imaged by TEM with (b) measurements of the angular distribution of 200 MagGNRs with 

respect to the vertical direction. (c) Unpolarized and polarized optical extinction spectra of 

BSA-GNRs measured in 10 kOe field in an electromagnet. 
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Figure S5. The extinction of the GNR core is preserved after assembly of MagGNRs. 

Extinction spectra of large BSA-GNRs and PEI-Fe3O4 NPs before and after mixing for two 

hours and before purification are compared with their sum. The spectra have been adjusted to 

account for dilution effects. The mixture contains MagGNRs and excess PEI-Fe3O4 NPs. The 

LSPR intensity is not affected in the MagGNRs, and a redshift is observed, which is discussed 

in the main text. The consistent intensity of the LSPR during assembly validates normalization 

of the extinction spectra of BSA-GNRs and MagGNRs at the LSPR in Figure 3.  
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Figure S6. (Left) Photograph of the spectrophotometer placed between the poles of the 
electromagnet and (right) schematic (rotated 90° clockwise with respect to the photograph) of 
spectroscopy measurements in the electromagnet, with light of polarization P propagating along 
k. 
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Figure S7. (a) Extinction spectra of large BSA-GNRs and MagGNRs prepared with small, 

6.6 nm PEI-Fe3O4 NPs. (b) Polarized extinction spectra of these MagGNRs in a 10 kOe 

magnetic field. TEM images (c) after drying in a 10 kOe magnetic field, including (d) a 

magnified image of a single MagGNR. 
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Figure S8. Magnetic field distribution around 1 in. N52 cube magnet, calculated using 
https://www.kjmagnetics.com/calculator.asp. Approximate locations of the cuvettes with 
MagGNRs in Figure 5a-c are indicated by overlaid rectangles. 
 

 

 
 
Figure S9. Photos of large MagGNRs in a horizontal magnetic field generated by a circular 
Halbach array (a) unpolarized and with (b) horizontal and (c) vertical polarizer films. The 
magnetic field and polarizer directions are indicated by single-headed and double-headed 
arrows, respectively.  

(a) (b) (c)

https://www.kjmagnetics.com/calculator.asp
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Figure S10. Photos of cuvette with large MagGNRs placed between arrays of five ¼ in. cube 
magnets without and with polarizer for (a) vertical, in-plane and (b) out-of-plane magnetic 
fields. 

(b)

(a)
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Figure S11. Photos of cuvette with large MagGNRs placed next to a single array of five ¼ in. 
cube magnets without and with polarizer for (a) horizontal, in-plane, (b) vertical, in-plane, and 
(c) out-of-plane magnetic fields. 
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(b)
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Figure S12. Photos of cuvette with large MagGNRs placed between arrays of two 10 mm cube 
magnets without and with polarizer for (a) horizontal, in-plane, (b) vertical, in-plane, and (c) 
out-of-plane magnetic fields. 
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Figure S13. Photos of cuvette with large MagGNRs placed between a pair of 10 mm cube 
magnets without and with polarizer for (a) horizontal, in-plane, (b) vertical, in-plane, and (c) 
out-of-plane magnetic fields. 
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Figure S14. Pairs of snapshots from Movie S8 of large MagGNRs with a stir bar placed on a 
stir plate with the field (left photo) in-plane or (right photo) out-of-plane (a) without a polarizer, 
(b) with a horizontal polarizer, and (c) with a vertical polarizer. 
 
 
 
 

 

Figure S15. Snapshots from Movie S9 of large MagGNRs rotating on a stir plate set at 1000 
rpm with a horizontal polarizer. Analysis of the video shows that 120 cycles of color change, 
corresponding to 60 full rotations, occur in 3.634 s, which is equivalent to a speed of 991 rpm. 
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Figure S16. S3D, optical and magnetization of MagGNRs as a function of applied magnetic field. 
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